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What is an elliptic curve?

E/K : y2 + h(x)y = F(x)
with degh <1 and degf =3

to

\V

r\
N

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?

. . E/K :y*+ h(x)y = f(x)
» Set of points E(K) is a group with deg h < 1 and deg f — 3

to

\C\?

K\
N

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?

. . E/K :y*+ h(x)y = f(x)
» Set of points E(K) is a group with deg h < 1 and deg f — 3

to

LP7Q

)

ﬁ\
S

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?

. . E/K :y*+ h(x)y = f(x)
» Set of points E(K) is a group with deg h < 1 and deg f — 3

to

LP7Q

)

e "
=V

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?
. . E/K :y® + h(x)y = f(x)
» Set of points E(K) is a group with deg h < 1 and deg f — 3

VR /

Lpq

Yo
S AN

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?
. . E/K :y® + h(x)y = f(x)
» Set of points E(K) is a group with deg h < 1 and deg f — 3

VR /

Lpq

to
N

R=P+Q

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 1/25



What is an elliptic curve?
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What is an elliptic curve?

E/K : y? + h(x)y = F(x)

Set of points E(K) is a group with deg h < 1 and deg f = 3
In practice: K is a finite field [, TO y
-
E(Fg) is a finite group
[n]P:P++P LP7Q
%,—1 R/
n times K\M
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Use a cyclic subgroup of
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What is an elliptic curve?

Set of points E(K) is a group
In practice: K is a finite field [,
E(Fg) is a finite group

[n]IP=P+---+P
N———

n times

E/K : y2 4 h(x)y = F(x)
with degh <1 and degf =3

VR /

Lpq
R/

(: a large prime dividing #E(F,) b
P

Use a cyclic subgroup of

E[] = {P|[1P = 0}

» Our favorite curves: E3: y? = x3

characteristic 3
supersingular
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Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let G be a cyclic group, P a generator, given Q € G, it is supposed to be hard to
compute a such that

Q = [a]P
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Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let G be a cyclic group, P a generator, given @ € G, it is supposed to be hard to
compute a such that

Q =[a]P
» Use this hard problem to design cryptographic protocols

» Diffie-Hellman key exchange:

Alice generates a secret integer a Bob generates a secret integer b
Alice sends [a]P to Bob Bob sends [b]P to Alice
Alice computes [a][b]P Bob computes [b][a]P

They both share the same secret: [ab]P
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What is a pairing?

E[
ulut=1}cFq
@< — st s
I Pairing
o % — e(.) N

¢-th roots of unity

» Bilinear map:
e(P+ P, Q)=¢e(P.Q) e(F,Q)
e(PaQ+QI) :e(P7Q)'e(P7QI)
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» Bilinear map:
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e(P+ P ,Q)=e(P,Q)-e(P,Q)
e(PaQ+QI) :e(P7Q)'e(P7QI)

» Cryptographic interest: Mixing two secrets without having to know them

e(a]P. [P]Q) = e(P, Q)™
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|

e(P+ P ,Q)=e(P,Q)-e(P,Q)
e(PaQ+QI) :e(P7Q)'e(P7QI)

» Cryptographic interest: Mixing two secrets without having to know them
e([a]P, [b]Q) = (P, Q)"

» Useful for advanced protocols
short signature
electronic voting
electronic money

» DLP should be hard on all the groups involved
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Security considerations

» Security measurement

number of operations to break a cryptosystem
today's recommendation: 128-bit security

2128 operations
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2128 operations

» Difficulty of the DLP on the curve

depends on the order ¢
roughly v/¢ operations

» Difficulty of the DLP on the roots of unity

embedding degree: k such that all roots lie in [

Subexponential algorithms exist
* function field sieve
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Security considerations

» Security measurement

number of operations to break a cryptosystem
today's recommendation: 128-bit security
2128 operations

» Difficulty of the DLP on the curve

depends on the order ¢
roughly v/¢ operations

» Difficulty of the DLP on the roots of unity

embedding degree: k such that all roots lie in [
Subexponential algorithms exist

* function field sieve

* very recent results (2013)

Records by Joux and Gologlu et al. records
Joux

Barbulescu, Gaudry, Joux, Thomé
Adj, Menezes, Oliveira, Rodriguez-Henriquez
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Why cryptography and hardware implementations?

» Growth of numeric exchanges

B

49710 1012 3%5b

many applications
* bank services
* secure firmware updates
* personal communications
* ...
many targets
* embedded electronics
* smart cards
* smartphones
* computers, servers

» Security implies non-trivial computations

» Need for hardware implementations

CPUs may be inadequate
limited resources
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Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)

» Different designs for the same computation

optimized for latency
optimized for compactness

Computation time

Area

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)

» Different designs for the same computation

optimized for latency
optimized for compactness

Computation time

Area

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)

» Different designs for the same computation

optimized for latency
optimized for compactness

Computation time

Area

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)

» Different designs for the same computation

optimized for latency
optimized for compactness

Computation time

Area

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 6 /25



Hardware implementation

» Our target: Field Programmable Gate Array
(FPGA)

integrated circuit
matrix of simple configurable logic cells
programmable interconnection

» Performance metric

time (ms)
area (slices)
time—area product

» Different designs for the same computation

optimized for latency
optimized for compactness
optimized for throughput

Computation time
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Contributions

» Fast accelerator for pairings [CHES 2009, IEEE TC 2011]
Joint work with Beuchat, Detrey, Okamoto and Rodriguez-Henriquez

parallel architecture
pipelined subquadratic multiplier

» Compact design for pairings reaching 128-bit security

composite extension fields [Paring 2010]
hyperelliptic curves [CT-RSA 2012]
Joint work with Aranha, Beuchat and Detrey

» Formulae for sub-quadratic multiplication [WAIFI 2012]
Joint work with Barbulescu, Detrey and Zimmermann

exhaustive search
improved formulae for Fzsm
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Outline of the talk

» Compact design through composite extension fields
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Computing the pairing: Miller’s algorithm
» Computation of the pairing relies on
Miller functions: f, p

to
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» Computation of the pairing relies on
Miller functions: f, p

an inductive identity defined by to
hp =1
foxwp = fop-fop- &[n|P.[n]P
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Computing the pairing: Miller’s algorithm
» Computation of the pairing relies on
Miller functions: f, p

an inductive identity defined by to Vint 1B
Ln o n-—n
fip =1 BiP P = Vo

[n+n"1P

fn+n’,P - fn,P : fn’,P : g[n]P7[n’]P

[W]P Linp P
g(n P[P derived from the addition of /\W

[l and [} MP@ \[n+n’]P
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Computing the pairing: Miller’s algorithm

» Computation of the pairing relies on
Miller functions: f, p

an inductive identity defined by

Linp i TO V[n+n/]P
fip =1 B IMP = Vo
fn+n’,P = fn,P ) fn’,P " 8[n]P,[n']P i
[]P [n1P.lm'1P
g(n P[P derived from the addition of /\W
P and [n]P \
[n]P and [ BS o

» Tate pairing: f4gF,).pP

use an addition chain
in practice: double-and-add

log, #E(F,) iterations
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» Tate pairing: f4gF,).pP
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Computing the pairing: Miller’s algorithm
» Computation of the pairing relies on
Miller functions: f, p

an inductive identity defined by to Vint 1B
Ln o n-+n
fip =1 BiP P = Vo

[n+n"1P

fn+n’,P - fn,P : fn’,P : g[n]P7[n’]P

[W]P Linp P
g(n P[P derived from the addition of /\W

[n]P and []P /\C N

[n]P
» Tate pairing: f4gF,).pP
use an addition chain
in practice: double-and-add
log, #E(F,) iterations

For E3([F3se0) | Tate pairing| Eta T b HE5(Fyson) = 3599 4 3255 4 1

4+ iterations 509 254 triple-and-add algorithm
X 10330 36338 » Many improvements
+ 45170 17240 vertical elimination
Ok 8136 4068 use of some curve endomorphisms
() 2 1 * Frobenius: Ate

* Verschiebung: Eta, Eta T
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An arithmetic coprocessor

A i 1

Parallel—serial

Linear operations

multiplier
Register
file addition / subtraction D coeffs / cycle
Frobenius (-)3 [509/D] cycles / product

» Only need arithmetic operations in Fzse Operation count

implement a specialized processor X 3638
» Multiplication is critical + 17240
- - TR (.)? 4068
separate linear operations and multiplications .
careful scheduling to keep multiplier busy ()" 1
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no need for hardware support
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An arithmetic coprocessor

<

il i

Linear operations

Register

Parallel—serial

file addition / subtraction D coeffs / cycle
Frobenius (-)3 [509/D] cycles / product

» Only need arithmetic operations in [F3so

implement a specialized processor

» Multiplication is critical

separate linear operations and multiplications
careful scheduling to keep multiplier busy

» Inverse is only needed once: Itoh—Tsujii algorithm

no need for hardware support

» Synthesis results for F3se: 9625 slices

almost fully occupy a Virtex 6 LX 75 T (82%)
computation time: ~ 4 ms

. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings
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Field of composite extension degree

|]:36-509

Hardware
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Field of composite extension degree

» Provides some arithmetic advantages Fis500 Fges97
smaller datapath
Soft
SOftare I ages Fasor
Hardware :
E--u:397 ------------
F3 Fs3
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Field of composite extension degree

» Provides some arithmetic advantages Fa6500 36507

smaller datapath
efficient multiplication algorithm
Soft
SOMUare oo Fanr
Hardware :
Subquadratic
multiplication
E--u:397 ------------
Quadratic
multiplication
F3 F3
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Field of composite extension degree

» Provides some arithmetic advantages Fa6500 36507

smaller datapath
efficient multiplication algorithm
» Allows Weil Descent based attacks on the curve
GHS: using the composite extension degree ¢ ¢ - .
........... [F3509.: [,:35,97
~ 2279 operations Hardware :
SDHP: Granger's algorithm : Subquadratic
: multiplication
~ 21*2 operations
limited effect on security e gomeeeeeeeens
Quadratic
multiplication
F3 F3
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Field of composite extension degree

» Provides some arithmetic advantages Fa6500 36507

smaller datapath
efficient multiplication algorithm

» Allows Weil Descent based attacks on the curve

GHS: using the composite extension degree ¢ ¢ - .
........... [F3509.: [,:35,97

~ 2279 operations Hardware

SDHP: Granger's algorithm Subquadratic
: multiplication
~ 21*2 operations

limited effect on security e gomeeeeeeeens

» Results _
Quadratic

1848 slices of the same Virtex 6 LX (15%) multiplication
5.2 times smaller
compute a pairing in 1.6 ms F F

2.5 times faster 3 3
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Benchmarks
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Pairing implementations at 128 bits
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Benchmarks
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3 | Pairing implementations at 128 bits
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Benchmarks

[ ]
|]:3509

o [Est10]

Pairing implementations at 128 bits
of security on Virtex 6
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Outline of the talk

» Pairing on genus-2 hyperelliptic curves
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Genus-2 hyperelliptic curves

C/K :y*+ h(x)y = f(x)
with degh <2 and degf =5

fo

I~ TN
N

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 14 / 25



Genus-2 hyperelliptic curves

C/K :y*+ h(x)y = f(x)
with degh <2 and degf =5

fo

» C(K) not a group!

I~ TN
N

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 14 / 25



Genus-2 hyperelliptic curves

C/K:y* + h(x)y = f(x)
» C(K) not | with degh <2 and degf =5
not a group!

» But pairs of points TO @
{P1, P2}

I
N A N A
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» C(K) not | with degh <2 and degf =5
not a group!

» But pairs of points TO @
{P17 P2}
Ry
Py }‘ Ry @
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characteristic 2
supersingular
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Optimal Eta

» Parameters for 128-bit security

Embedding degree k = 12
Field: U:2367
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Optimal Eta

» Parameters for 128-bit security

Embedding degree k = 12
Field: [F2367
#Jacc([F2367) — 2734 . 2551 . 2367 + 2184 + 1

» Our pairing algorithm

_ Tate
Algorithm (double-and-add)
# iterations ‘ 734
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Optimal Eta

» Parameters for 128-bit security

Embedding degree k = 12
Field: [F2367
# Jacc([F2367) =4. 8244 —4. 2183 —2- 8122 +1

» Our pairing algorithm

Efficient octupling formula: octuple-and-add

_ Tate Tate
Algorithm (double-and-add) | (octuple-and-add)
# iterations ‘ 734 ‘ 245

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings

15 / 25



Optimal Eta

» Parameters for 128-bit security

Embedding degree k = 12
Field: [Foser
# Jacc([F2367) =4. 8244 —4. 2183 —2- 8122 +1

» Our pairing algorithm

Efficient octupling formula: octuple-and-add
adapted Verschiebung: Eta T

: Tate Tate
Algorithm (double-and-add) | (octuple-and-add) Eta T
# iterations ‘ 734 ‘ 245 ‘ 184
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Optimal Eta

» Parameters for 128-bit security
Embedding degree k = 12
Field: [Foser
# Jacc([F2367) =4. 8244 —4. 2183 —2- 8122 +1

» Our pairing algorithm

Efficient octupling formula: octuple-and-add
adapted Verschiebung: Eta T
Vercauteren's optimal technique: optimal Eta

. Tate Tate :
Algorithm (double-and-add) | (octuple-and-add) Eta T | Optimal Eta
# iterations | 734 | 245 184 | 123
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Optimal Eta

» Parameters for 128-bit security
Embedding degree k = 12
Field: [F2367
# Jacc([F2367) =4. 8244 —4. 2183 —2- 8122 +1

» Our pairing algorithm

Efficient octupling formula: octuple-and-add
adapted Verschiebung: Eta T
Vercauteren's optimal technique: optimal Eta

. Tate Tate :
Algorithm (double-and-add) | (octuple-and-add) Eta T | Optimal Eta
# iterations | 734 | 245 184 | 123

» Implementation on the previous coprocessor adapted for [y

1366 slices on the same Virtex 6 LX (12%)
3.2 ms
comparable performances with the elliptic case
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Benchmarks

o [Est10]
3 | *[Ara+12] Pairing implementations at 128 bits
o of security on Virtex 6
=
-
s
O =
522
: el
g— o [Est10]
S [FVV12]
1 N
[Che+11]
[GVR13]
VaoiT [AHN13]  [GRDI1] 1AHN13)
0 T T T T T T T T T T T T T T T -
0 5 10 15
Area

[x10° slices]
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Outline of the talk

» Searching for efficient multiplication algorithms

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings 17 / 25



Origin of the problem

» Polynomial multiplication is an expensive arithmetic operation

» Schoolbook algorithm: quadratic cost
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Origin of the problem

» Polynomial multiplication is an expensive arithmetic operation
» Schoolbook algorithm: quadratic cost
» Karatsuba (1962): first subquadratic multiplication algorithm

(ao + 31X)(b0 + b1X) = agbg + (a0b1 + albo)X + 81b1X2
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Origin of the problem

» Polynomial multiplication is an expensive arithmetic operation
» Schoolbook algorithm: quadratic cost
» Karatsuba (1962): first subquadratic multiplication algorithm

(ao + 31X)(b0 + b1X) = apby + (aob1 + a1b0)X + 81b1X2
= apby + ((ao + 31)([30 + bl) — apby — albl)X + 31b1X2
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Origin of the problem

» Polynomial multiplication is an expensive arithmetic operation
» Schoolbook algorithm: quadratic cost
» Karatsuba (1962): first subquadratic multiplication algorithm

(ao + 31X)(b0 + b1X) = apby + (a0b1 + albo)X + a1b1X2
= apby + ((30 + 31)(b0 + bl) — agby — albl)X + 31b1X2

» Well-studied problem

asymptotic complexity
theoretical bilinear complexity
small and “cryptographic” size

» Five, six, and seven-term Karatsuba-like formulae, P. Montgomery (2005)

ad-hoc formulae
exhaustive search for five-term multiplication
non-exhaustive search for six and seven-term multiplications

» Our approach: improve the search algorithm
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Generalization of the problem

» Model of a multiplication algorithm

(an X + + aX + a | (baa X + + X+ b

[ Linear combinations ] [ Linear combinations ]

[ Linear combinations ]

[ Product }
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Generalization of the problem

» Model of a multiplication algorithm

(301X + + aX + & by X" + + X+ by
[ Linear combinations ] [ Linear combinations ]
x) (X x) (X
[ Linear combinations ]

[ Product }

» Also true for any bilinear application

multiplication in extension fields
sparse products
matrix multiplications
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Formal framework

Formulation in terms of vector space for an n x m multiplication over a given field K

» Represent the coefficients of the result and the products as elements of
V' the nm-dimensional K-vector space generated by {a;b;}o<i<no<j<m

where the a;b;’s are seen as formal elements
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» Represent the coefficients of the result and the products as elements of
V' the nm-dimensional K-vector space generated by {a;b;}o<i<no<j<m
where the a;b;’s are seen as formal elements

» Our target: the coefficients of the result is a family 7 C V that spans the target
subspace T = Span7 of V
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where the a;b;’s are seen as formal elements
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» The set G of the potential products to use in a formula: the generators
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Formal framework

Formulation in terms of vector space for an n x m multiplication over a given field K

» Represent the coefficients of the result and the products as elements of
V' the nm-dimensional K-vector space generated by {a;b;}o<i<no<j<m
where the a;b;’s are seen as formal elements

» Our target: the coefficients of the result is a family 7 C V that spans the target
subspace T = Span7 of V

» The set G of the potential products to use in a formula: the generators

» Goal: find the optimal formulae (i.e. with a minimum number of products)

for increasing k until a solution is found

find each subset W C G of exactly k products

which gives a valid formula (i.e. that lineary generates the coefficients of the
result)

T C Span W
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Resolution

expand,family(@, g)

procedure expand family(W, H)

» Naive approach: test each if 2V = k then
subset of k potential if 7 C Span)V then
products W is a solution

else
while H # () do
Picka hin H
H <+ H\ {h}

expand family(W U {h}, H)
end procedure

» Complexity depends on
#6
k
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Resolution

expand_subspace({0}, G)

procedure expand _subspace(\V, H)

» Naive approach: test each if dim W = k then
subset of k potential if 7 C W then
products I/ is a solution

else

» Better approach: test each H o H\ W
vector space of dimension k while H # () do
generated by potential Pick a hin H
products H— H\{h}

expand_subspace(W @ Span(h), H)
end procedure

» Complexity still depends on
#G
k
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Resolution

expand_subspace(T, G)

procedure expand _subspace(W, H)

» Naive approach: test each if dim W = k then
subset of k potential if rank(W N G) = k then
products W is a solution
else
» Better approach: test each H H\ W
vector space of dimension k while H +# () do
generated by potential Pick a hin H
products H— H\{h}

expand_subspace(W @ Span(h), H)

» Even better approach: part end procedure

of the solution is already
known, use incomplete basis Complexity now depends on

theorem
#G
k —rank T
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Some results

» Multiplication of n x m term binary polynomials

Ring | n x m £G B # of # f)f # of (;omputation
tests solutions | formulae | time (1 core)
2x2 91 3 1 1 1 0
3x3 49| 6 9 3 9 0
4 x4 225/ 9| 6.60-10° 4 A 30 ms
Fo[X] | 5 x5 961 || 13 | 9.65-10° 27 27 2d15h
6 x6 3969 || 14 | 4.37-10° — — 7d
6x6 | (Sym.) 63| 17| 8.08-10° 6 54 18 s
7x7 | (Sym.) 127 22| 3.38-10'2| 2618 19550 184 d
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3x3 49| 6 9 3 9 0
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4 x4 225 | 9| 6.60-10° 4 4 30 ms
Fo[X] | 5 x5 961 || 13 | 9.65-10° 27 27 2d15h
6 % 6 3969 || 14 | 4.37-10° — — 7d
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Some results

» Multiplication of n X m term binary polynomials

Ring | n x m #£G B # of # f)f # of (;omputation
tests solutions | formulae | time (1 core)
2 %2 9| 3 1 1 1 0
3x3 491 6 9 3 9 0
4 x 4 225| 9| 6.60-103 4 4 30 ms
Fo[X]| 5x5 961 | 13| 9.65-10° 27 27 2d15h
6 x 6 3969 || 14 | 4.37-10° — — 7d
6x6 |(Sym.) 63| 17| 8.08-10° ) 54 18 s
7x7 |(Sym.) 127 22| 3.38-10?| 2618 19550 184 d
G ={ao - by, a1 - by, (ag + a1) - bo, as - by, (a0 + a2) - by,
ao - by, ap - by, (ag + a1) - by, a - by, (ag + a2) - by,
ao'(bo—i-bl), di '(bo—l-bl), (30+31)-(b0+b1), 32~(b0—|-b1), (30+32 -(b0+b1),
ag - by, ay - by, (a0 + a1) - bo, a - by, (a0 + a2) - bo,
ag - (bo+ b2), a1-(bo+ b2), (ao+a1)-(bo+ b2), ax-(bo+ b2), (ao+ a2) - (bo+ b2),
.}
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Some results

» Multiplication of n x m term binary polynomials

Ring | n x m £G B # of # f)f # of (?omputation
tests solutions | formulae | time (1 core)
2 X2 91 3 1 1 1 0
3x3 49| 6 9 3 9 0
4 x4 225 9| 6.60-10° 4 4 30 ms
Fo[X]| 5x5 961 || 13| 9.65-10° 27 27 2d15h
6 x6 3969 | 14 | 4.37-10° — — 7d
6x6 | (Sym.) 63| 17| 8.08-10° 6 54 18's
7x7 |(Sym.) 127 22| 3.38-10% 2618 19550 184 d
G = {ao - bo,
a - by,
(a0 + a1) - (bo + b1),
a - by,
(a0 + a2) - (bo + b2),
.}

N. Estibals — Algorithms and arithmetic for the implementation of cryptographic pairings

22 /25




Some results

» Multiplication of n X m term binary polynomials

Ring | n x m £G B # of # f)f # of (;omputation
tests solutions | formulae | time (1 core)
2x2 91 3 1 1 1 0
3x3 49| 6 9 3 9 0
4 x4 225/ 9| 6.60-10° 4 A 30 ms
Fo[X] | 5 x5 961 || 13 | 9.65-10° 27 27 2d15h
6 x6 3969 || 14 | 4.37-10° — — 7d
6x6 | (Sym.) 63| 17| 8.08-10° 6 54 18 s
7x7 | (Sym.) 127 22| 3.38-10'2| 2618 19550 184 d

» Optimal formulae for sparse multiplication useful in pairing computation

in the genus-2 pairing, from 11 to 9 subproducts
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Some results

» Multiplication of n X m term binary polynomials

Ring | n x m £G B # of # f)f # of (;omputation
tests solutions | formulae | time (1 core)
2x2 91 3 1 1 1 0
3x3 49| 6 9 3 9 0
4 x4 225/ 9| 6.60-10° 4 A 30 ms
Fo[X] | 5 x5 961 || 13 | 9.65-10° 27 27 2d15h
6 x6 3969 || 14 | 4.37-10° — — 7d
6x6 | (Sym.) 63| 17| 8.08-10° 6 54 18 s
7x7 | (Sym.) 127 22| 3.38-10'2| 2618 19550 184 d

» Optimal formulae for sparse multiplication useful in pairing computation

in the genus-2 pairing, from 11 to 9 subproducts

» Optimal multiplication for the extensions [F3sm

11 subproducts instead of 12 previously
yields a 5% improvement for the pairing on E3
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Outline of the talk

» Conclusion and Perspectives
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Conclusion

» Hardware implementations of pairing

» An algorithm to search for multiplication formulae
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Conclusion

» Hardware implementations of pairing
» An algorithm to search for multiplication formulae

» Unified framework for constructing pairing algorithms

lot of literature on pairing algorithms

generally concepts and results only for specific cases
covers both elliptic and hyperelliptic cases

covers the different variants of the Tate pairing:

* Ate, Eta, Eta T, optimal Ate, ...
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Conclusion

» Hardware implementations of pairing
» An algorithm to search for multiplication formulae

» Unified framework for constructing pairing algorithms

lot of literature on pairing algorithms

generally concepts and results only for specific cases
covers both elliptic and hyperelliptic cases

covers the different variants of the Tate pairing:

* Ate, Eta, Eta T, optimal Ate, ...

» General method for cryptographic implementations

study mathematical structures

fix parameters thanks to cryptanalysis
algorithmic optimizations

choose the right arithmetic representation
implement different hardware accelerators
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Perspectives

» Lower-level architecture

FPGA is a good prototyping platform
but with limited uses in real-life devices
develop skills in ASIC designs

power consumption awareness

» Integrate side-channel counter-measures

side-channel attacks are very effective threats
embedded systems need to be protected

» Use this method on different cryptographic primitives

scalar multiplication on hyperelliptic curves
lattice-based cryptography
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