Journées C2 — April 7, 2011

Compact hardware for computing the Tate pairing over 128-bit-security supersingular curves

Nicolas Estibals

CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA Nicolas, Estibals@loria.fr

Introduction

- ► Pairings and cryptology
 - introduced as an attack against some elliptic curves
 - used as a primitive in many protocols and devices
 - * low-resource environment (embedded systems, smart card, ...)
 - * high-performance computation (bank server, ...)
- ► Non-trivial to compute
 - complex mathematical structure
 - finite field arithmetic
 - substantial amount of computation

Introduction

- ► Pairings and cryptology
 - introduced as an attack against some elliptic curves
 - used as a primitive in many protocols and devices
 - * low-resource environment (embedded systems, smart card, ...)
 - * high-performance computation (bank server, ...)
- ► Non-trivial to compute
 - complex mathematical structure
 - finite field arithmetic
 - substantial amount of computation
- ▶ Needs in hardware implementation
 - computation not suited to general purpose processor
 - specific targets (e.g. smart card)

Introduction

- ► Pairings and cryptology
 - introduced as an attack against some elliptic curves
 - used as a primitive in many protocols and devices
 - * low-resource environment (embedded systems, smart card, ...)
 - ⋆ high-performance computation (bank server, . . .)
- ► Non-trivial to compute
 - complex mathematical structure
 - finite field arithmetic
 - substantial amount of computation
- ▶ Needs in hardware implementation
 - computation not suited to general purpose processor
 - specific targets (e.g. smart card)
- ▶ Previous work on FPGA implementations
 - low-security pairings
 - most are performance-oriented designs
- ► Our goal:
 - AES-128 equivalent security
 - compact accelerator

Outline of the talk

- ► Context about pairings
- ▶ Pairings-friendly curves with 128 bits of security
- ▶ Implementation & performance results

Pairing is a bilinear map

- ▶ $\mathbb{G}_1 = \langle P \rangle$, $\mathbb{G}_2 = \langle Q \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \#\mathbb{G}_2 = \ell$
- ▶ \mathbb{G}_T : multiplicatively-written cyclic groups of order $\#G_T = \#\mathbb{G}_1 = \#\mathbb{G}_2 = \ell$

Pairing is a bilinear map

- ▶ $\mathbb{G}_1 = \langle P \rangle$, $\mathbb{G}_2 = \langle Q \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \#\mathbb{G}_2 = \ell$
- ▶ \mathbb{G}_T : multiplicatively-written cyclic groups of order $\# G_T = \# \mathbb{G}_1 = \# \mathbb{G}_2 = \ell$
- ▶ $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear pairing iff:
 - non-degeneracy: $e(P,Q) \neq 1_{\mathbb{G}_T}$
 - bilinearity:

$$* e(P_1 + P_2, Q') = e(P_1, P') \cdot e(P_2, Q')$$

$$* e(P', Q_1 + Q_2) = e(P', Q_1) \cdot e(P', Q_2)$$

computability: e can be efficiently computed

Pairing is a bilinear map

- ▶ $\mathbb{G}_1 = \langle P \rangle$, $\mathbb{G}_2 = \langle Q \rangle$: additively-written cyclic group of prime order $\#\mathbb{G}_1 = \#\mathbb{G}_2 = \ell$
- ▶ \mathbb{G}_T : multiplicatively-written cyclic groups of order $\# G_T = \# \mathbb{G}_1 = \# \mathbb{G}_2 = \ell$
- ▶ $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear pairing iff:
 - non-degeneracy: $e(P,Q) \neq 1_{\mathbb{G}_T}$
 - bilinearity:

$$* e(P_1 + P_2, Q') = e(P_1, P') \cdot e(P_2, Q')$$

$$* e(P', Q_1 + Q_2) = e(P', Q_1) \cdot e(P', Q_2)$$

- computability: e can be efficiently computed
- ▶ Important property for cryptographic applications:

$$e(k_1P, k_2Q) = e(k_2P, k_1Q) = e(P, Q)^{k_1k_2}$$

Combining secrets without having to reveal them!

▶ Bilinear pairing:

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$

► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times \mathbb{G}_2 \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$

► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$
- ▶ Set of ℓ -th root of unity: $\mu_{\ell} = \{u \in \mathbb{F}_{a^k}^* \mid u^{\ell} = 1\}$
- ► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$
- ▶ Set of ℓ -th root of unity: $\mu_{\ell} = \{u \in \mathbb{F}_{a^k}^* \mid u^{\ell} = 1\}$
- ► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

► Computed thanks to Miller's iterative algorithm

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q
- ▶ Discrete logarithm in finite field multiplicative group $\mathbb{F}_{a^k}^*$
 - FFS or NFS $\rightarrow L_{a^k}[1/3, c]$
 - complexity subexponential in q^k

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q
- ▶ Discrete logarithm in finite field multiplicative group $\mathbb{F}_{a^k}^*$
 - FFS or NFS $\rightarrow L_{a^k}[1/3, c]$
 - complexity subexponential in q^k
- ▶ k acts as a cursor to balance the complexity of the two attacks
- k = 12: optimal for the 128-bit security level

Outline of the talk

- ► Context about pairings
- ▶ Pairings-friendly curves with 128 bits of security
- ▶ Implementation & performance results

▶ Definitions:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

 $E/\mathbb{F}_2: y^2 + y = x^3 + x + b$

► Supersingular curve

⇒ Simpler curve arithmetic (efficient tripling formulae)

Definitions: Definition:
$$E/\mathbb{F}_3: \ y^2=x^3-x+b, b\neq 0 \\ E/\mathbb{F}_2: \ y^2+y=x^3+x+b \\ \text{Supersingular curve} \\ \blacktriangleright \text{ Definition:} \\ E/\mathbb{F}_p: \ y^2=x^3+b, b\neq 0, \\ p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1 \\ \blacktriangleright \text{ Ordinary curve}$$

▶ Definitions:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

 $E/\mathbb{F}_2: y^2 + y = x^3 + x + b$

- ► Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$
$$\hat{e}(P,Q) = e(P,\delta(Q))$$

$$E/\mathbb{F}_3: \ y^2=x^3-x+b, b\neq 0$$

$$E/\mathbb{F}_2: \ y^2+y=x^3+x+b$$

$$E/\mathbb{F}_p: \ y^2=x^3+b, b\neq 0,$$

$$p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1$$
Supersingular curve
$$P/\mathbb{F}_p: \ y^2=x^3+b, b\neq 0,$$

$$p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1$$

- ► No distortion map

 \Rightarrow Symmetric pairing (BN cannot be used with all protocols)

▶ Definitions:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

 $E/\mathbb{F}_2: y^2 + y = x^3 + x + b$

- Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$

 $\hat{e}(P,Q) = e(P,\delta(Q))$

 \Rightarrow Symmetric pairing (BN cannot be used with all protocols)

► Modular arithmetic ► Small characteristic field arithmetic ⇒ No carry, better suited to hardware implementation

$$E/\mathbb{F}_3: \ y^2=x^3-x+b, b \neq 0$$
 $E/\mathbb{F}_2: \ y^2+y=x^3+x+b$ $E/\mathbb{F}_p: \ y^2=x^3+b, b \neq 0,$ $p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1$

- ► No distortion map

▶ Definitions:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

 $E/\mathbb{F}_2: y^2 + y = x^3 + x + b$

- Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$

 $\hat{e}(P,Q) = e(P,\delta(Q))$

 \Rightarrow Symmetric pairing (BN cannot be used with all protocols)

- ► Small characteristic field arithmetic ⇒ No carry, better suited to hardware implementation
- ▶ Small embedding degree (k = 6 or 4) ▶ Optimal embedding degree (k = 12)
 - \mathbb{F}_q with $q \approx 3^{500}$ or 2^{1150}

$$E/\mathbb{F}_p: \qquad y^2 = x^3 + b, b \neq 0,$$
 $p = 36\alpha^4 - 36\alpha^3 + 24\alpha^2 - 6\alpha + 1$

- ▶ Ordinary curve
- ► No distortion map

► Modular arithmetic

- \Rightarrow Larger field of definition for the same security level. For 128 bits of security:

Supersingular elliptic curves

▶ Definitions:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

 $E/\mathbb{F}_2: y^2 + y = x^3 + x + b$

- Supersingular curve
 - ⇒ Simpler curve arithmetic (efficient tripling formulae)
- Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$
$$\hat{e}(P, Q) = e(P, \delta(Q))$$
$$\Rightarrow \text{Symmetric pairing}$$

- ► Small characteristic field arithmetic
 - ⇒ No carry, better suited to hardware implementation
- ▶ Small embedding degree (k = 6 or 4)
 - \Rightarrow Larger field of definition for the same security level.

$$\mathbb{F}_q$$
 with $q \approx 3^{500}$ or 2^{1150}

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- tower field fixed by pairing construction
- already optimized by previous works
- Critical operation: products in \mathbb{F}_q

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Arithmetic of \mathbb{F}_{q^k} over \mathbb{F}_q :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Arithmetic of \mathbb{F}_{a^k} over \mathbb{F}_a :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ▶ Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{p^m} in the tower field
 - implement it in hardware

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Arithmetic of \mathbb{F}_{q^k} over \mathbb{F}_q :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ▶ Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{p^m} in the tower field
 - implement it in hardware
 - use subquadratic multiplication algorithm for \mathbb{F}_q over \mathbb{F}_{p^m}

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Arithmetic of \mathbb{F}_{a^k} over \mathbb{F}_a :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ▶ Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{p^m} in the tower field
 - implement it in hardware
 - use subquadratic multiplication algorithm for \mathbb{F}_q over \mathbb{F}_{p^m}
- Problem:
 - field with composite extension degree
 - allows some additional attacks

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{p^{m\cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{p^{m\cdot n}})\cong W_E(\mathbb{F}_{p^m})$$

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{p^{m\cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{p^{m\cdot n}})\cong W_E(\mathbb{F}_{p^m})$$

- ► Gaudry-Hess-Smart attack:
 - $W_E(\mathbb{F}_{p^m})$ might map to $Jac(\mathcal{C})$, with \mathcal{C} a curve of genus at least n
 - index calculus algorithm: solve DLP in $\tilde{O}((p^m)^{2-\frac{2}{n}})$

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{p^{m\cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{p^{m\cdot n}})\cong W_E(\mathbb{F}_{p^m})$$

- ► Gaudry-Hess-Smart attack:
 - $W_E(\mathbb{F}_{p^m})$ might map to $Jac(\mathcal{C})$, with \mathcal{C} a curve of genus at least n
 - index calculus algorithm: solve DLP in $\tilde{O}((p^m)^{2-\frac{2}{n}})$
- ► Static Diffie-Hellman problem
 - leakage when reusing private key (e.g. ElGamal encryption)
 - Granger's attack: complexity in $\tilde{O}((p^m)^{1-\frac{1}{n+1}})$
 - revoke key after a certain amount of use is an effective workaround

			Cost of the attacks (bits)			
p ^m	n	$\log_2 \ell$	Pollard's ρ	FFS		
3 ⁵⁰³	1	697	342	132		
3 ⁹⁷	5	338	163	130		
3^{67}	7	612	300	129		
3^{53}	11	672	330	140		
3 ⁴³	13	764	376	138		

			Cost of the attacks (bits)			
p^m	n	$\log_2 \ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3^{67}	7	612	300	129	182	92
3 ⁵³	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63

			Cost of the attacks (bits)			
p^m	n	$\log_2 \ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3 ⁶⁷	7	612	300	129	182	92
3^{53}	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63

			Cost of the attacks (bits)			
p^m	n	$\log_2 \ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3 ⁶⁷	7	612	300	129	182	92
3 ⁵³	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63

			Cost of the attacks (bits)			
p ^m	n	$\log_2\ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3 ⁶⁷	7	612	300	129	182	92
3 ⁵³	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63
21117	1	1076	531	128	_	_
2^{367}	3	698	342	128	489	275
2^{227}	5	733	359	129	363	189
2^{163}	7	753	370	129	279	142
2^{127}	9	487	236	130	225	114
2^{103}	11	922	454	129	187	94
2 ⁸⁹	13	1044	515	164	130	82
2 ⁷³	15	492	239	136	127	68

Outline of the talk

- ► Context about pairings
- ▶ Pairings-friendly curves with 128 bits of security
- ▶ Implementation & performance results

- ▶ We already have:
 - pairing algorithm expressed as operations in \mathbb{F}_q
 - finite field coprocessor for \mathbb{F}_{p^m}

- ▶ We already have:
 - ullet pairing algorithm expressed as operations in \mathbb{F}_q
 - finite field coprocessor for \mathbb{F}_{p^m}
- ▶ Polynomial representation: $\mathbb{F}_{p^{m \cdot n}} \cong \mathbb{F}_{p^m}[X]/(f(X))$
 - f irreducible polynomial of degree n
 - addition, Frobenius automorphism (squaring or cubing):
 easy to compute

- ▶ We already have:
 - ullet pairing algorithm expressed as operations in \mathbb{F}_q
 - finite field coprocessor for F_{p^m}
- ▶ Polynomial representation: $\mathbb{F}_{p^{m \cdot n}} \cong \mathbb{F}_{p^m}[X]/(f(X))$
 - f irreducible polynomial of degree n
 - addition, Frobenius automorphism (squaring or cubing):
 easy to compute
- ▶ Multiplication : Bottleneck of pairing computation
- Our test cases:
 - multiplication in $\mathbb{F}_{3^{97.5}}$
 - ★ using "schoolbook" algorithm
 - \star 25 products in $\mathbb{F}_{3^{97}}$
 - \star 24 additions in $\mathbb{F}_{3^{97}}$
 - multiplication in $\mathbb{F}_{2^{163\cdot7}}$
 - ★ using "schoolbook" algorithm
 - \star 49 products in $\mathbb{F}_{2^{163}}$
 - \star 48 additions in $\mathbb{F}_{2^{163}}$

- ▶ We already have:
 - ullet pairing algorithm expressed as operations in \mathbb{F}_q
 - finite field coprocessor for \mathbb{F}_{p^m}
- ▶ Polynomial representation: $\mathbb{F}_{p^{m \cdot n}} \cong \mathbb{F}_{p^m}[X]/(f(X))$
 - f irreducible polynomial of degree n
 - addition, Frobenius automorphism (squaring or cubing):
 easy to compute
- ▶ Multiplication : Bottleneck of pairing computation
- Our test cases:
 - multiplication in $\mathbb{F}_{3^{97.5}}$
 - * using CRT-based algorithm
 - \star 12 products in $\mathbb{F}_{3^{97}}$
 - \star 53 additions in $\mathbb{F}_{3^{97}}$
 - multiplication in $\mathbb{F}_{2^{163\cdot7}}$
 - * using "schoolbook" algorithm
 - \star 49 products in $\mathbb{F}_{2^{163}}$
 - \star 48 additions in $\mathbb{F}_{2^{163}}$

- ▶ We already have:
 - ullet pairing algorithm expressed as operations in \mathbb{F}_q
 - finite field coprocessor for \mathbb{F}_{p^m}
- ▶ Polynomial representation: $\mathbb{F}_{p^{m \cdot n}} \cong \mathbb{F}_{p^m}[X]/(f(X))$
 - f irreducible polynomial of degree n
 - addition, Frobenius automorphism (squaring or cubing):
 easy to compute
- ▶ Multiplication : Bottleneck of pairing computation
- Our test cases:
 - multiplication in $\mathbb{F}_{3^{97.5}}$
 - * using CRT-based algorithm
 - \star 12 products in $\mathbb{F}_{3^{97}}$
 - \star 53 additions in $\mathbb{F}_{3^{97}}$
 - multiplication in $\mathbb{F}_{2^{163\cdot7}}$
 - * using Montgomery's formulae
 - \star 22 products in $\mathbb{F}_{2^{163}}$
 - \star 84 additions in $\mathbb{F}_{2^{163}}$

Experimental setup

► Count of operations
 Full pairing computation over E(F_{397.5})

	×	+	$(.)^3$
F ₃₉₇	37289	253314	21099

Full pairing computation over $E(\mathbb{F}_{2^{163\cdot7}})$

Experimental setup

Count of operations

• Full pairing computation over $E(\mathbb{F}_{3^{97.5}})$

	×	+	$(.)^3$
F ₃₉₇	37289	253314	21099

• Full pairing computation over $E(\mathbb{F}_{2^{163.7}})$

► Finite field coprocessors

- Prototyped on Xilinx Virtex-4 LX FPGAs
- Post-place-and-route timing and area estimations

Experimental setup

► Count of operations

• Full pairing computation over $E(\mathbb{F}_{3^{97.5}})$

	×	+	$(.)^3$
F ₃₉₇	37289	253314	21099

• Full pairing computation over $E(\mathbb{F}_{2^{163.7}})$

	×	+	(.) ²
$\mathbb{F}_{2^{163}}$	88509	448361	52782

Finite field coprocessors

- Prototyped on Xilinx Virtex-4 LX FPGAs
- Post-place-and-route timing and area estimations
- Scheduled operations for full pairing computation
 - on $E(\mathbb{F}_{3^{97.5}})$, 428,854 cycles
 - on $E(\mathbb{F}_{2^{163\cdot7}})$, 1,147,131 cycles

Calculation time

Calculation time

Calculation time

Area-Time product

Area-Time product

Area-Time product

Comparison with ASIC and software

	Supersingular	BN-curves
	curves	DIV-cuives
FPGA	2.11 ms	52 ms
IFGA	(This Work)	(Ghosh <i>et al.</i> , 2010)
ASIC	_	2.91 ms
ASIC	_	(Fan <i>et al.</i> , 2009)
Software	7.59 ms	0.92 ms
(2.4 GHz Intel Core2)	(Beuchat <i>et al.</i> , 2009)	(Aranha <i>et al.</i> , 2010)

Conclusion

- ▶ Compact, yet reasonably fast, accelerator for pairings with 128 bits of security
 - supersingular elliptic curve
 - low characteristic
 - take advantage of the sub-optimal k to implement efficient field arithmetic

Conclusion

- ▶ Compact, yet reasonably fast, accelerator for pairings with 128 bits of security
 - supersingular elliptic curve
 - low characteristic
 - take advantage of the sub-optimal k to implement efficient field arithmetic
 - mathematical choice/algorithm/hardware codesign

Conclusion

- ▶ Compact, yet reasonably fast, accelerator for pairings with 128 bits of security
 - supersingular elliptic curve
 - low characteristic
 - take advantage of the sub-optimal k to implement efficient field arithmetic
 - mathematical choice/algorithm/hardware codesign
- ▶ Implement this pairing on more curves:
 - better understanding of the software/hardware frontier
 - hopefully improve performance
 - try higher security level
 - study genus-2 supersingular curves

Thank you for you attention!

Questions?