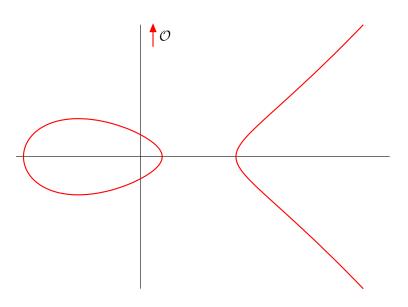
Algorithms and arithmetic for the implementation of cryptographic pairings

Nicolas Estibals

CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA, France Nicolas.Estibals@loria.fr

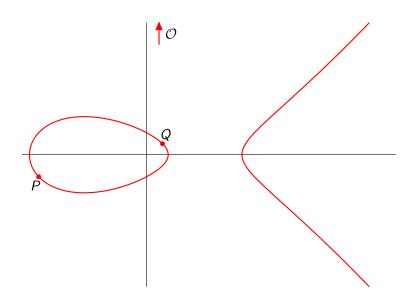
$$E/K: y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



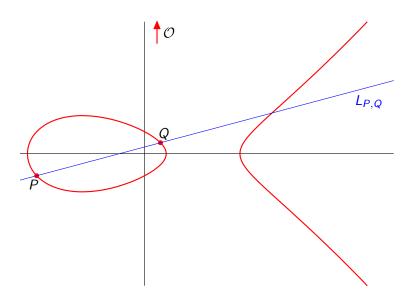
$$E/K: y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



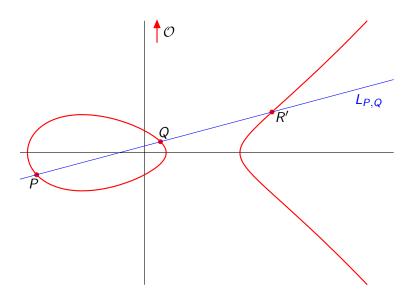
$$E/K : y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



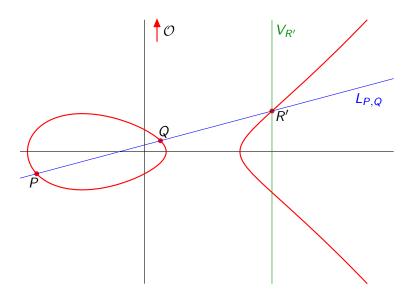
$$E/K : y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



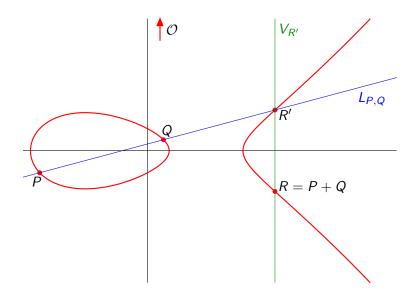
$$E/K: y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



$$E/K: y^2 + h(x)y = f(x)$$

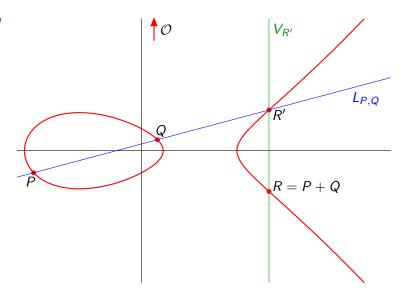
with deg $h \le 1$ and deg $f = 3$



- ▶ Set of points E(K) is a group
- ▶ In practice: K is a finite field \mathbb{F}_q
- $ightharpoonup E(\mathbb{F}_q)$ is a finite group

$$E/K : y^2 + h(x)y = f(x)$$

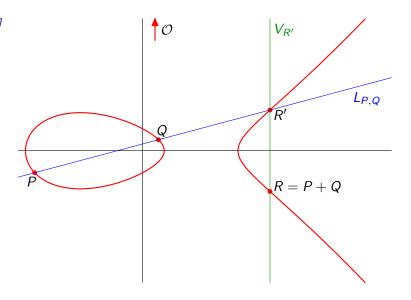
with deg $h \le 1$ and deg $f = 3$



- ▶ Set of points E(K) is a group
- ▶ In practice: K is a finite field \mathbb{F}_q
- $ightharpoonup E(\mathbb{F}_q)$ is a finite group

$$E/K : y^2 + h(x)y = f(x)$$

with deg $h \le 1$ and deg $f = 3$



▶ Set of points E(K) is a group

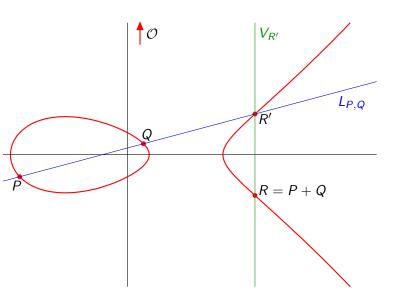
 $E/K : y^2 + h(x)y = f(x)$ with deg $h \le 1$ and deg f = 3

- ▶ In practice: K is a finite field \mathbb{F}_q
- $ightharpoonup E(\mathbb{F}_q)$ is a finite group

$$[n]P = \underbrace{P + \cdots + P}_{n \text{ times}}$$

- \blacktriangleright ℓ : a large prime dividing $\#E(\mathbb{F}_q)$
- ► Use a cyclic subgroup of

$$E[\ell] = \{ P \mid [\ell]P = \mathcal{O} \}$$



▶ Set of points E(K) is a group

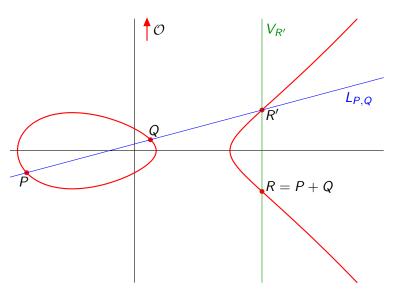
 $E/K : y^2 + h(x)y = f(x)$ with deg $h \le 1$ and deg f = 3

- ▶ In practice: K is a finite field \mathbb{F}_q
- $ightharpoonup E(\mathbb{F}_q)$ is a finite group

$$[n]P = \underbrace{P + \cdots + P}_{n \text{ times}}$$

- \blacktriangleright ℓ : a large prime dividing $\#E(\mathbb{F}_q)$
- ► Use a cyclic subgroup of

$$E[\ell] = \{ P \mid [\ell]P = \mathcal{O} \}$$



- ▶ Our favorite curves: E_3 : $y^2 = x^3 x \pm 1$
 - characteristic 3
 - supersingular

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let \mathbb{G} be a cyclic group, P a generator, given $Q \in \mathbb{G}$, it is supposed to be hard to compute a such that

$$Q = [a]P$$

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

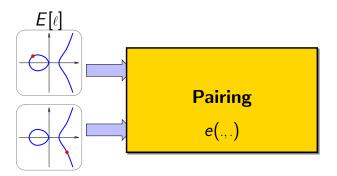
Let $\mathbb G$ be a cyclic group, P a generator, given $Q \in \mathbb G$, it is supposed to be hard to compute a such that

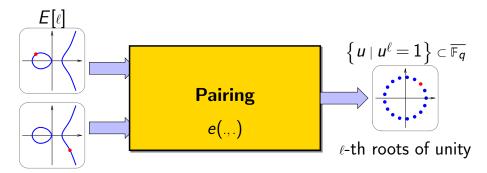
$$Q = [a]P$$

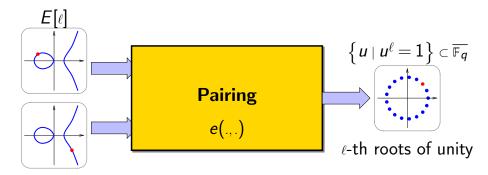
- ▶ Use this hard problem to design cryptographic protocols
- ▶ Diffie-Hellman key exchange:
 - Alice generates a secret integer a
 - Alice sends [a]P to Bob
 - Alice computes [a][b]P

- Bob generates a secret integer b
- Bob sends [b]P to Alice
- Bob computes [b][a]P

They both share the same secret: [ab]P



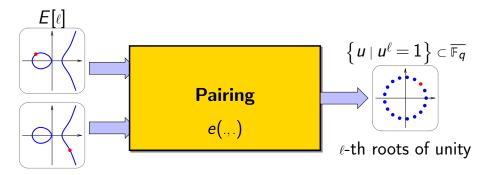




▶ Bilinear map:

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q)$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$



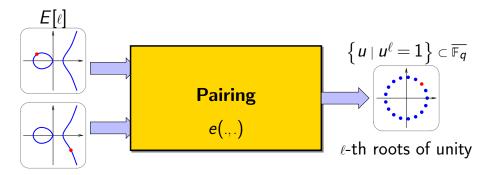
► Bilinear map:

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q)$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$

▶ Cryptographic interest: Mixing two secrets without having to know them

$$e([a]P,[b]Q) = e(P,Q)^{ab}$$



► Bilinear map:

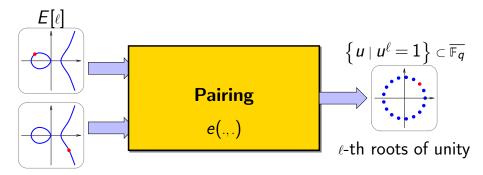
$$e(P + P', Q) = e(P, Q) \cdot e(P', Q)$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$

▶ Cryptographic interest: Mixing two secrets without having to know them

$$e([a]P, [b]Q) = e(P, Q)^{ab}$$

- ▶ Useful for advanced protocols
 - short signature
 - electronic voting
 - electronic money
 - •



▶ Bilinear map:

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q)$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$

▶ Cryptographic interest: Mixing two secrets without having to know them

$$e([a]P, [b]Q) = e(P, Q)^{ab}$$

- ▶ Useful for advanced protocols
 - short signature
 - electronic voting
 - electronic money
 - . . .
- ▶ DLP should be hard on all the groups involved

- ► Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security
 2¹²⁸ operations

- Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security

2¹²⁸ operations

- ▶ Difficulty of the DLP on the curve
 - depends on the order ℓ
 - roughly $\sqrt{\ell}$ operations

- Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security

2¹²⁸ operations

- ▶ Difficulty of the DLP on the curve
 - ullet depends on the order ℓ
 - roughly $\sqrt{\ell}$ operations

For our favorite curve E_3 over $\mathbb{F}_{3^{509}}$

 $\ell \approx 2^{697}$ $\approx 2^{349}$ operations

- ► Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security

2¹²⁸ operations

- ▶ Difficulty of the DLP on the curve
 - depends on the order ℓ
 - roughly $\sqrt{\ell}$ operations
- ▶ Difficulty of the DLP on the roots of unity
 - embedding degree: k such that all roots lie in \mathbb{F}_{q^k}

For our favorite curve E_3 over $\mathbb{F}_{3^{509}}$

$$\ell \approx 2^{697}$$

 $\approx 2^{349}$ operations

$$k = 6$$
, so DLP in $(\mathbb{F}_{3^{6.509}})^*$

- ► Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security

2¹²⁸ operations

- ▶ Difficulty of the DLP on the curve
 - ullet depends on the order ℓ
 - roughly $\sqrt{\ell}$ operations
- ▶ Difficulty of the DLP on the roots of unity
 - embedding degree: k such that all roots lie in \mathbb{F}_{a^k}
 - Subexponential algorithms exist
 - * function field sieve

For our favorite curve E_3 over $\mathbb{F}_{3^{509}}$

$$\ell \approx 2^{697}$$
 $\approx 2^{349}$ operations

$$k = 6$$
, so DLP in $(\mathbb{F}_{3^{6.509}})^*$

$$\approx 2^{132}$$
 operations

- Security measurement
 - number of operations to break a cryptosystem
 - today's recommendation: 128-bit security

2¹²⁸ operations

- ▶ Difficulty of the DLP on the curve
 - depends on the order ℓ
 - roughly $\sqrt{\ell}$ operations
- ▶ Difficulty of the DLP on the roots of unity
 - embedding degree: k such that all roots lie in \mathbb{F}_{a^k}
 - Subexponential algorithms exist
 - * function field sieve
 - ★ very recent results (2013) Records by Joux and Göloğlu et al. records

Joux

Barbulescu, Gaudry, Joux, Thomé Adj, Menezes, Oliveira, Rodríguez-Henríquez For our favorite curve E_3 over $\mathbb{F}_{3^{509}}$

 $\ell \approx 2^{697}$ $\approx 2^{349}$ operations

k = 6, so DLP in $(\mathbb{F}_{3^{6.509}})^*$

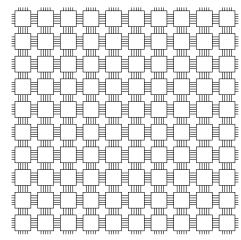
 $\approx 2^{132}$ operations

 $\lessapprox 2^{75}$ operations

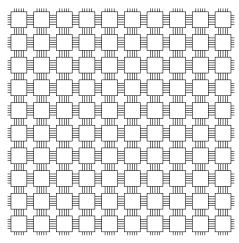
Why cryptography and hardware implementations?

- ► Growth of numeric exchanges
 - many applications
 - ⋆ bank services
 - ★ secure firmware updates
 - ⋆ personal communications
 - * ...
 - many targets
 - * embedded electronics
 - * smart cards
 - * smartphones
 - ★ computers, servers
- Security implies non-trivial computations
- ► Need for hardware implementations
 - CPUs may be inadequate
 - limited resources

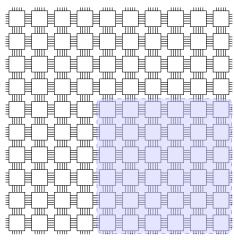
- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection



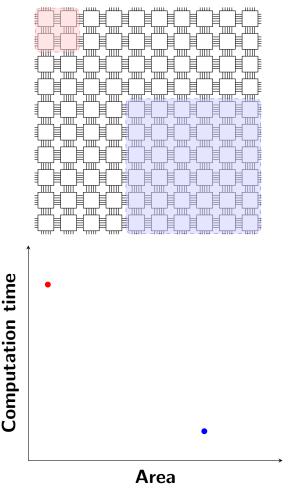
- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)



- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- ▶ Performance metric
 - time (ms)
 - area (slices)

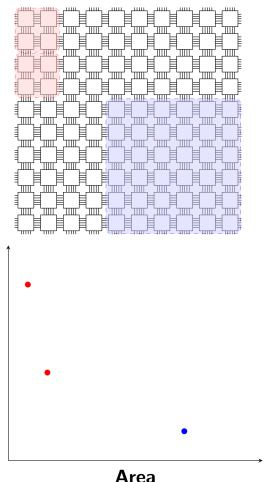


- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)
 - area (slices)
- ▶ Different designs for the same computation
 - optimized for latency
 - optimized for compactness

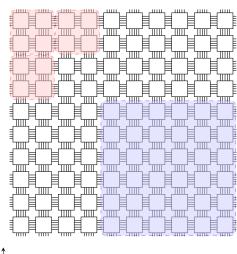


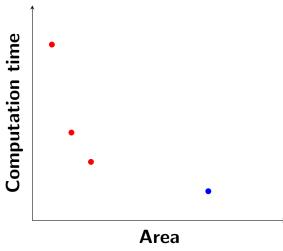
Computation time

- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)
 - area (slices)
- ▶ Different designs for the same computation
 - optimized for latency
 - optimized for compactness

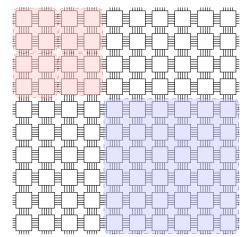


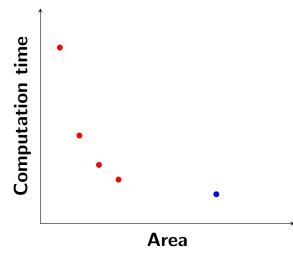
- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)
 - area (slices)
- ▶ Different designs for the same computation
 - optimized for latency
 - optimized for compactness



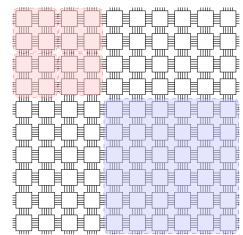


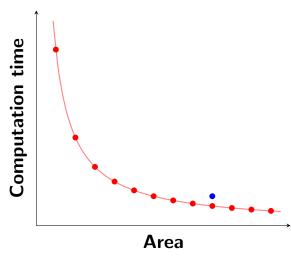
- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)
 - area (slices)
- ▶ Different designs for the same computation
 - optimized for latency
 - optimized for compactness





- Our target: Field Programmable Gate Array (FPGA)
 - integrated circuit
 - matrix of simple configurable logic cells
 - programmable interconnection
- Performance metric
 - time (ms)
 - area (slices)
 - time—area product
- ▶ Different designs for the same computation
 - optimized for latency
 - optimized for compactness
 - optimized for throughput





Contributions

- [CHES 2009, IEEE TC 2011] ► Fast accelerator for pairings Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
 - parallel architecture
 - pipelined subquadratic multiplier
- ► Compact design for pairings reaching 128-bit security
 - composite extension fields

[Paring 2010]

hyperelliptic curves Joint work with Aranha, Beuchat and Detrey [CT-RSA 2012]

► Formulae for sub-quadratic multiplication Joint work with Barbulescu, Detrey and Zimmermann [WAIFI 2012]

- exhaustive search
- improved formulae for $\mathbb{F}_{3^{5m}}$

Contributions

- [CHES 2009, IEEE TC 2011] ► Fast accelerator for pairings Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
 - parallel architecture
 - pipelined subquadratic multiplier
- ► Compact design for pairings reaching 128-bit security
 - composite extension fields

 - hyperelliptic curves Joint work with Aranha, Beuchat and Detrey
- ► Formulae for sub-quadratic multiplication Joint work with Barbulescu, Detrey and Zimmermann
 - exhaustive search
 - improved formulae for F_{35m}

[Paring 2010]

[CT-RSA 2012]

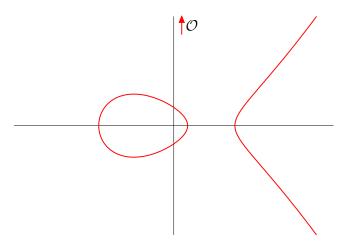
[WAIFI 2012]

Outline of the talk

- ► Compact design through composite extension fields
- ▶ Pairing on genus-2 hyperelliptic curves
- ► Searching for efficient multiplication algorithms
- ► Conclusion and Perspectives

► Computation of the pairing relies on

Miller functions: $f_{n,P}$



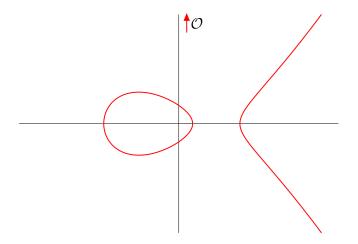
► Computation of the pairing relies on

Miller functions: $f_{n,P}$

• an inductive identity defined by

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$



► Computation of the pairing relies on

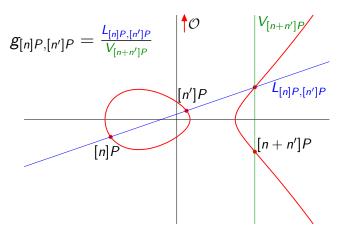
Miller functions: $f_{n,P}$

an inductive identity defined by

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

g_{[n]P,[n']P} derived from the addition of [n]P and [n']P



► Computation of the pairing relies on

Miller functions: $f_{n,P}$

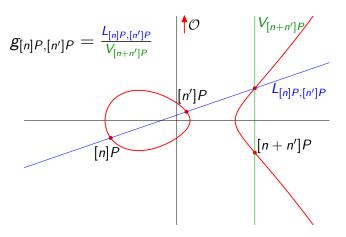
an inductive identity defined by

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

- $g_{[n]P,[n']P}$ derived from the addition of [n]P and [n']P
- ► Tate pairing: $f_{\#E(\mathbb{F}_a),P}$
 - use an addition chain
 - in practice: double-and-add

$$\log_2 \# E(\mathbb{F}_q)$$
 iterations



► Computation of the pairing relies on Miller functions: $f_{n,P}$

an inductive identity defined by

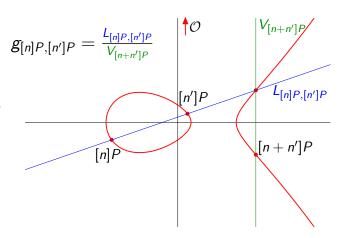
$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

- $g_{[n]P,[n']P}$ derived from the addition of [n]P and [n']P
- ► Tate pairing: $f_{\#E(\mathbb{F}_a),P}$
 - use an addition chain
 - in practice: double-and-add

$$\log_2 \# E(\mathbb{F}_q)$$
 iterations

For $E_3(\mathbb{F}_{3^{509}})$	Tate pairing	
# iterations	509	
×	10330	
+	45170	
(.)3	8136	
$(.)^{-1}$	2	



$$\blacktriangleright$$
 # $E_3(\mathbb{F}_{3^{509}}) = 3^{509} + 3^{255} + 1$

triple-and-add algorithm

- Computation of the pairing relies on Miller functions: $f_{n,P}$
 - an inductive identity defined by

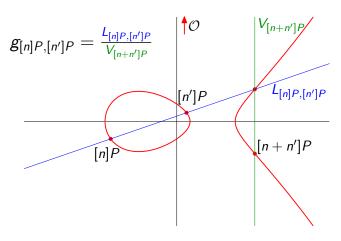
$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

- $g_{[n]P,[n']P}$ derived from the addition of [n]P and [n']P
- ► Tate pairing: $f_{\#E(\mathbb{F}_q),P}$
 - use an addition chain
 - in practice: double-and-add

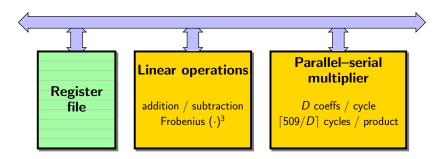
$$\log_2 \# E(\mathbb{F}_q)$$
 iterations

For $E_3(\mathbb{F}_{3^{509}})$	Tate pairing	Eta T
# iterations	509	254
×	10330	3638
+	45170	17240
$(.)^3$	8136	4068
$(.)^{-1}$	2	1



- $+ \#E_3(\mathbb{F}_{3^{509}}) = 3^{509} + 3^{255} + 1$
 - triple-and-add algorithm
- Many improvements
 - vertical elimination
 - use of some curve endomorphisms
 - * Frobenius: Ate

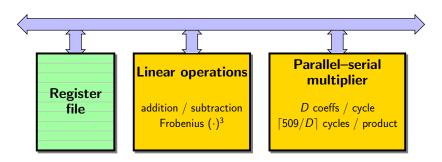
An arithmetic coprocessor



- ▶ Only need arithmetic operations in F₃509
 - implement a specialized processor
- Multiplication is critical
 - separate linear operations and multiplications
 - careful scheduling to keep multiplier busy

Operation count			
×	3638		
+	17240		
$(.)^3$	4068		
$(.)^{-1}$	1		

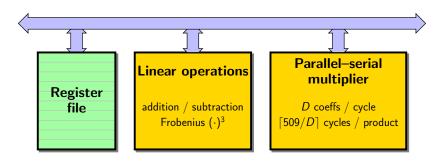
An arithmetic coprocessor



- ▶ Only need arithmetic operations in F₃509
 - implement a specialized processor
- Multiplication is critical
 - separate linear operations and multiplications
 - careful scheduling to keep multiplier busy
- ▶ Inverse is only needed once: Itoh—Tsujii algorithm
 - no need for hardware support

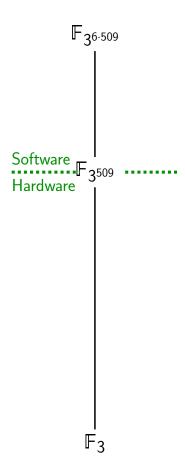
Operation count				
×	3638			
+	17240			
$(.)^3$	4068			
$(.)^{-1}$	1			

An arithmetic coprocessor

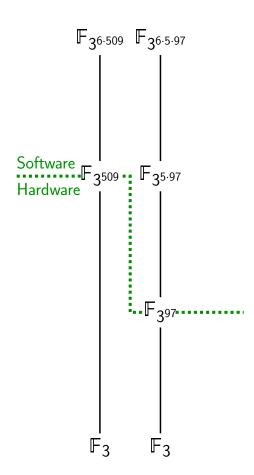


- ▶ Only need arithmetic operations in F₃509
 - implement a specialized processor
- Multiplication is critical
 - separate linear operations and multiplications
 - careful scheduling to keep multiplier busy
- ▶ Inverse is only needed once: Itoh—Tsujii algorithm
 - no need for hardware support
- ▶ Synthesis results for $\mathbb{F}_{3^{509}}$: 9625 slices
 - almost fully occupy a Virtex 6 LX 75 T (82%)
 - computation time: \approx 4 ms

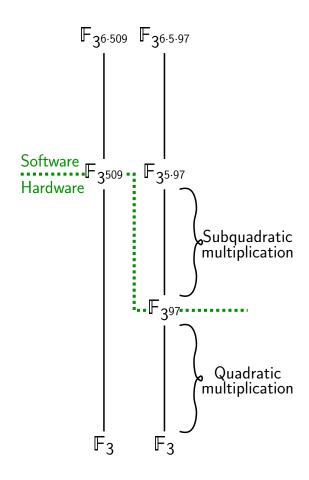
Operation count				
×	3638			
+	17240			
$(.)^3$	4068			
$(.)^{-1}$	1			



- ► Provides some arithmetic advantages
 - smaller datapath



- ► Provides some arithmetic advantages
 - smaller datapath
 - efficient multiplication algorithm



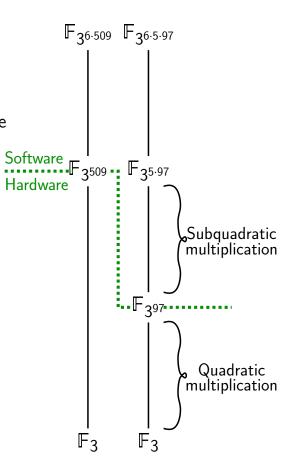
- ► Provides some arithmetic advantages
 - smaller datapath
 - efficient multiplication algorithm
- ▶ Allows Weil Descent based attacks on the curve
 - GHS: using the composite extension degree

$$\approx 2^{279}$$
 operations

SDHP: Granger's algorithm

$$\approx 2^{142}$$
 operations

limited effect on security



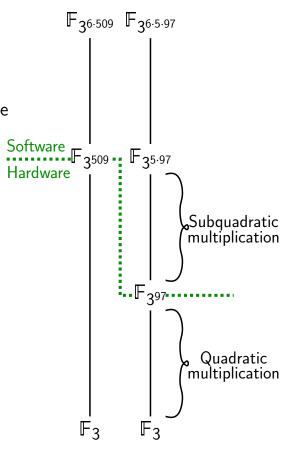
- ► Provides some arithmetic advantages
 - smaller datapath
 - efficient multiplication algorithm
- ▶ Allows Weil Descent based attacks on the curve
 - GHS: using the composite extension degree

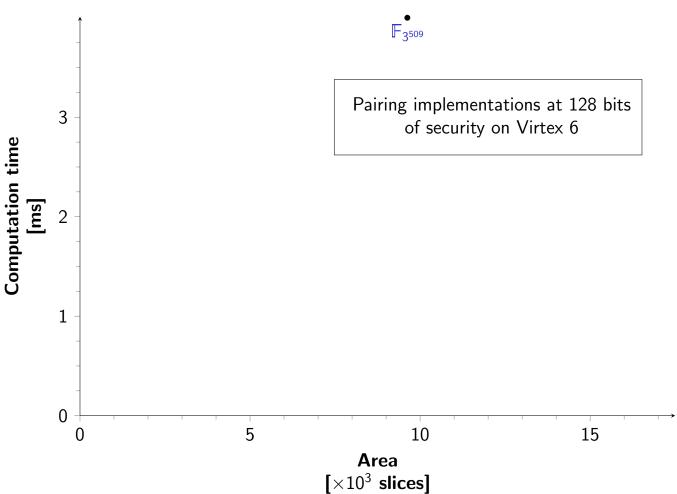
$$\approx 2^{279}$$
 operations

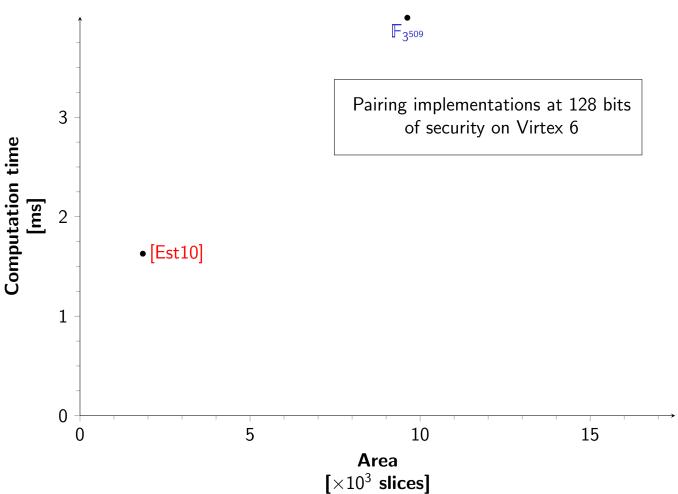
SDHP: Granger's algorithm

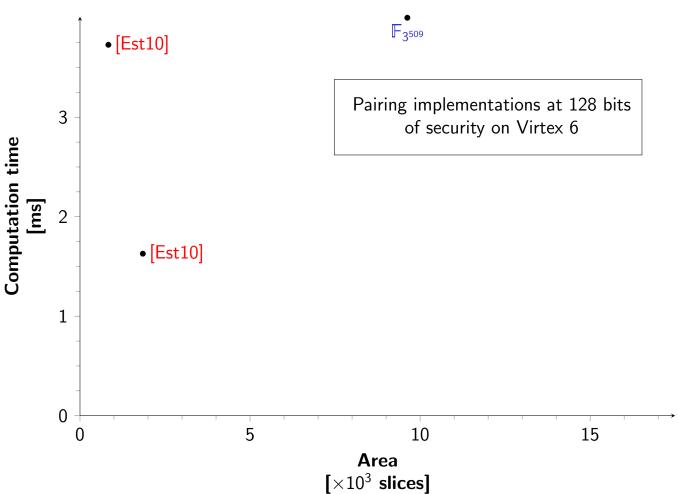
$$\approx 2^{142}$$
 operations

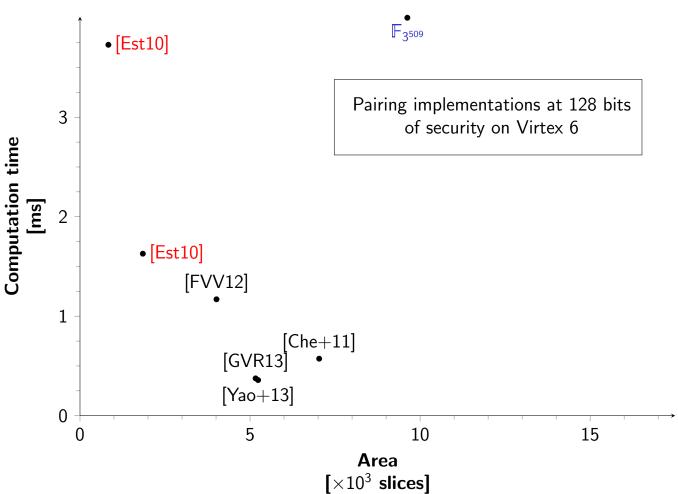
- limited effect on security
- Results
 - 1848 slices of the same Virtex 6 LX (15%)
 5.2 times smaller
 - compute a pairing in 1.6 ms
 2.5 times faster

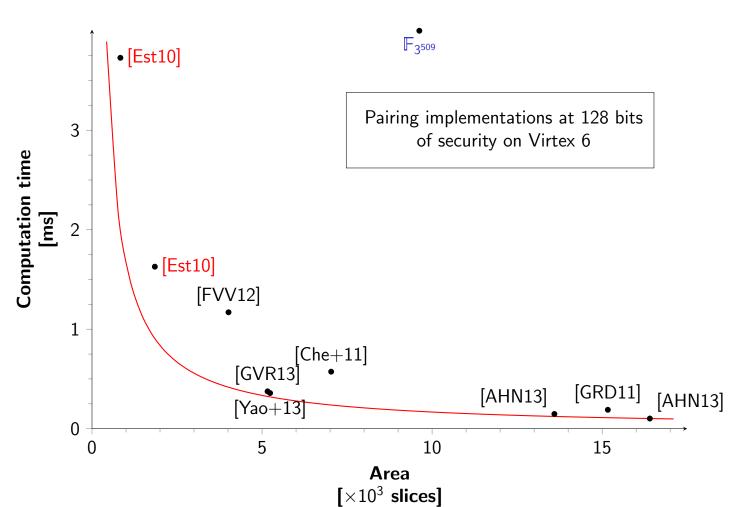










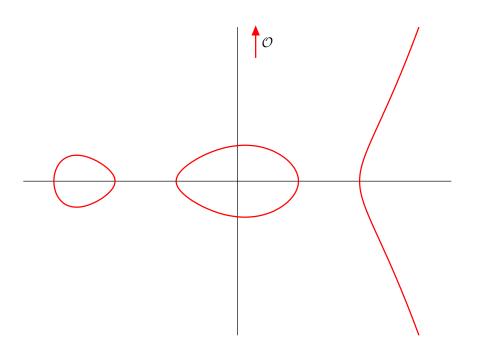


Outline of the talk

- ► Compact design through composite extension fields
- ▶ Pairing on genus-2 hyperelliptic curves
- ► Searching for efficient multiplication algorithms
- ► Conclusion and Perspectives

$$C/K : y^2 + h(x)y = f(x)$$

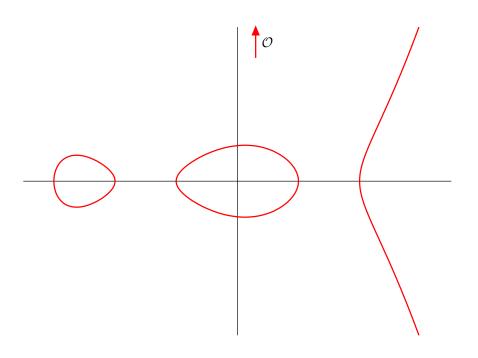
with deg $h \le 2$ and deg $f = 5$



$$C/K: y^2 + h(x)y = f(x)$$

with deg $h \le 2$ and deg $f = 5$

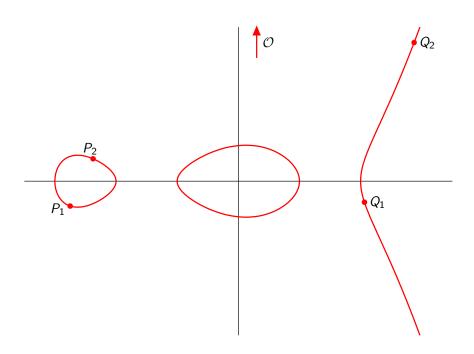
ightharpoonup C(K) not a group!



$$C/K : y^2 + h(x)y = f(x)$$

with deg $h \le 2$ and deg $f = 5$

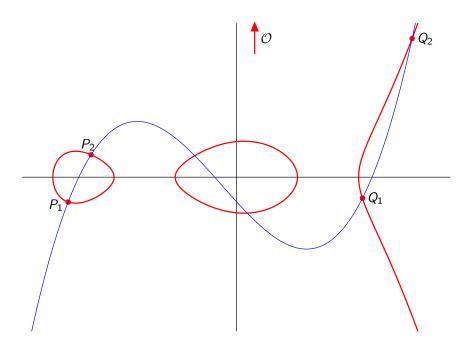
- ightharpoonup C(K) not a group!
- ▶ But pairs of points $\{P_1, P_2\}$



$$C/K : y^2 + h(x)y = f(x)$$

with deg $h \le 2$ and deg $f = 5$

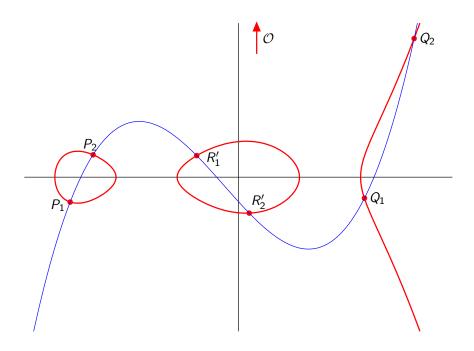
- ightharpoonup C(K) not a group!
- ▶ But pairs of points $\{P_1, P_2\}$



$$C/K: y^2 + h(x)y = f(x)$$

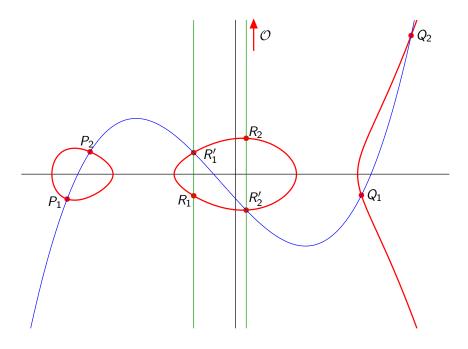
with deg $h \le 2$ and deg $f = 5$

- ightharpoonup C(K) not a group!
- ▶ But pairs of points $\{P_1, P_2\}$



$$C/K$$
: $y^2 + h(x)y = f(x)$
with deg $h \le 2$ and deg $f = 5$

- ightharpoonup C(K) not a group!
- But pairs of points $\{P_1, P_2\}$

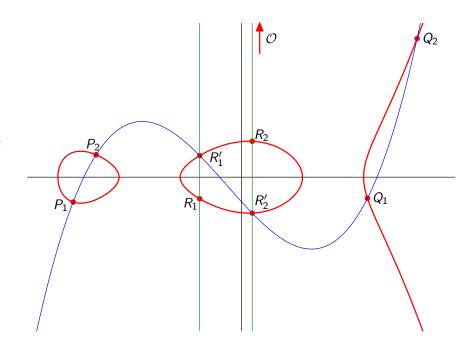


$${P_1, P_2} + {Q_1, Q_2} = {R_1, R_2}$$

$$C/K : y^2 + h(x)y = f(x)$$

with deg $h \le 2$ and deg $f = 5$

- ightharpoonup C(K) not a group!
- ▶ But pairs of points $\{P_1, P_2\}$
- ► More formally
 - Jacobian of the curve
 Jac_C
 - is a group



$${P_1, P_2} + {Q_1, Q_2} = {R_1, R_2}$$

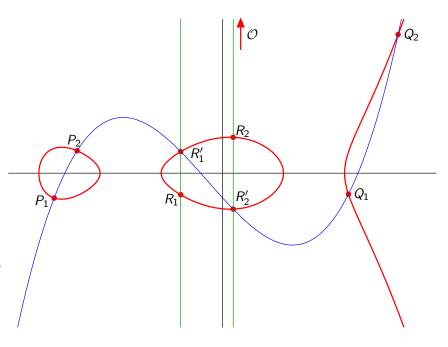
$$C/K: y^2 + h(x)y = f(x)$$

with deg $h \le 2$ and deg $f = 5$

- ightharpoonup C(K) not a group!
- ▶ But pairs of points $\{P_1, P_2\}$
- ► More formally
 - Jacobian of the curve
 Jac_C
 - is a group
- Chosen curves

$$H_2: y^2 + y = x^5 + x^3 + d,$$
 with $d \in \{0, 1\}$

- characteristic 2
- supersingular



$${P_1, P_2} + {Q_1, Q_2} = {R_1, R_2}$$

- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: $\mathbb{F}_{2^{367}}$

- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: **F**₂367

•
$$\#\operatorname{Jac}_{C}(\mathbb{F}_{2^{367}}) = 2^{734} - 2^{551} - 2^{367} + 2^{184} + 1$$

► Our pairing algorithm

Algorithm	Tate (double-and-add)
# iterations	734

- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: **F**₂367
 - $\#\operatorname{Jac}_{C}(\mathbb{F}_{2^{367}}) = 4 \cdot 8^{244} 4 \cdot 2^{183} 2 \cdot 8^{122} + 1$
- ► Our pairing algorithm
 - Efficient octupling formula: octuple-and-add

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)
# iterations	734	245

- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: **F**₂367
 - $\#\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{2^{367}}) = 4 \cdot 8^{244} 4 \cdot 2^{183} 2 \cdot 8^{122} + 1$
- ► Our pairing algorithm
 - Efficient octupling formula: octuple-and-add
 - adapted Verschiebung: Eta T

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T
# iterations	734	245	184

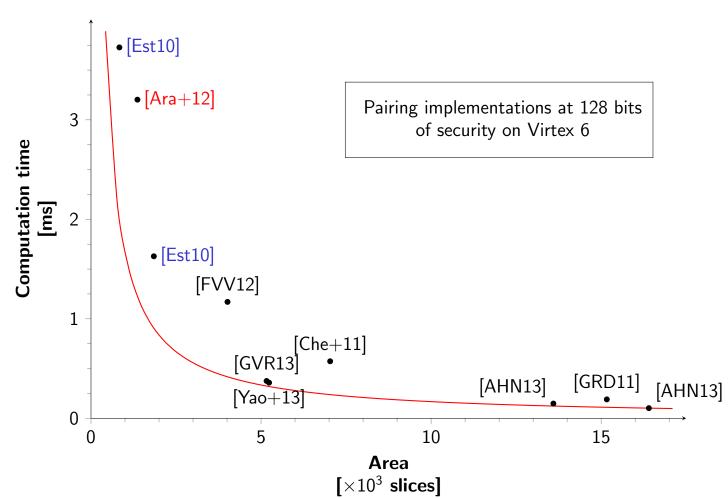
- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: **F**₂367
 - $\#\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{2^{367}}) = 4 \cdot 8^{244} 4 \cdot 2^{183} 2 \cdot 8^{122} + 1$
- ► Our pairing algorithm
 - Efficient octupling formula: octuple-and-add
 - adapted Verschiebung: Eta T
 - Vercauteren's optimal technique: optimal Eta

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T	Optimal Eta
# iterations	734	245	184	123

- ► Parameters for 128-bit security
 - Embedding degree k = 12
 - Field: **F**₂367
 - $\#\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{2^{367}}) = 4 \cdot 8^{244} 4 \cdot 2^{183} 2 \cdot 8^{122} + 1$
- ► Our pairing algorithm
 - Efficient octupling formula: octuple-and-add
 - adapted Verschiebung: Eta T
 - Vercauteren's optimal technique: optimal Eta

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T	Optimal Eta
# iterations	734	245	184	123

- ightharpoonup Implementation on the previous coprocessor adapted for $\mathbb{F}_{2^{367}}$
 - 1366 slices on the same Virtex 6 LX (12%)
 - 3.2 ms
 - comparable performances with the elliptic case



Outline of the talk

- ► Compact design through composite extension fields
- ▶ Pairing on genus-2 hyperelliptic curves
- ► Searching for efficient multiplication algorithms
- ► Conclusion and Perspectives

- ▶ Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost

- ▶ Polynomial multiplication is an expensive arithmetic operation
- ► Schoolbook algorithm: quadratic cost
- ► Karatsuba (1962): first subquadratic multiplication algorithm

$$(a_0 + a_1 X)(b_0 + b_1 X) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$$

- ▶ Polynomial multiplication is an expensive arithmetic operation
- ► Schoolbook algorithm: quadratic cost
- ► Karatsuba (1962): first subquadratic multiplication algorithm

$$(a_0 + a_1 X)(b_0 + b_1 X) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$$

= $a_0 b_0 + ((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) X + a_1 b_1 X^2$

- ▶ Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost
- ► Karatsuba (1962): first subquadratic multiplication algorithm

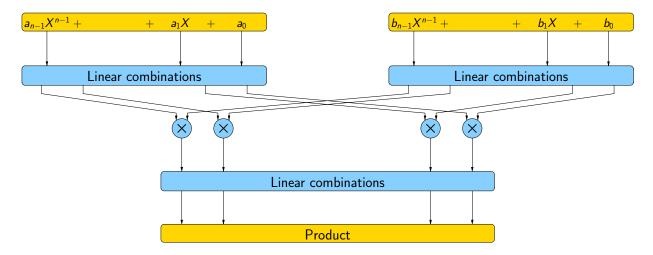
$$(a_0 + a_1 X)(b_0 + b_1 X) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + a_1 b_1 X^2$$

= $a_0 b_0 + ((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) X + a_1 b_1 X^2$

- ▶ Well-studied problem
 - asymptotic complexity
 - theoretical bilinear complexity
 - small and "cryptographic" size
- ► Five, six, and seven-term Karatsuba-like formulae, P. Montgomery (2005)
 - ad-hoc formulae
 - exhaustive search for five-term multiplication
 - non-exhaustive search for six and seven-term multiplications
- Our approach: improve the search algorithm

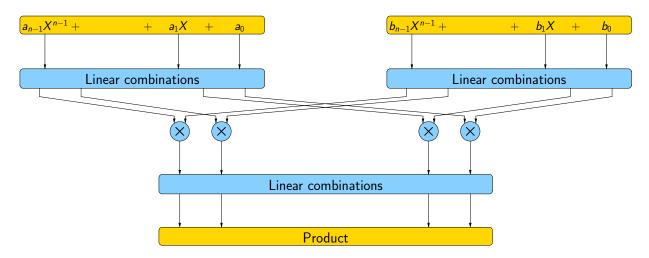
Generalization of the problem

▶ Model of a multiplication algorithm



Generalization of the problem

► Model of a multiplication algorithm



- ► Also true for any bilinear application
 - multiplication in extension fields
 - sparse products
 - matrix multiplications
 - . . .

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_ib_j\}_{0 \leq i < n, 0 \leq j < m}$

where the a_ib_i 's are seen as formal elements

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_ib_i\}_{0 \leq i < n, 0 \leq j < m}$

where the $a_i b_i$'s are seen as formal elements

▶ Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T = \operatorname{Span} \mathcal{T}$ of V

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_ib_i\}_{0 \leq i < n, 0 \leq j < m}$

where the $a_i b_i$'s are seen as formal elements

- ▶ Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T = \operatorname{Span} \mathcal{T}$ of V
- \blacktriangleright The set \mathcal{G} of the potential products to use in a formula: the generators

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_ib_j\}_{0 \leq i < n, 0 \leq j < m}$

where the $a_i b_i$'s are seen as formal elements

- ▶ Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T = \operatorname{Span} \mathcal{T}$ of V
- \blacktriangleright The set $\mathcal G$ of the potential products to use in a formula: the generators
- ▶ Goal: find the optimal formulae (i.e. with a minimum number of products)
 - for increasing k until a solution is found
 - find each subset $W \subset \mathcal{G}$ of exactly k products
 - which gives a valid formula (i.e. that lineary generates the coefficients of the result)

$$\mathcal{T}\subset\operatorname{\mathsf{Span}}\mathcal{W}$$

Resolution

Naive approach: test each subset of *k* potential products

```
expand_family(\emptyset, \mathcal{G})
procedure expand_family(\mathcal{W}, \mathcal{H})
   if \#\mathcal{W} = k then
        if \mathcal{T} \subset \operatorname{\mathsf{Span}} \mathcal{W} then
             \mathcal{W} is a solution
    else
        while \mathcal{H} \neq \emptyset do
            Pick a h in \mathcal{H}.
            \mathcal{H} \leftarrow \mathcal{H} \setminus \{h\}
            expand_family(\mathcal{W} \cup \{h\}, \mathcal{H})
end procedure
```

▶ Complexity depends on

$$\binom{\#\mathcal{G}}{k}$$

Resolution

- ► Naive approach: test each subset of *k* potential products
- ▶ Better approach: test each vector space of dimension *k* generated by potential products

```
expand_subspace(\{0\}, \mathcal{G})
procedure expand_subspace(W, \mathcal{H})
   if dim W = k then
       if \mathcal{T} \subset W then
           W is a solution
   else
      \mathcal{H} \leftarrow \mathcal{H} \setminus W
       while \mathcal{H} \neq \emptyset do
          Pick a h in \mathcal{H}.
          \mathcal{H} \leftarrow \mathcal{H} \setminus \{h\}
           expand_subspace(W \oplus Span(h), \mathcal{H})
end procedure
```

Complexity still depends on

$$\binom{\#\mathcal{G}}{k}$$

Resolution

- ► Naive approach: test each subset of *k* potential products
- Better approach: test each vector space of dimension k generated by potential products
- ► Even better approach: part of the solution is already known, use incomplete basis theorem

```
expand_subspace(T, \mathcal{G})
procedure expand_subspace(W, \mathcal{H})
   if dim W = k then
       if rank(W \cap \mathcal{G}) = k then
           W is a solution
   else
       \mathcal{H} \leftarrow \mathcal{H} \setminus W
       while \mathcal{H} \neq \emptyset do
           Pick a h in \mathcal{H}
          \mathcal{H} \leftarrow \mathcal{H} \setminus \{h\}
           expand_subspace(W \oplus \text{Span}(h), \mathcal{H})
end procedure
```

► Complexity now depends on

$$\begin{pmatrix} \#\mathcal{G} \\ k - \operatorname{rank} \mathcal{T} \end{pmatrix}$$

Ring	$n \times m$	#9	k	# of	# of	# of	Computation
Itilig	" ~ ""	11 9	^	tests	solutions	formulae	time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^6$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

Ring	$n \times m$	#9	k	# of	# of	# of	Computation
IVIIIB	" > ""	#9	^	tests	solutions	formulae	time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^6$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

Ring	$n \times m$	#9	k	# of	# of	# of	Computation
IVIIIB	" > ""	#9	^	tests	solutions	formulae	time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

Ring	$n \times m$	#9	k	# of	# of	# of	Computation
Ittilg	" ~ ""	11 9	^	tests	solutions	formulae	time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^3$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37\cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^6$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

Ring	$n \times m$	#9	k	# of	# of	# of	Computation
Itilig	" > ""	#9	^	tests	solutions	formulae	time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2 618	19 550	184 d

$$\mathcal{G} = \{ a_0 \cdot b_0, \qquad a_1 \cdot b_0, \qquad (a_0 + a_1) \cdot b_0, \qquad a_2 \cdot b_0, \qquad (a_0 + a_2) \cdot b_0, \qquad \dots \\ a_0 \cdot b_1, \qquad a_1 \cdot b_1, \qquad (a_0 + a_1) \cdot b_1, \qquad a_2 \cdot b_1, \qquad (a_0 + a_2) \cdot b_1, \qquad \dots \\ a_0 \cdot (b_0 + b_1), \quad a_1 \cdot (b_0 + b_1), \quad (a_0 + a_1) \cdot (b_0 + b_1), \quad a_2 \cdot (b_0 + b_1), \quad (a_0 + a_2) \cdot (b_0 + b_1), \quad \dots \\ a_0 \cdot b_2, \qquad a_1 \cdot b_2, \qquad (a_0 + a_1) \cdot b_2, \qquad a_2 \cdot b_2, \qquad (a_0 + a_2) \cdot b_2, \qquad \dots \\ a_0 \cdot (b_0 + b_2), \quad a_1 \cdot (b_0 + b_2), \quad (a_0 + a_1) \cdot (b_0 + b_2), \quad a_2 \cdot (b_0 + b_2), \quad (a_0 + a_2) \cdot (b_0 + b_2), \quad \dots \\ \dots \}$$

Ring	n × m	#9	k	# of tests	# of solutions	# of formulae	Computation time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$	_		7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

$$\mathcal{G} = \{a_{0} \cdot b_{0}, \quad a_{1} \cdot b_{0}, \quad (a_{0} + a_{1}) \cdot b_{0}, \quad a_{2} \cdot b_{0}, \quad (a_{0} + a_{2}) \cdot b_{0}, \quad \dots \\
a_{0} \cdot b_{1}, \quad a_{1} \cdot b_{1}, \quad (a_{0} + a_{1}) \cdot b_{1}, \quad a_{2} \cdot b_{1}, \quad (a_{0} + a_{2}) \cdot b_{1}, \quad \dots \\
a_{0} \cdot (b_{0} + b_{1}), \quad a_{1} \cdot (b_{0} + b_{1}), \quad (a_{0} + a_{1}) \cdot (b_{0} + b_{1}), \quad a_{2} \cdot (b_{0} + b_{1}), \quad (a_{0} + a_{2}) \cdot (b_{0} + b_{1}), \quad \dots \\
a_{0} \cdot b_{2}, \quad a_{1} \cdot b_{2}, \quad (a_{0} + a_{1}) \cdot b_{2}, \quad a_{2} \cdot b_{2}, \quad (a_{0} + a_{2}) \cdot b_{2}, \quad \dots \\
a_{0} \cdot (b_{0} + b_{2}), \quad a_{1} \cdot (b_{0} + b_{2}), \quad (a_{0} + a_{1}) \cdot (b_{0} + b_{2}), \quad a_{2} \cdot (b_{0} + b_{2}), \quad (a_{0} + a_{2}) \cdot (b_{0} + b_{2}), \quad \dots \\
\dots\}$$

Ring	$n \times m$	#9	k	# of tests	# of solutions	# of formulae	Computation time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$			7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

- ▶ Optimal formulae for sparse multiplication useful in pairing computation
 - in the genus-2 pairing, from 11 to 9 subproducts

Ring	n × m	#9	k	# of tests	# of solutions	# of formulae	Computation time (1 core)
	2 × 2	9	3	1	1	1	0
	3 × 3	49	6	9	3	9	0
	4 × 4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
$\mathbb{F}_2[X]$	5 × 5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6 × 6	3 969	14	$4.37 \cdot 10^9$	_		7 d
	6 × 6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7 × 7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19 550	184 d

- ▶ Optimal formulae for sparse multiplication useful in pairing computation
 - in the genus-2 pairing, from 11 to 9 subproducts
- ▶ Optimal multiplication for the extensions $\mathbb{F}_{3^{5m}}$
 - 11 subproducts instead of 12 previously
 - yields a 5% improvement for the pairing on E_3

Outline of the talk

- ► Compact design through composite extension fields
- ▶ Pairing on genus-2 hyperelliptic curves
- ► Searching for efficient multiplication algorithms
- ► Conclusion and Perspectives

Conclusion

- ► Hardware implementations of pairing
- ► An algorithm to search for multiplication formulae

Conclusion

- ► Hardware implementations of pairing
- ► An algorithm to search for multiplication formulae
- Unified framework for constructing pairing algorithms
 - lot of literature on pairing algorithms
 - generally concepts and results only for specific cases
 - covers both elliptic and hyperelliptic cases
 - covers the different variants of the Tate pairing:
 - * Ate, Eta, Eta T, optimal Ate, ...

Conclusion

- ► Hardware implementations of pairing
- ► An algorithm to search for multiplication formulae
- Unified framework for constructing pairing algorithms
 - lot of literature on pairing algorithms
 - generally concepts and results only for specific cases
 - covers both elliptic and hyperelliptic cases
 - covers the different variants of the Tate pairing:
 - * Ate, Eta, Eta T, optimal Ate, ...
- ► General method for cryptographic implementations
 - study mathematical structures
 - fix parameters thanks to cryptanalysis
 - algorithmic optimizations
 - choose the right arithmetic representation
 - implement different hardware accelerators

Perspectives

- ▶ Lower-level architecture
 - FPGA is a good prototyping platform
 - but with limited uses in real-life devices
 - develop skills in ASIC designs
 - power consumption awareness
- ► Integrate side-channel counter-measures
 - side-channel attacks are very effective threats
 - embedded systems need to be protected
- ▶ Use this method on different cryptographic primitives
 - scalar multiplication on hyperelliptic curves
 - lattice-based cryptography