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Some history

» Multiplication is an expensive arithmetic operation

» Well-studied problem

Karatsuba (1962)

Toom—Cook (1963), evaluation-interpolation schemes
CRT-based algorithms

Schonhage—Strassen algorithm (1971)

» Five, six-, and seven-term Karatsuba-like formulae, P. Montgomery (2005)

Ad-hoc formulae

Exhaustive search for five-term multiplication

Non-exhaustive search for six- and seven-term multiplications
(January 2011) start a task group to reproduce his search
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Outline of the talk

» Formulae for polynomial multiplication
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Example: a 2-term polynomial times a 3-term one

» Formula to compute:
C(X) = (ar-X+ag) x (ba-X>+ by - X + by)
= a1b2 . X3 + (a1b1 + aobz) . X2 + (a0b1 + albo) - X+ aobo
» b5 products needed only instead of 6
Use Karatsuba's trick

C(X) = arby-X>+(arby+aghs)-X?+((ao + a1)(bo + b1) — arby — aghg)-X+agbg

Products to compute:

po = ao-bo,
p1= ap by,
p2 = ai-by,
p3 = ay- by,

pa = (a0 + a1)-(bo + b1).
Reconstructing the result

C(X)=ps- X3+ (pr+p2)  X*+ (pa— p>— po) - X + po
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General form of a multiplication formula

» Formula to compute
Ctm—2 . X ntm=2 +- 4= (3n—1 . xn-1 T 30) ) (bm—l . xm-1 R bo)

» All formulae for multiplication can be expressed as:
Compute some linear combinations of the a;

/ 2 :
aj = Q- aj

Compute some linear combinations of the b;

b; = Zﬁi,j - b;
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Compute some linear combinations of the b;
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=300t
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General form of a multiplication formula

» Formula to compute

Cn+m—2’X”+m_2—}-"'+CO:(an—l'X"_l—i-""f’ao)'(bm_l-Xm_l—{—---—f—bo)

» All formulae for multiplication can be expressed as:
Compute some linear combinations of the a;

/ 2 :
aj = Q- aj

Compute some linear combinations of the b;
/
=300t

Perform some products

Reconstruct the result by linearly combining the products

G = Z%‘,i " Pj

N. Estibals — A unifying algorithm finding all formulae for bilinear computations

5/18



General form of a multiplication formula

» Formula to compute
Ctm—2 . X ntm=2 +- 4= (3n—1 . xn-1 T 30) ) (bm—l . xm-1 R bo)

» All formulae for multiplication can be expressed as:
Compute some linear combinations of the a;

/ 2 :
aj = Q- aj

Compute some linear combinations of the b;
/
=300t

Perform some products

Reconstruct the result by linearly combining the products

G = Z%‘,i " Pj

» This is also true for every bilinear application F such that

(C()7 cee Cg_l) = F ((ao, cee a,,_l), (b(), cee bm—l))
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Outline of the talk

» Enumerating formulae
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Formal framework

Formulation in term of vector space for a n x m multiplication over a given field K

» Represent the coefficients of the result and the products as elements of
V' the nm-dimensional K-vector space generated by {a;b;}o<i<no<j<m

where the a;b;’s are seen as formal elements
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Formal framework

Formulation in term of vector space for a n x m multiplication over a given field K

» Represent the coefficients of the result and the products as elements of
V' the nm-dimensional K-vector space generated by {a;b;}o<i<no<j<m
where the a;b;’s are seen as formal elements
» Our target: the coefficients of the result is a family
T ={cito<i<cntm-1CV
that spans the target subspace T = SpanT of V

» The set G of the potential products to use in a formula

G ={(Dca) - (D 8ty) | Visai € KAYG G € K} {0}

We only consider products modulo a scalar factor

G=G'/~ wherep~p =3dkeKst. p=k-p
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Formal framework: example

Consider previous example: 2 x 3 polynomial product in F,[X]

» V is a 6-dimensional vector space generated by

{aO : bOa a - b07
ap- b, ai- by,
ao - by, a1 by}

» The target is {albg, a1by + agby, agb1 + a1 by, aobo}

» G contains 21 products:

G ={a-
ag -
ag -
ag -
ap -
ap -

- (by + by + by),

4o

. (b2 + b; + bo),
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(a1 + ao) -
(31 + aog) -
(31 + ag) -
(a1 + ao) -
(31 + aog) -
(a1 + ao) -
+(by + by + bo)}
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Naive algorithm

» Goal: find the optimal formulae (i.e. with a minimum number of products)

enumerate the subsets YW C G of exactly k products which give a valid formula
for every k until a solution is found
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W C G and #W =k

that linearly generate the coefficients of the results
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* look for formulae in finite fields K
* take a finite subset of the potential products = May not get all formulae
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Naive algorithm

» Goal: find the optimal formulae (i.e. with a minimum number of products)

enumerate the subsets YW C G of exactly k products which give a valid formula
for every k until a solution is found

» Look for W

a set of k products
W C G and #W =k

that linearly generate the coefficients of the results
T C Span W

» Naive approach:

enumerate the (ﬁg) subsets of cardinal k
g has to be finite

* look for formulae in finite fields K
* take a finite subset of the potential products = May not get all formulae

and test them

» Drawback

Different subsets may span the same subspace
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Construct an efficient algorithm: formula spaces

» Look now for subspaces W of V s. t.

W can be generated by products: Span (W NG) =W
only k products are needed: dim W = k
contains the target space: W O T
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Construct an efficient algorithm: formula spaces

» Look now for subspaces W of V s. t.

W can be generated by products: Span (W NG) =W
only k products are needed: dim W = k
contains the target space: W O T

» Algorithm

1. procedure extend to_dim k(W , H) :

2 if dim W = k then

3 W is a solution if T C W

4 else

5 while H # () :

6 Picka gin H

7 if g¢ W

8: extend to_dim k(W & Span(g), H)
9: end procedure

10: extend _to dim k((), G)
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Construct an efficient algorithm: formula spaces

» Look now for subspaces W of V s. t.

W can be generated by products: Span (W NG) =W
only k products are needed: dim W = k
contains the target space: W O T

» Algorithm

1. procedure extend to_dim k(W , H) :

2 if dim W = k then

3 W is a solution if T C W

4 else

5 while H # () :

6 Picka gin H

7 if g¢ W

8: extend to_dim k(W & Span(g), H)
9: end procedure

10: extend _to dim k((), G)

» Many formulae could correspond to one solution subspace W

each basis of W with elements of G gives a formula
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Construct an efficient algorithm: incomplete basis

» We already know part of W!

target space T is a subspace of every solution space W
find each W by constructing Z s.t. W =T & SpanZ
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Construct an efficient algorithm: incomplete basis

» We already know part of W!

target space T is a subspace of every solution space W
find each W by constructing Z s.t. W =T & SpanZ

» Modified algorithm

procedure extend_to_dim k(W , H) :
if dim W = k then

if rk(W NG) =k then

W is a solution

while H # () :

Pick a g in H

if g W

0: extend to dim k(W @ Span(g), H)
10: end procedure

11: extend_to dim k(T , G)

1:
2
3
4
5: else
6
7
8
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Construct an efficient algorithm: incomplete basis

» We already know part of W!

target space T is a subspace of every solution space W
find each W by constructing Z s.t. W =T & SpanZ

» Modified algorithm

procedure extend_to_dim k(W , H) :
if dim W = k then

if rk(W NG) =k then

W is a solution

while H # () :

Pick a g in H

if g W

0: extend to dim k(W @ Span(g), H)
10: end procedure

11: extend_to dim k(T , G)

1:
2
3
4
5: else
6
7
8

» Complexity now depends on
#G
k—rkT
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Apply our algorithm to 2 X 3 polynomial multiplication

» Find formulae 2 x 3 polynomial multiplication in Fy[X]

» Out target: T = {albg, a1by + agby, agb1 + a1 by, aobo}
Rank of the target T is 4
* At least, 4 products needed
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» Find formulae 2 x 3 polynomial multiplication in Fy[X]

» Out target: T = {albg, aib; + aobg, aob; + albo, aobo}
Rank of the target T is 4
* At least, 4 products needed
Attempt with kK =4

* TNG= {a()bo, a1 by, (31 + ao)(b2 + by + bo)}
*rk(TNG)=3
* No solutions with k = 4 products only
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Apply our algorithm to 2 X 3 polynomial multiplication

» Find formulae 2 x 3 polynomial multiplication in Fy[X]

» Out target: T = {albg, a1by + agby, agb1 + a1 by, aobo}
Rank of the target T is 4
* At least, 4 products needed
Attempt with kK =4
* TNG= {aobo, albz, (31 + ao)(b2 + by + bo)}
*xrk(TNG)=3
* No solutions with k = 4 products only
Attempt with kK =5
* Try with W = T & Span {agb; }
* Wﬂg:{ao'b(), al-b(), (a1+a0)-b0,
ao - by, a - by, (a1 + ao) - (b2 + b1),
ap - (bl + bo), ai - (b2 -+ bo), (31 + a()) . (b2 + by + bo)}
*x rk(WnNgG) =5, Wis solution!

N. Estibals — A unifying algorithm finding all formulae for bilinear computations 12 / 18



Apply our algorithm to 2 X 3 polynomial multiplication

» Find formulae 2 x 3 polynomial multiplication in Fy[X]

» Out target: T = {albg, a1by + agby, agb1 + a1 by, aobo}
Rank of the target T is 4
* At least, 4 products needed
Attempt with kK =4
* TNG= {aobo, albz, (31 + ao)(b2 + by + bo)}
*xrk(TNG)=3
* No solutions with k = 4 products only
Attempt with kK =5
* Try with W = T & Span {agb; }
* Wﬂg:{ao'b(), al-b(), (a1+a0)-b0,
ao - by, a - by, (a1 + ao) - (b2 + b1),
ap - (bl + bo), ai - (b2 -+ bo), (31 + a()) . (b2 + by + bo)}
*x rk(WnNgG) =5, Wis solution!
* {aobo, albo, aobl, ale, (31 + 30)(b2 + bl)} form a basis of W which gives a
formula

* There are 3 solution spaces
* which give a total of 162 formulae
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Algorithm works for every bilinear application

» First remark: our algorithm finds all formulae with a given number of products

As long as we take all the potential products in G
Proves lower bounds on the number of required products
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Algorithm works for every bilinear application

» First remark: our algorithm finds all formulae with a given number of products

As long as we take all the potential products in G
Proves lower bounds on the number of required products

» General algorithm: works for every bilinear application

Short products, middle products, cross products
Multiplication in complexes, quaternions, field extensions, matrices
Multiplication of sparse polynomials and matrices

» Also works for applications where the coefficients are quadratic forms

Simply requires extending the definition of G

G = { (Y i) (D53) | (@t 00) S (Boss - o) |\ {0}

Apply to the squaring versions of the previous problem
Example: squaring of 2-term polynomial
G = {ao - a,
do - d1, di - di,
aop - (81 + ao), ai - (31 + ao), (al + ao) . (31 + 30)}
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Real-life example (at least for a crypto Ph.D. student)

» Implementing a pairing over a genus-2 supersingular hyperelliptic curve

» Working in the sextic extension Fom|[i, 7]
where 2 +i+1=0and 7>+ it + it +i=0

» Rely on a multiplication algorithm for sparse elements of the form

a3-T 4 ay-THa i+ a

» Our algorithm exposes an optimal algorithm that necessitates 9 products in Fom

» Previously known algorithms require at least 11 products
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An optimization
Limit the form of the formulae

» Only for symmetric bilinear applications

Same number of coefficients in a and b

F (a0, .-, an-1), (bo, .-, bo1)) = F ((bo, ..., bn-1), (a0, - -

Verified for multiplication of polynomials of same size

.,a,,_l))

» Only use products with the same linear combination of the a;'s and b;'s

g = {(Z oz,-a,-) - <Z oz,-b,-) ‘ Vi, ap € K} \ {0}

Reduce the cardinal of G

» Example: 2 x 2 multiplication in F3[X]

G = {ao - bo, a1 - by, (a1 + ao) - bo,
ap - by, a1, (a1 + ao) - by,
ag - (b1 + bo), a1-(b1+ bo), (a1 + ag) - b1 + by),
ap- (b1 — by), ar- (b1 — bo), (a1+ ao) - (b1 — by),
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(a1 — a0) - (b1 + bo),
(a1 — @) - (b1 — bo)}
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An optimization
Limit the form of the formulae

» Only for symmetric bilinear applications

Same number of coefficients in a and b
F ((30, ey an_l), (bo, ceey bn—l)) = F ((b(), cee bn—l)a (ao, cee a,,_l))
Verified for multiplication of polynomials of same size

» Only use products with the same linear combination of the a;'s and b;'s

g = {(Z oz,-a,-) . <Z a;b,—) ‘ Vi, ap € K} \ {0}

Reduce the cardinal of G

» Example: 2 x 2 multiplication in F3[X]

G = {ag - bo,
i1,
(a1 + ag) - b1 + by),
(a1 — ao) - (b1 — bo)}
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Outline of the talk

» Results and conclusion
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Computation and results

» Two implementations

Generic sage code
Core of the algorithm in optimized C with support for multi-threading and large
scale distribution
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Computation and results

» Two implementations

Generic sage code
Core of the algorithm in optimized C with support for multi-threading and large
scale distribution

» Multiplication over F;[X]

n X m | Constraints | #G k # of # of Ca!culatlon
tests subspaces | time [s]
2x2 None 91 3 1 1 0.00
3x3 None 491 6 9 2 0.00
4 x 4 None 225 | 9| 6.60-103 4 0.10
55 None 961 || 13| 9.65 - 10° 24 9.90 - 10°
Sym. 31 13| 2.10-10° 20 0.01
6 % 6 None 3069 || 14 | 4.37 - 10° 0 1.85-10°
Sym. 63| 17 | 8.08 - 10° 6 54.3
7x7 Sym. 127 || 22 | 3.42 - 1012 2460 5.43 107
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Conclusion

» General algorithm

» Method that proves lower bounds on the number of subproducts
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» Gives all formulae

Provides new formulae that cannot be found with previous method
We can cherry-pick the one with minimum number of additions
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Conclusion

» General algorithm
» Method that proves lower bounds on the number of subproducts

» Gives all formulae

Provides new formulae that cannot be found with previous method
We can cherry-pick the one with minimum number of additions

» Work in progress and perspectives

Lifting formulae for higher-characteristic or characteristic-0 fields
Find formulae for your bilinear application!
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Thank you for your attention!

e

Questions?



» Multiplication over F3 [X]

More results

n X m | Constraints | #G k # of # of Ca.lculatlon
tests | subspaces | time [s]
2 X 2 None 16| 3 1 1 0.00
3x3 None 169 | 6 24 13 0.00
4 x4 None 1600 | 9|4.11-10° 595 61.9
—r None 14641 | 11 | 4.89 - 107 0 1.09-10°
Sym. 121 | 12| 3.93-10% 31 0.71
6 % 6 Sym. 364 || 15 | 2.37 - 10° 3 1.72 - 10*
7x7 Sym. 1093 | 16 | 1.03 - 108 0 2.15 - 10*
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More results

» Multiplication over small extensions of [, and [3

Independent of the choice of definition polynomial of the extension

Finite field | Constraints | #G k # of # of Ca!culation
tests | subspaces | time [s]
52 None 9| 3 3 3 0.00
Fos None 49| 61 7.03-103 105 0.02
F oy None 225 | 9| 2.57-10° 2025 955
Foe None 961 | 9 (3.10-10'° 0 1.83-10°
Sym. 31| 13| 3.49-10° 2015 13.7

[ o6 Sym. 63| 14 | 3.78 - 10° 0 2.50 - 10°
Fyr Sym. 127 || 14 | 8.93 - 100 0 1.22 - 109
32 None 16 || 3 4 4 0.00
Fss None 169 | 6| 2.42-105 | 11843 5.35
F. None 1600 | 7 6.29-108 0 1.16 - 10°
Sym. 40| 9] 1.10-10° 234 0.98

Fss Sym. 121 (10| 1.83-108 0 3.77 - 103
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