A unifying algorithm finding all formulae for bilinear computations

Nicolas Estibals
CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA Nicolas.Estibals@loria.fr

Joint work with:
Răzvan Bărbulescu
Jérémie Detrey
Paul Zimmermann

Outline of the talk

- Some history
- Formulae for polynomial multiplication
- Enumerating formulae
- Results and conclusion

Some history

- Multiplication is an expensive arithmetic operation
- Well-studied problem
- Karatsuba (1962)
- Toom-Cook (1963), evaluation-interpolation schemes
- CRT-based algorithms
- Schönhage-Strassen algorithm (1971)
- ...
- Five, six-, and seven-term Karatsuba-like formulae, P. Montgomery (2005)
- Ad-hoc formulae
- Exhaustive search for five-term multiplication
- Non-exhaustive search for six- and seven-term multiplications
- (January 2011) start a task group to reproduce his search

Outline of the talk

- Some history
- Formulae for polynomial multiplication
- Enumerating formulae
- Results and conclusion

Example: a 2-term polynomial times a 3-term one

- Formula to compute:

$$
\begin{aligned}
C(X) & =\left(a_{1} \cdot X+a_{0}\right) \times\left(b_{2} \cdot X^{2}+b_{1} \cdot X+b_{0}\right) \\
& =a_{1} b_{2} \cdot X^{3}+\left(a_{1} b_{1}+a_{0} b_{2}\right) \cdot X^{2}+\left(a_{0} b_{1}+a_{1} b_{0}\right) \cdot X+a_{0} b_{0}
\end{aligned}
$$

- 5 products needed only instead of 6
- Use Karatsuba's trick

$$
C(X)=a_{1} b_{2} \cdot X^{3}+\left(a_{1} b_{1}+a_{0} b_{2}\right) \cdot X^{2}+\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) \cdot X+a_{0} b_{0}
$$

- Products to compute:

$$
\begin{array}{ll}
p_{0}= & a_{0} \cdot b_{0}, \\
p_{1}= & a_{0} \cdot b_{2}, \\
p_{2}= & a_{1} \cdot b_{1}, \\
p_{3}= & a_{1} \cdot b_{2}, \\
p_{4}= & \left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{1}\right) .
\end{array}
$$

- Reconstructing the result

$$
C(X)=p_{3} \cdot X^{3}+\left(p_{1}+p_{2}\right) \cdot X^{2}+\left(p_{4}-p_{2}-p_{0}\right) \cdot X+p_{0}
$$

General form of a multiplication formula

- Formula to compute

$$
c_{n+m-2} \cdot X^{n+m-2}+\cdots+c_{0}=\left(a_{n-1} \cdot X^{n-1}+\cdots+a_{0}\right) \cdot\left(b_{m-1} \cdot X^{m-1}+\cdots+b_{0}\right)
$$

- All formulae for multiplication can be expressed as:
- Compute some linear combinations of the a_{i}

$$
a_{j}^{\prime}=\sum \alpha_{i, j} \cdot a_{i}
$$

- Compute some linear combinations of the b_{i}

$$
b_{j}^{\prime}=\sum \beta_{i, j} \cdot b_{i}
$$

General form of a multiplication formula

- Formula to compute

$$
c_{n+m-2} \cdot X^{n+m-2}+\cdots+c_{0}=\left(a_{n-1} \cdot X^{n-1}+\cdots+a_{0}\right) \cdot\left(b_{m-1} \cdot X^{m-1}+\cdots+b_{0}\right)
$$

- All formulae for multiplication can be expressed as:
- Compute some linear combinations of the a_{i}

$$
a_{j}^{\prime}=\sum \alpha_{i, j} \cdot a_{i}
$$

- Compute some linear combinations of the b_{i}

$$
b_{j}^{\prime}=\sum \beta_{i, j} \cdot b_{i}
$$

- Perform some products

$$
p_{j}=a_{j}^{\prime} \cdot b_{j}^{\prime}
$$

General form of a multiplication formula

- Formula to compute

$$
c_{n+m-2} \cdot X^{n+m-2}+\cdots+c_{0}=\left(a_{n-1} \cdot X^{n-1}+\cdots+a_{0}\right) \cdot\left(b_{m-1} \cdot X^{m-1}+\cdots+b_{0}\right)
$$

- All formulae for multiplication can be expressed as:
- Compute some linear combinations of the a_{i}

$$
a_{j}^{\prime}=\sum \alpha_{i, j} \cdot a_{i}
$$

- Compute some linear combinations of the b_{i}

$$
b_{j}^{\prime}=\sum \beta_{i, j} \cdot b_{i}
$$

- Perform some products

$$
p_{j}=a_{j}^{\prime} \cdot b_{j}^{\prime}
$$

- Reconstruct the result by linearly combining the products

$$
c_{i}=\sum \gamma_{j, i} \cdot p_{j}
$$

General form of a multiplication formula

- Formula to compute

$$
c_{n+m-2} \cdot X^{n+m-2}+\cdots+c_{0}=\left(a_{n-1} \cdot X^{n-1}+\cdots+a_{0}\right) \cdot\left(b_{m-1} \cdot X^{m-1}+\cdots+b_{0}\right)
$$

- All formulae for multiplication can be expressed as:
- Compute some linear combinations of the a_{i}

$$
a_{j}^{\prime}=\sum \alpha_{i, j} \cdot a_{i}
$$

- Compute some linear combinations of the b_{i}

$$
b_{j}^{\prime}=\sum \beta_{i, j} \cdot b_{i}
$$

- Perform some products

$$
p_{j}=a_{j}^{\prime} \cdot b_{j}^{\prime}
$$

- Reconstruct the result by linearly combining the products

$$
c_{i}=\sum \gamma_{j, i} \cdot p_{j}
$$

- This is also true for every bilinear application F such that

$$
\left(c_{0}, \ldots, c_{\ell-1}\right)=F\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{m-1}\right)\right)
$$

Outline of the talk

- Some history
- Formulae for polynomial multiplication
- Enumerating formulae
- Results and conclusion

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements
- Our target: the coefficients of the result is a family

$$
\mathcal{T}=\left\{c_{i}\right\}_{0 \leq i<n+m-1} \subset V
$$

that spans the target subspace $T=\operatorname{Span} \mathcal{T}$ of V

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements
- Our target: the coefficients of the result is a family

$$
\mathcal{T}=\left\{c_{i}\right\}_{0 \leq i<n+m-1} \subset V
$$

that spans the target subspace $T=\operatorname{Span} \mathcal{T}$ of V

- The set \mathcal{G} of the potential products to use in a formula

$$
\mathcal{G}^{\prime}=\left\{\left(\sum \alpha_{i} a_{i}\right) \cdot\left(\sum \beta_{j} b_{j}\right) \mid \forall i, \alpha_{i} \in K \wedge \forall j, \beta_{j} \in K\right\} \backslash\{0\}
$$

We only consider products modulo a scalar factor

$$
\mathcal{G}=\mathcal{G}^{\prime} / \sim \text { where } p \sim p^{\prime} \equiv \exists k \in K \text { s.t. } p=k \cdot p^{\prime}
$$

Formal framework: example

Consider previous example: 2×3 polynomial product in $\mathbb{F}_{2}[X]$

- V is a 6 -dimensional vector space generated by

$$
\begin{aligned}
\left\{a_{0} \cdot b_{0},\right. & a_{1} \cdot b_{0} \\
a_{0} \cdot b_{1}, & a_{1} \cdot b_{1} \\
a_{0} \cdot b_{2}, & \left.a_{1} \cdot b_{2}\right\}
\end{aligned}
$$

- The target is $\left\{a_{1} b_{2}, a_{1} b_{1}+a_{0} b_{2}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{0}\right\}$
- \mathcal{G} contains 21 products:

$$
\begin{aligned}
& \mathcal{G}=\left\{a_{0} \cdot b_{0},\right. \\
& a_{1} \cdot b_{0}, \\
& \left(a_{1}+a_{0}\right) \cdot b_{0}, \\
& a_{0} \cdot b_{1}, \quad a_{1} \cdot b_{1}, \\
& \left(a_{1}+a_{0}\right) \cdot b_{1}, \\
& a_{0} \cdot\left(b_{1}+b_{0}\right), \quad a_{1} \cdot\left(b_{1}+b_{0}\right), \quad\left(a_{1}+a_{0}\right) \cdot\left(b_{1}+b_{0}\right), \\
& a_{0} \cdot b_{2}, \quad a_{1} \cdot b_{2}, \quad\left(a_{1}+a_{0}\right) \cdot b_{2}, \\
& a_{0} \cdot\left(b_{2}+b_{0}\right), \quad a_{1} \cdot\left(b_{2}+b_{0}\right), \quad\left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{0}\right), \\
& a_{0} \cdot\left(b_{2}+b_{1}\right), \quad a_{1} \cdot\left(b_{2}+b_{1}\right), \quad\left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}\right), \\
& \left.a_{0} \cdot\left(b_{2}+b_{1}+b_{0}\right), \quad a_{1} \cdot\left(b_{2}+b_{1}+b_{0}\right), \quad\left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}+b_{0}\right)\right\}
\end{aligned}
$$

Naive algorithm

- Goal: find the optimal formulae (i.e. with a minimum number of products)
- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found

Naive algorithm

- Goal: find the optimal formulae (i.e. with a minimum number of products)
- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- Look for \mathcal{W}
- a set of k products

$$
\mathcal{W} \subset \mathcal{G} \text { and } \# \mathcal{W}=k
$$

- that linearly generate the coefficients of the results

$$
\mathcal{T} \subset \operatorname{Span} \mathcal{W}
$$

Naive algorithm

- Goal: find the optimal formulae (i.e. with a minimum number of products)
- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- Look for \mathcal{W}
- a set of k products

$$
\mathcal{W} \subset \mathcal{G} \text { and } \# \mathcal{W}=k
$$

- that linearly generate the coefficients of the results

$$
\mathcal{T} \subset \operatorname{Span} \mathcal{W}
$$

- Naive approach:
- enumerate the $\binom{\# \mathcal{G}}{k}$ subsets of cardinal k
- and test them

Naive algorithm

- Goal: find the optimal formulae (i.e. with a minimum number of products)
- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- Look for \mathcal{W}
- a set of k products

$$
\mathcal{W} \subset \mathcal{G} \text { and } \# \mathcal{W}=k
$$

- that linearly generate the coefficients of the results

$$
\mathcal{T} \subset \operatorname{Span} \mathcal{W}
$$

- Naive approach:
- enumerate the $\binom{\# \mathcal{G}}{k}$ subsets of cardinal k
- \mathcal{G} has to be finite
* look for formulae in finite fields K
\star take a finite subset of the potential products \Rightarrow May not get all formulae
- and test them

Naive algorithm

- Goal: find the optimal formulae (i.e. with a minimum number of products)
- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- Look for \mathcal{W}
- a set of k products

$$
\mathcal{W} \subset \mathcal{G} \text { and } \# \mathcal{W}=k
$$

- that linearly generate the coefficients of the results

$$
\mathcal{T} \subset \operatorname{Span} \mathcal{W}
$$

- Naive approach:
- enumerate the $\binom{\# \mathcal{G}}{k}$ subsets of cardinal k
- \mathcal{G} has to be finite
* look for formulae in finite fields K
\star take a finite subset of the potential products \Rightarrow May not get all formulae
- and test them
- Drawback
- Different subsets may span the same subspace

Construct an efficient algorithm: formula spaces

- Look now for subspaces W of V s. t.
- W can be generated by products: $\operatorname{Span}(W \cap \mathcal{G})=W$
- only k products are needed: $\operatorname{dim} W=k$
- contains the target space: $W \supset T$

Construct an efficient algorithm: formula spaces

- Look now for subspaces W of V s. t.
- W can be generated by products: $\operatorname{Span}(W \cap \mathcal{G})=W$
- only k products are needed: $\operatorname{dim} W=k$
- contains the target space: $W \supset T$
- Algorithm

```
procedure extend_to_dim_k(W, \(\mathcal{H})\) :
    if \(\operatorname{dim} W=k\) then
                \(W\) is a solution if \(T \subset W\)
        else
            while \(\mathcal{H} \neq \emptyset:\)
            Pick a \(g\) in \(\mathcal{H}\)
            if \(g \notin W\)
                extend_to_dim_k \((W \oplus \operatorname{Span}(g), \mathcal{H})\)
    end procedure
10: extend_to_dim_k( \(\emptyset, \mathcal{G})\)
```


Construct an efficient algorithm: formula spaces

- Look now for subspaces W of V s. t.
- W can be generated by products: $\operatorname{Span}(W \cap \mathcal{G})=W$
- only k products are needed: $\operatorname{dim} W=k$
- contains the target space: $W \supset T$
- Algorithm

```
    procedure extend_to_dim_k( \(W, \mathcal{H}\) ) :
        if \(\operatorname{dim} W=k\) then
            \(W\) is a solution if \(T \subset W\)
        else
            while \(\mathcal{H} \neq \emptyset:\)
            Pick a \(g\) in \(\mathcal{H}\)
            if \(g \notin W\)
                extend_to_dim_k \((W \oplus \operatorname{Span}(g), \mathcal{H})\)
            : end procedure
10: extend_to_dim_ \(\mathrm{k}(\emptyset, \mathcal{G})\)
```

- Many formulae could correspond to one solution subspace W
- each basis of W with elements of \mathcal{G} gives a formula

Construct an efficient algorithm: incomplete basis

- We already know part of W !
- target space T is a subspace of every solution space W
- find each W by constructing \mathcal{I} s.t. $W=T \oplus \operatorname{Span} \mathcal{I}$

Construct an efficient algorithm: incomplete basis

- We already know part of W !
- target space T is a subspace of every solution space W
- find each W by constructing \mathcal{I} s.t. $W=T \oplus \operatorname{Span} \mathcal{I}$
- Modified algorithm

1: procedure extend_to_dim $\mathrm{k}(W, \mathcal{H})$:
2: \quad if $\operatorname{dim} W=k$ then
if $\operatorname{rk}(W \cap \mathcal{G})=k$ then
W is a solution
else
while $\mathcal{H} \neq \emptyset:$
Pick a g in \mathcal{H}
if $g \notin W$
extend_to_dim_k $(W \oplus \operatorname{Span}(g), \mathcal{H})$
end procedure
11: extend_to_dim_k (T, \mathcal{G})

Construct an efficient algorithm: incomplete basis

- We already know part of W !
- target space T is a subspace of every solution space W
- find each W by constructing \mathcal{I} s.t. $W=T \oplus \operatorname{Span} \mathcal{I}$
- Modified algorithm

1: procedure extend_to_dim $\mathrm{k}(W, \mathcal{H})$:
2: \quad if $\operatorname{dim} W=k$ then

$$
\text { if } \operatorname{rk}(W \cap \mathcal{G})=k \text { then }
$$

W is a solution
else
while $\mathcal{H} \neq \emptyset:$
Pick a g in \mathcal{H}
if $g \notin W$
extend_to_dim_k $(W \oplus \operatorname{Span}(g), \mathcal{H})$
10: end procedure
11: extend_to_dim_k (T, \mathcal{G})

- Complexity now depends on

$$
\binom{\# \mathcal{G}}{k-\mathrm{rk} \mathcal{T}}
$$

Apply our algorithm to 2×3 polynomial multiplication

- Find formulae 2×3 polynomial multiplication in $\mathbb{F}_{2}[X]$
- Out target: $\mathcal{T}=\left\{a_{1} b_{2}, a_{1} b_{1}+a_{0} b_{2}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{0}\right\}$
- Rank of the target \mathcal{T} is 4
* At least, 4 products needed

Apply our algorithm to 2×3 polynomial multiplication

- Find formulae 2×3 polynomial multiplication in $\mathbb{F}_{2}[X]$
- Out target: $\mathcal{T}=\left\{a_{1} b_{2}, a_{1} b_{1}+a_{0} b_{2}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{0}\right\}$
- Rank of the target \mathcal{T} is 4
* At least, 4 products needed
- Attempt with $k=4$
$\star T \cap \mathcal{G}=\left\{a_{0} b_{0}, a_{1} b_{2},\left(a_{1}+a_{0}\right)\left(b_{2}+b_{1}+b_{0}\right)\right\}$
$\star \operatorname{rk}(T \cap \mathcal{G})=3$
* No solutions with $k=4$ products only

Apply our algorithm to 2×3 polynomial multiplication

- Find formulae 2×3 polynomial multiplication in $\mathbb{F}_{2}[X]$
- Out target: $\mathcal{T}=\left\{a_{1} b_{2}, a_{1} b_{1}+a_{0} b_{2}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{0}\right\}$
- Rank of the target \mathcal{T} is 4
* At least, 4 products needed
- Attempt with $k=4$
$\star T \cap \mathcal{G}=\left\{a_{0} b_{0}, a_{1} b_{2},\left(a_{1}+a_{0}\right)\left(b_{2}+b_{1}+b_{0}\right)\right\}$
$\star \operatorname{rk}(T \cap \mathcal{G})=3$
\star No solutions with $k=4$ products only
- Attempt with $k=5$
\star Try with $W=T \oplus \operatorname{Span}\left\{a_{0} b_{1}\right\}$

$$
\begin{array}{rlll}
\star W \cap \mathcal{G}=\left\{a_{0} \cdot b_{0},\right. & a_{1} \cdot b_{0}, & \left(a_{1}+a_{0}\right) \cdot b_{0}, \\
& a_{0} \cdot b_{1}, & a_{1} \cdot b_{2}, & \left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}\right), \\
& a_{0} \cdot\left(b_{1}+b_{0}\right), & a_{1} \cdot\left(b_{2}+b_{0}\right), & \left.\left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}+b_{0}\right)\right\}
\end{array}
$$

$\star \operatorname{rk}(W \cap \mathcal{G})=5, W$ is solution!

Apply our algorithm to 2×3 polynomial multiplication

- Find formulae 2×3 polynomial multiplication in $\mathbb{F}_{2}[X]$
- Out target: $\mathcal{T}=\left\{a_{1} b_{2}, a_{1} b_{1}+a_{0} b_{2}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{0}\right\}$
- Rank of the target \mathcal{T} is 4
\star At least, 4 products needed
- Attempt with $k=4$
$\star T \cap \mathcal{G}=\left\{a_{0} b_{0}, a_{1} b_{2},\left(a_{1}+a_{0}\right)\left(b_{2}+b_{1}+b_{0}\right)\right\}$
$\star \operatorname{rk}(T \cap \mathcal{G})=3$
\star No solutions with $k=4$ products only
- Attempt with $k=5$
\star Try with $W=T \oplus \operatorname{Span}\left\{a_{0} b_{1}\right\}$

$$
\begin{array}{rlll}
\star W \cap \mathcal{G}=\left\{a_{0} \cdot b_{0},\right. & a_{1} \cdot b_{0}, & \left(a_{1}+a_{0}\right) \cdot b_{0}, \\
& a_{0} \cdot b_{1}, & a_{1} \cdot b_{2}, & \left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}\right), \\
& a_{0} \cdot\left(b_{1}+b_{0}\right), & a_{1} \cdot\left(b_{2}+b_{0}\right), & \left.\left(a_{1}+a_{0}\right) \cdot\left(b_{2}+b_{1}+b_{0}\right)\right\}
\end{array}
$$

$\star \operatorname{rk}(W \cap \mathcal{G})=5, W$ is solution!
$\star\left\{a_{0} b_{0}, a_{1} b_{0}, a_{0} b_{1}, a_{1} b_{2},\left(a_{1}+a_{0}\right)\left(b_{2}+b_{1}\right)\right\}$ form a basis of W which gives a formula

* There are 3 solution spaces
* which give a total of 162 formulae

Algorithm works for every bilinear application

- First remark: our algorithm finds all formulae with a given number of products
- As long as we take all the potential products in \mathcal{G}
- Proves lower bounds on the number of required products

Algorithm works for every bilinear application

- First remark: our algorithm finds all formulae with a given number of products
- As long as we take all the potential products in \mathcal{G}
- Proves lower bounds on the number of required products
- General algorithm: works for every bilinear application
- Short products, middle products, cross products
- Multiplication in complexes, quaternions, field extensions, matrices
- Multiplication of sparse polynomials and matrices
- ...
- Also works for applications where the coefficients are quadratic forms
- Simply requires extending the definition of \mathcal{G}

$$
\mathcal{G}^{\prime}=\left\{\left(\sum \alpha_{i} a_{i}\right) \cdot\left(\sum \beta_{j} a_{j}\right) \mid\left(\alpha_{n-1}, \ldots, \alpha_{0}\right) \preccurlyeq_{\text {lex }}\left(\beta_{n-1}, \ldots, \beta_{0}\right)\right\} \backslash\{0\}
$$

- Apply to the squaring versions of the previous problem
- Example: squaring of 2-term polynomial

$$
\begin{aligned}
\mathcal{G}=\{ & a_{0} \cdot a_{0}, & & \\
& a_{0} \cdot a_{1}, & & a_{1} \cdot a_{1}, \\
& a_{0} \cdot\left(a_{1}+a_{0}\right), & a_{1} \cdot\left(a_{1}+a_{0}\right), & \left.\left(a_{1}+a_{0}\right) \cdot\left(a_{1}+a_{0}\right)\right\}
\end{aligned}
$$

Real-life example (at least for a crypto Ph.D. student)

- Implementing a pairing over a genus-2 supersingular hyperelliptic curve
- Working in the sextic extension $\mathbb{F}_{2^{m}}[i, \tau]$ where $i^{2}+i+1=0$ and $\tau^{3}+i \tau^{2}+i \tau+i=0$
- Rely on a multiplication algorithm for sparse elements of the form

$$
a_{3} \cdot \tau^{2}+a_{2} \cdot \tau+a_{1} \cdot i+a_{0}
$$

- Our algorithm exposes an optimal algorithm that necessitates 9 products in $\mathbb{F}_{2^{m}}$
- Previously known algorithms require at least 11 products

An optimization

Limit the form of the formulae

- Only for symmetric bilinear applications
- Same number of coefficients in a and b
- $F\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right)=F\left(\left(b_{0}, \ldots, b_{n-1}\right),\left(a_{0}, \ldots, a_{n-1}\right)\right)$
- Verified for multiplication of polynomials of same size
- Only use products with the same linear combination of the a_{i} 's and b_{i} 's

$$
\mathcal{G}^{\prime}=\left\{\left(\sum \alpha_{i} a_{i}\right) \cdot\left(\sum \alpha_{i} b_{i}\right) \mid \forall i, \alpha_{i} \in K\right\} \backslash\{0\}
$$

- Reduce the cardinal of \mathcal{G}
- Example: 2×2 multiplication in $\mathbb{F}_{3}[X]$

$$
\begin{array}{rlll}
\mathcal{G}=\left\{\begin{array}{lll}
a_{0} \cdot b_{0}, & a_{1} \cdot b_{0}, & \left(a_{1}+a_{0}\right) \cdot b_{0},
\end{array}\right. & \left(a_{1}-a_{0}\right) \cdot b_{0}, \\
a_{0} \cdot b_{1}, & a_{1} \cdot 1, & \left(a_{1}+a_{0}\right) \cdot b_{1}, & \left(a_{1}-a_{0}\right) \cdot b_{1}, \\
& a_{0} \cdot\left(b_{1}+b_{0}\right), & a_{1} \cdot\left(b_{1}+b_{0}\right), & \left.\left(a_{1}+a_{0}\right) \cdot b_{1}+b_{0}\right), \\
& a_{0} \cdot\left(b_{1}-b_{0}\right), & a_{1} \cdot\left(b_{1}\right) \cdot\left(b_{1}+b_{0}\right), & \left(a_{1}+a_{0}\right) \cdot\left(b_{1}-b_{0}\right), \\
\left.\left(a_{1}-a_{0}\right) \cdot\left(b_{1}-b_{0}\right)\right\}
\end{array}
$$

An optimization

Limit the form of the formulae

- Only for symmetric bilinear applications
- Same number of coefficients in a and b
- $F\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right)=F\left(\left(b_{0}, \ldots, b_{n-1}\right),\left(a_{0}, \ldots, a_{n-1}\right)\right)$
- Verified for multiplication of polynomials of same size
- Only use products with the same linear combination of the a_{i} 's and b_{i} 's

$$
\mathcal{G}^{\prime}=\left\{\left(\sum \alpha_{i} a_{i}\right) \cdot\left(\sum \alpha_{i} b_{i}\right) \mid \forall i, \alpha_{i} \in K\right\} \backslash\{0\}
$$

- Reduce the cardinal of \mathcal{G}
- Example: 2×2 multiplication in $\mathbb{F}_{3}[X]$

$$
\left.\begin{array}{rlll}
\mathcal{G}=\left\{\begin{array}{llll}
a_{0} \cdot b_{0}, & a_{1} \cdot b_{0}, & & \left(a_{1}+a_{0}\right) \cdot b_{0},
\end{array}\right. & \left(a_{1}-a_{0}\right) \cdot b_{0}, \\
& a_{0} \cdot b_{1}, & a_{1} \cdot 1, & \left(a_{1}+a_{0}\right) \cdot b_{1},
\end{array}\right)\left(a_{1}-a_{0}\right) \cdot b_{1},
$$

Outline of the talk

- Some history
- Formulae for polynomial multiplication
- Enumerating formulae
- Results and conclusion

Computation and results

- Two implementations
- Generic sage code
- Core of the algorithm in optimized C with support for multi-threading and large scale distribution

Computation and results

- Two implementations
- Generic sage code
- Core of the algorithm in optimized C with support for multi-threading and large scale distribution
- Multiplication over $\mathbb{F}_{2}[X]$

$\mathbf{n} \times \mathbf{m}$	Constraints	$\boldsymbol{\# \mathcal { G }}$	\mathbf{k}	\# of tests	\# of subspaces	Calculation time [s]
2×2	None	9	3	1	1	0.00
3×3	None	49	6	9	2	0.00
4×4	None	225	9	$6.60 \cdot 10^{3}$	4	0.10
5×5	None	961	13	$9.65 \cdot 10^{9}$	24	$9.90 \cdot 10^{5}$
	Sym.	31	13	$2.10 \cdot 10^{3}$	20	0.01
6×6	None	3969	14	$4.37 \cdot 10^{9}$	0	$1.85 \cdot 10^{6}$
	Sym.	63	17	$8.08 \cdot 10^{6}$	6	54.3
7×7	Sym.	127	22	$3.42 \cdot 10^{12}$	2460	$5.43 \cdot 10^{7}$

Conclusion

- General algorithm
- Method that proves lower bounds on the number of subproducts

Conclusion

- General algorithm
- Method that proves lower bounds on the number of subproducts
- Gives all formulae
- Provides new formulae that cannot be found with previous method
- We can cherry-pick the one with minimum number of additions

Conclusion

- General algorithm
- Method that proves lower bounds on the number of subproducts
- Gives all formulae
- Provides new formulae that cannot be found with previous method
- We can cherry-pick the one with minimum number of additions
- Work in progress and perspectives
- Lifting formulae for higher-characteristic or characteristic-0 fields
- Find formulae for your bilinear application!

Thank you for your attention!

Questions?

More results

- Multiplication over $\mathbb{F}_{3}[X]$

$\mathbf{n} \times \mathbf{m}$	Constraints	\#G	\mathbf{k}	\# of tests	\# of subspaces	Calculation time $[\mathbf{s}]$
2×2	None	16	3	1	1	0.00
3×3	None	169	6	24	13	0.00
4×4	None	1600	9	$4.11 \cdot 10^{5}$	595	61.9
5×5	None	14641	11	$4.89 \cdot 10^{7}$	0	$1.09 \cdot 10^{5}$
	Sym.	121	12	$3.93 \cdot 10^{4}$	31	0.71
6×6	Sym.	364	15	$2.37 \cdot 10^{8}$	3	$1.72 \cdot 10^{4}$
7×7	Sym.	1093	16	$1.03 \cdot 10^{8}$	0	$2.15 \cdot 10^{4}$

More results

- Multiplication over small extensions of \mathbb{F}_{2} and \mathbb{F}_{3}
- Independent of the choice of definition polynomial of the extension

Finite field	Constraints	$\boldsymbol{\# G}$	\mathbf{k}	\# of tests	\# of subspaces	Calculation time $[\mathbf{s}]$
$\mathbb{F}_{2^{2}}$	None	9	3	3	3	0.00
$\mathbb{F}_{2^{3}}$	None	49	6	$7.03 \cdot 10^{3}$	105	0.02
$\mathbb{F}_{2^{4}}$	None	225	9	$2.57 \cdot 10^{9}$	2025	955
$\mathbb{F}_{2^{5}}$	None	961	9	$3.10 \cdot 10^{10}$	0	$1.83 \cdot 10^{6}$
	Sym.	31	13	$3.49 \cdot 10^{6}$	2015	13.7
$\mathbb{F}_{2^{6}}$	Sym.	63	14	$3.78 \cdot 10^{9}$	0	$2.50 \cdot 10^{5}$
$\mathbb{F}_{2^{7}}$	Sym.	127	14	$8.93 \cdot 10^{10}$	0	$1.22 \cdot 10^{6}$
$\mathbb{F}_{3^{2}}$	None	16	3	4	4	0.00
$\mathbb{F}_{3^{3}}$	None	169	6	$2.42 \cdot 10^{5}$	11843	5.35
$\mathbb{F}_{3^{4}}$	None	1600	7	$6.29 \cdot 10^{8}$	0	$1.16 \cdot 10^{5}$
$\mathbb{F}_{3^{5}}$	Sym.	40	9	$1.10 \cdot 10^{5}$	234	0.98

