Journées Nationales de Calcul Formel — November 14-18, 2011

A unifying algorithm finding all formulae for bilinear computations

Nicolas Estibals

CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA Nicolas.Estibals@loria.fr

Joint work with:

Răzvan Bărbulescu Jérémie Detrey

Paul Zimmermann

Outline of the talk

► Some history

- ► Formulae for polynomial multiplication
- Enumerating formulae
- Results and conclusion

Some history

▶ Multiplication is an expensive arithmetic operation

- Well-studied problem
 - Karatsuba (1962)
 - Toom–Cook (1963), evaluation-interpolation schemes
 - CRT-based algorithms
 - Schönhage-Strassen algorithm (1971)

• . . .

Five, six-, and seven-term Karatsuba-like formulae, P. Montgomery (2005)

- Ad-hoc formulae
- Exhaustive search for five-term multiplication
- Non-exhaustive search for six- and seven-term multiplications
- (January 2011) start a task group to reproduce his search

Outline of the talk

► Some history

► Formulae for polynomial multiplication

Enumerating formulae

Results and conclusion

Example: a 2-term polynomial times a 3-term one

Formula to compute:

$$\begin{array}{rcl} C(X) &=& (a_1 \cdot X + a_0) \times (b_2 \cdot X^2 + b_1 \cdot X + b_0) \\ &=& a_1 b_2 \cdot X^3 + (a_1 b_1 + a_0 b_2) \cdot X^2 + (a_0 b_1 + a_1 b_0) \cdot X + a_0 b_0 \end{array}$$

▶ 5 products needed only instead of 6

• Use Karatsuba's trick

$$C(X) = a_1 b_2 \cdot X^3 + (a_1 b_1 + a_0 b_2) \cdot X^2 + ((a_0 + a_1)(b_0 + b_1) - a_1 b_1 - a_0 b_0) \cdot X + a_0 b_0$$

Products to compute:

$$egin{aligned} p_0 &= & a_0 \cdot b_0, \ p_1 &= & a_0 \cdot b_2, \ p_2 &= & a_1 \cdot b_1, \ p_3 &= & a_1 \cdot b_2, \ p_4 &= (a_0 + a_1) \cdot (b_0 + b_1) \end{aligned}$$

Reconstructing the result

$$C(X) = p_3 \cdot X^3 + (p_1 + p_2) \cdot X^2 + (p_4 - p_2 - p_0) \cdot X + p_0$$

► Formula to compute

 $c_{n+m-2} \cdot X^{n+m-2} + \cdots + c_0 = (a_{n-1} \cdot X^{n-1} + \cdots + a_0) \cdot (b_{m-1} \cdot X^{m-1} + \cdots + b_0)$

► All formulae for multiplication can be expressed as:

• Compute some linear combinations of the *a_i*

$$\mathbf{a}_{j}^{\prime} = \sum lpha_{i,j} \cdot \mathbf{a}_{i}$$

• Compute some linear combinations of the *b_i*

$$b'_j = \sum \beta_{i,j} \cdot b_i$$

► Formula to compute

 $c_{n+m-2} \cdot X^{n+m-2} + \cdots + c_0 = (a_{n-1} \cdot X^{n-1} + \cdots + a_0) \cdot (b_{m-1} \cdot X^{m-1} + \cdots + b_0)$

► All formulae for multiplication can be expressed as:

• Compute some linear combinations of the *a_i*

$$\mathbf{a}_{j}^{\prime} = \sum lpha_{i,j} \cdot \mathbf{a}_{i}$$

• Compute some linear combinations of the *b_i*

$$b'_j = \sum \beta_{i,j} \cdot b_i$$

• Perform some products

$$p_j = a'_j \cdot b'_j$$

► Formula to compute

 $c_{n+m-2} \cdot X^{n+m-2} + \cdots + c_0 = (a_{n-1} \cdot X^{n-1} + \cdots + a_0) \cdot (b_{m-1} \cdot X^{m-1} + \cdots + b_0)$

► All formulae for multiplication can be expressed as:

Compute some linear combinations of the a_i

$$\mathbf{a}_{j}^{\prime} = \sum lpha_{i,j} \cdot \mathbf{a}_{i}$$

• Compute some linear combinations of the *b_i*

$$b'_j = \sum \beta_{i,j} \cdot b_i$$

• Perform some products

$$p_j = a'_j \cdot b'_j$$

• Reconstruct the result by linearly combining the products

$$c_i = \sum \gamma_{j,i} \cdot p_j$$

► Formula to compute

 $c_{n+m-2} \cdot X^{n+m-2} + \cdots + c_0 = (a_{n-1} \cdot X^{n-1} + \cdots + a_0) \cdot (b_{m-1} \cdot X^{m-1} + \cdots + b_0)$

All formulae for multiplication can be expressed as:

Compute some linear combinations of the a_i

$$\mathbf{a}_{j}^{\prime} = \sum lpha_{i,j} \cdot \mathbf{a}_{i}$$

• Compute some linear combinations of the *b_i*

$$b'_j = \sum \beta_{i,j} \cdot b_i$$

Perform some products

$$p_j = a'_j \cdot b'_j$$

Reconstruct the result by linearly combining the products

$$c_i = \sum \gamma_{j,i} \cdot p_j$$

▶ This is also true for every bilinear application *F* such that

$$(c_0,\ldots,c_{\ell-1})=F((a_0,\ldots,a_{n-1}),(b_0,\ldots,b_{m-1}))$$

Outline of the talk

► Some history

► Formulae for polynomial multiplication

Enumerating formulae

Results and conclusion

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_i b_j\}_{0 \le i < n, 0 \le j < m}$

where the $a_i b_i$'s are seen as formal elements

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_i b_j\}_{0 \le i < n, 0 \le j < m}$

where the $a_i b_i$'s are seen as formal elements

▶ Our target: the coefficients of the result is a family

$$\mathcal{T} = \{c_i\}_{0 \leq i < n+m-1} \subset V$$

that spans the target subspace $T = \operatorname{Span} \mathcal{T}$ of V

Formal framework

Formulation in term of vector space for a $n \times m$ multiplication over a given field K

▶ Represent the coefficients of the result and the products as elements of

V the *nm*-dimensional K-vector space generated by $\{a_i b_j\}_{0 \le i \le n, 0 \le j \le m}$

where the $a_i b_j$'s are seen as formal elements

▶ Our target: the coefficients of the result is a family

$$\mathcal{T} = \{c_i\}_{0 \leq i < n+m-1} \subset V$$

that spans the target subspace $T = \operatorname{Span} \mathcal{T}$ of V

 \blacktriangleright The set ${\cal G}$ of the potential products to use in a formula

$$\mathcal{G}' = \left\{ \left(\sum \alpha_i \mathbf{a}_i \right) \cdot \left(\sum \beta_j \mathbf{b}_j \right) \mid \forall i, \alpha_i \in \mathbf{K} \land \forall j, \beta_j \in \mathbf{K} \right\} \setminus \{\mathbf{0}\}$$

We only consider products modulo a scalar factor

$$\mathcal{G}=\mathcal{G}'/\sim$$
 where $p\sim p'\equiv \exists k\in K$ s.t. $p=k\cdot p'$

Formal framework: example

Consider previous example: 2×3 polynomial product in $\mathbb{F}_2[X]$

 \triangleright V is a 6-dimensional vector space generated by

• The target is $\{a_1b_2, a_1b_1 + a_0b_2, a_0b_1 + a_1b_0, a_0b_0\}$

 \blacktriangleright *G* contains 21 products:

$$\begin{aligned} \mathcal{G} &= \{a_0 \cdot b_0, & a_1 \cdot b_0, & (a_1 + a_0) \cdot b_0, \\ &a_0 \cdot b_1, & a_1 \cdot b_1, & (a_1 + a_0) \cdot b_1, \\ &a_0 \cdot (b_1 + b_0), & a_1 \cdot (b_1 + b_0), & (a_1 + a_0) \cdot (b_1 + b_0), \\ &a_0 \cdot b_2, & a_1 \cdot b_2, & (a_1 + a_0) \cdot b_2, \\ &a_0 \cdot (b_2 + b_0), & a_1 \cdot (b_2 + b_0), & (a_1 + a_0) \cdot (b_2 + b_0), \\ &a_0 \cdot (b_2 + b_1), & a_1 \cdot (b_2 + b_1), & (a_1 + a_0) \cdot (b_2 + b_1), \\ &a_0 \cdot (b_2 + b_1 + b_0), & a_1 \cdot (b_2 + b_1 + b_0), & (a_1 + a_0) \cdot (b_2 + b_1 + b_0) \} \end{aligned}$$

▶ Goal: find the optimal formulae (i.e. with a minimum number of products)

- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found

▶ Goal: find the optimal formulae (i.e. with a minimum number of products)

- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- \blacktriangleright Look for ${\mathcal W}$
 - a set of *k* products

 $\mathcal{W} \subset \mathcal{G}$ and $\#\mathcal{W} = k$

• that linearly generate the coefficients of the results

 $\mathcal{T} \subset \operatorname{\mathsf{Span}} \mathcal{W}$

▶ Goal: find the optimal formulae (i.e. with a minimum number of products)

- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- \blacktriangleright Look for ${\mathcal W}$
 - a set of k products

 $\mathcal{W} \subset \mathcal{G}$ and $\#\mathcal{W} = k$

• that linearly generate the coefficients of the results

 $\mathcal{T} \subset \operatorname{\mathsf{Span}} \mathcal{W}$

- ► Naive approach:
 - enumerate the $\binom{\#\mathcal{G}}{k}$ subsets of cardinal k

• and test them

▶ Goal: find the optimal formulae (i.e. with a minimum number of products)

- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- \blacktriangleright Look for ${\mathcal W}$
 - a set of k products

 $\mathcal{W} \subset \mathcal{G}$ and $\#\mathcal{W} = k$

• that linearly generate the coefficients of the results

```
\mathcal{T} \subset \mathsf{Span}\,\mathcal{W}
```

- ► Naive approach:
 - enumerate the $\binom{\#\mathcal{G}}{k}$ subsets of cardinal k
 - G has to be finite
 - \star look for formulae in finite fields K
 - \star take a finite subset of the potential products \Rightarrow May not get all formulae
 - and test them

► Goal: find the optimal formulae (i.e. with a minimum number of products)

- enumerate the subsets $\mathcal{W} \subset \mathcal{G}$ of exactly k products which give a valid formula
- for every k until a solution is found
- \blacktriangleright Look for ${\mathcal W}$
 - a set of k products

 $\mathcal{W} \subset \mathcal{G}$ and $\#\mathcal{W} = k$

• that linearly generate the coefficients of the results

```
\mathcal{T} \subset \mathsf{Span}\,\mathcal{W}
```

- ► Naive approach:
 - enumerate the $\binom{\#\mathcal{G}}{k}$ subsets of cardinal k
 - G has to be finite
 - \star look for formulae in finite fields K
 - \star take a finite subset of the potential products \Rightarrow May not get all formulae
 - and test them
- Drawback
 - Different subsets may span the same subspace

Construct an efficient algorithm: formula spaces

• Look now for subspaces W of V s. t.

- W can be generated by products: Span $(W \cap G) = W$
- only k products are needed: dim W = k
- contains the target space: $W \supset T$

Construct an efficient algorithm: formula spaces

• Look now for subspaces W of V s. t.

- W can be generated by products: Span $(W \cap G) = W$
- only k products are needed: dim W = k
- contains the target space: $W \supset T$

► Algorithm

- 1: procedure extend_to_dim_k(W, \mathcal{H}) :
- 2: **if** dim W = k **then**
- 3: W is a solution if $T \subset W$
- 4: else
- 5: while $\mathcal{H} \neq \emptyset$:
- 6: Pick a g in \mathcal{H}
- 7: **if** $g \notin W$
- 8: extend_to_dim_k($W \oplus \text{Span}(g)$, \mathcal{H})
- 9: end procedure

```
10: extend_to_dim_k(\emptyset, \mathcal{G})
```

Construct an efficient algorithm: formula spaces

• Look now for subspaces W of V s. t.

- W can be generated by products: Span $(W \cap G) = W$
- only k products are needed: dim W = k
- contains the target space: $W \supset T$

► Algorithm

- 1: procedure extend_to_dim_k(W, \mathcal{H}) :
- 2: **if** dim W = k **then**
- 3: W is a solution if $T \subset W$
- 4: else
- 5: while $\mathcal{H} \neq \emptyset$:
- 6: Pick a g in \mathcal{H}
- 7: **if** $g \notin W$
- 8: $extend_to_dim_k(W \oplus \text{Span}(g), \mathcal{H})$
- 9: end procedure
- 10: extend_to_dim_k(\emptyset , \mathcal{G})
- ▶ Many formulae could correspond to one solution subspace W
 - each basis of W with elements of $\mathcal G$ gives a formula

Construct an efficient algorithm: incomplete basis

- ▶ We already know part of *W*!
 - target space T is a subspace of every solution space W
 - find each W by constructing \mathcal{I} s.t. $W = T \oplus \text{Span} \mathcal{I}$

Construct an efficient algorithm: incomplete basis

```
▶ We already know part of W!
```

• target space T is a subspace of every solution space W

• find each W by constructing \mathcal{I} s.t. $W = T \oplus \operatorname{Span} \mathcal{I}$

Modified algorithm

```
1: procedure extend_to_dim_k(W, \mathcal{H}) :
        if dim W = k then
2:
            if rk(W \cap G) = k then
 3:
                W is a solution
4:
        else
5:
          while \mathcal{H} \neq \emptyset :
6:
              Pick a g in \mathcal{H}
7:
              if g \notin W
8:
                 extend_to_dim_k(W \oplus \text{Span}(g), \mathcal{H})
9:
10: end procedure
```

```
11: extend_to_dim_k(T, G)
```

Construct an efficient algorithm: incomplete basis

```
▶ We already know part of W!
```

• target space T is a subspace of every solution space W

• find each W by constructing \mathcal{I} s.t. $W = T \oplus \operatorname{Span} \mathcal{I}$

Modified algorithm

```
1: procedure extend_to_dim_k(W, \mathcal{H}) :
       if dim W = k then
2:
           if rk(W \cap G) = k then
 3:
               W is a solution
4:
       else
5:
          while \mathcal{H} \neq \emptyset :
6:
             Pick a g in \mathcal{H}
7:
             if g \notin W
8:
                extend_to_dim_k(W \oplus \text{Span}(g), \mathcal{H})
9:
10: end procedure
11: extend_to_dim_k(T, G)
```

Complexity now depends on

$$\begin{pmatrix} \#\mathcal{G} \\ \mathbf{k} - \operatorname{rk} \mathcal{T} \end{pmatrix}$$

Apply our algorithm to $\mathbf{2}\times\mathbf{3}$ polynomial multiplication

- Out target: $\mathcal{T} = \{a_1b_2, a_1b_1 + a_0b_2, a_0b_1 + a_1b_0, a_0b_0\}$
 - Rank of the target ${\mathcal T}$ is 4
 - * At least, 4 products needed

Apply our algorithm to $\mathbf{2}\times\mathbf{3}$ polynomial multiplication

- Out target: $\mathcal{T} = \{a_1b_2, a_1b_1 + a_0b_2, a_0b_1 + a_1b_0, a_0b_0\}$
 - Rank of the target ${\mathcal T}$ is 4
 - \star At least, 4 products needed
 - Attempt with k = 4
 - * $T \cap \mathcal{G} = \{a_0b_0, a_1b_2, (a_1 + a_0)(b_2 + b_1 + b_0)\}$
 - $\star \mathsf{rk}(T \cap \mathcal{G}) = 3$
 - * No solutions with k = 4 products only

Apply our algorithm to 2×3 polynomial multiplication

- Out target: $\mathcal{T} = \{a_1b_2, a_1b_1 + a_0b_2, a_0b_1 + a_1b_0, a_0b_0\}$
 - Rank of the target ${\mathcal T}$ is 4
 - \star At least, 4 products needed
 - Attempt with k = 4
 - * $T \cap \mathcal{G} = \{a_0b_0, a_1b_2, (a_1 + a_0)(b_2 + b_1 + b_0)\}$
 - $\star \mathsf{rk}(T \cap \mathcal{G}) = 3$
 - * No solutions with k = 4 products only
 - Attempt with k = 5

* Try with
$$W = T \oplus \text{Span} \{a_0 b_1\}$$

* $W \cap \mathcal{G} = \{a_0 \cdot b_0, \quad a_1 \cdot b_0, \quad (a_1 + a_0) \cdot b_0, \\ a_0 \cdot b_1, \quad a_1 \cdot b_2, \quad (a_1 + a_0) \cdot (b_2 + b_1), \\ a_0 \cdot (b_1 + b_0), \quad a_1 \cdot (b_2 + b_0), \quad (a_1 + a_0) \cdot (b_2 + b_1 + b_0)\}$
* $\text{rk} (W \cap \mathcal{G}) = 5$, W is solution!

Apply our algorithm to 2×3 polynomial multiplication

- Out target: $\mathcal{T} = \{a_1b_2, a_1b_1 + a_0b_2, a_0b_1 + a_1b_0, a_0b_0\}$
 - Rank of the target ${\mathcal T}$ is 4
 - \star At least, 4 products needed
 - Attempt with k = 4
 - * $T \cap \mathcal{G} = \{a_0b_0, a_1b_2, (a_1 + a_0)(b_2 + b_1 + b_0)\}$
 - $\star \mathsf{rk}(T \cap \mathcal{G}) = 3$
 - * No solutions with k = 4 products only
 - Attempt with k = 5
 - * Try with $W = T \oplus \text{Span} \{a_0 b_1\}$ * $W \cap \mathcal{G} = \{a_0 \cdot b_0, \quad a_1 \cdot b_0, \quad (a_1 + a_0) \cdot b_0, \\ a_0 \cdot b_1, \quad a_1 \cdot b_2, \quad (a_1 + a_0) \cdot (b_2 + b_1), \\ a_0 \cdot (b_1 + b_0), \quad a_1 \cdot (b_2 + b_0), \quad (a_1 + a_0) \cdot (b_2 + b_1 + b_0)\}$
 - * $\mathsf{rk}(W \cap \mathcal{G}) = 5$, W is solution!
 - * $\{a_0b_0, a_1b_0, a_0b_1, a_1b_2, (a_1 + a_0)(b_2 + b_1)\}$ form a basis of *W* which gives a formula
 - ★ There are 3 solution spaces
 - \star which give a total of 162 formulae

Algorithm works for every bilinear application

- First remark: our algorithm finds all formulae with a given number of products
 - As long as we take all the potential products in ${\cal G}$
 - Proves lower bounds on the number of required products

Algorithm works for every bilinear application

- First remark: our algorithm finds all formulae with a given number of products
 - As long as we take all the potential products in ${\cal G}$
 - Proves lower bounds on the number of required products

▶ General algorithm: works for every bilinear application

- Short products, middle products, cross products
- Multiplication in complexes, quaternions, field extensions, matrices
- Multiplication of sparse polynomials and matrices

• . . .

► Also works for applications where the coefficients are quadratic forms

• Simply requires extending the definition of ${\cal G}$

$$\mathcal{G}' = \left\{ \left(\sum \alpha_i \mathbf{a}_i \right) \cdot \left(\sum \beta_j \mathbf{a}_j \right) \ \middle| \ (\alpha_{n-1}, \dots, \alpha_0) \preccurlyeq_{\mathsf{lex}} (\beta_{n-1}, \dots, \beta_0) \right\} \setminus \{\mathbf{0}\}$$

- Apply to the squaring versions of the previous problem
- Example: squaring of 2-term polynomial

$$egin{aligned} \mathcal{G} &= \{ a_0 \cdot a_0, \ && a_0 \cdot a_1, \ && a_0 \cdot (a_1 + a_0), \ && a_1 \cdot (a_1 + a_0), \ && (a_1 + a_0) \cdot (a_1 + a_0) \} \end{aligned}$$

Real-life example (at least for a crypto Ph.D. student)

▶ Implementing a pairing over a genus-2 supersingular hyperelliptic curve

- ▶ Working in the sextic extension $\mathbb{F}_{2^m}[i, \tau]$ where $i^2 + i + 1 = 0$ and $\tau^3 + i\tau^2 + i\tau + i = 0$
- ▶ Rely on a multiplication algorithm for sparse elements of the form

$$a_3 \cdot \tau^2 + a_2 \cdot \tau + a_1 \cdot i + a_0$$

- ▶ Our algorithm exposes an optimal algorithm that necessitates 9 products in \mathbb{F}_{2^m}
- Previously known algorithms require at least 11 products

An optimization

Limit the form of the formulae

- Only for symmetric bilinear applications
 - Same number of coefficients in a and b
 - $F((a_0,\ldots,a_{n-1}),(b_0,\ldots,b_{n-1})) = F((b_0,\ldots,b_{n-1}),(a_0,\ldots,a_{n-1}))$
 - Verified for multiplication of polynomials of same size

▶ Only use products with the same linear combination of the a_i 's and b_i 's

$$\mathcal{G}' = \left\{ \left(\sum \alpha_i \mathbf{a}_i \right) \cdot \left(\sum \alpha_i \mathbf{b}_i \right) \mid \forall i, \alpha_i \in \mathbf{K} \right\} \setminus \{\mathbf{0}\}$$

• Reduce the cardinal of ${\cal G}$

Example: 2×2 multiplication in $\mathbb{F}_3[X]$

An optimization

Limit the form of the formulae

- Only for symmetric bilinear applications
 - Same number of coefficients in a and b
 - $F((a_0,\ldots,a_{n-1}),(b_0,\ldots,b_{n-1})) = F((b_0,\ldots,b_{n-1}),(a_0,\ldots,a_{n-1}))$
 - Verified for multiplication of polynomials of same size

▶ Only use products with the same linear combination of the a_i 's and b_i 's

$$\mathcal{G}' = \left\{ \left(\sum \alpha_i \mathbf{a}_i \right) \cdot \left(\sum \alpha_i \mathbf{b}_i \right) \mid \forall i, \alpha_i \in \mathbf{K} \right\} \setminus \{\mathbf{0}\}$$

• Reduce the cardinal of ${\cal G}$

• Example: 2×2 multiplication in $\mathbb{F}_3[X]$

$$\mathcal{G} = \{ a_0 \cdot b_0, \qquad a_1 \cdot b_0, \qquad (a_1 + a_0) \cdot b_0, \qquad (a_1 - a_0) \cdot b_0, \\ a_0 \cdot b_1, \qquad a_1 \cdot 1, \qquad (a_1 + a_0) \cdot b_1, \qquad (a_1 - a_0) \cdot b_1, \\ a_0 \cdot (b_1 + b_0), \qquad a_1 \cdot (b_1 + b_0), \qquad (a_1 + a_0) \cdot b_1 + b_0), \qquad (a_1 - a_0) \cdot (b_1 + b_0), \\ a_0 \cdot (b_1 - b_0), \qquad a_1 \cdot (b_1 - b_0), \qquad (a_1 + a_0) \cdot (b_1 - b_0), \qquad (a_1 - a_0) \cdot (b_1 - b_0) \}$$

Outline of the talk

► Some history

► Formulae for polynomial multiplication

Enumerating formulae

Results and conclusion

Computation and results

► Two implementations

- Generic sage code
- Core of the algorithm in optimized C with support for multi-threading and large scale distribution

Computation and results

► Two implementations

- Generic sage code
- Core of the algorithm in optimized C with support for multi-threading and large scale distribution
- Multiplication over $\mathbb{F}_2[X]$

$n \times m$	Constraints	#G	k	# of	# of	Calculation
				tests	subspaces	time [s]
2 × 2	None	9	3	1	1	0.00
3 × 3	None	49	6	9	2	0.00
4 × 4	None	225	9	$6.60\cdot 10^3$	4	0.10
5 × 5	None	961	13	$9.65\cdot 10^9$	24	$9.90\cdot 10^5$
	Sym.	31	13	$2.10 \cdot 10^{3}$	20	0.01
6 × 6	None	3 969	14	$4.37\cdot 10^9$	0	$1.85\cdot 10^6$
	Sym.	63	17	$8.08\cdot 10^6$	6	54.3
7 × 7	Sym.	127	22	$3.42\cdot10^{12}$	2 460	$5.43 \cdot 10^{7}$

Conclusion

► General algorithm

Method that proves lower bounds on the number of subproducts

Conclusion

► General algorithm

Method that proves lower bounds on the number of subproducts

► Gives all formulae

- Provides new formulae that cannot be found with previous method
- We can cherry-pick the one with minimum number of additions

Conclusion

General algorithm

Method that proves lower bounds on the number of subproducts

Gives all formulae

- Provides new formulae that cannot be found with previous method
- We can cherry-pick the one with minimum number of additions

▶ Work in progress and perspectives

- Lifting formulae for higher-characteristic or characteristic-0 fields
- Find formulae for your bilinear application!

Thank you for your attention!

Questions?

More results

▶ Multiplication over \mathbb{F}_3 [X]

$n \times m$	Constraints	#G	k	# of	# of	Calculation
				tests	subspaces	time [s]
2 × 2	None	16	3	1	1	0.00
3 × 3	None	169	6	24	13	0.00
4 × 4	None	1 600	9	$4.11 \cdot 10^5$	595	61.9
5 × 5	None	14 641	11	$4.89\cdot 10^7$	0	$1.09\cdot 10^5$
	Sym.	121	12	$3.93\cdot 10^4$	31	0.71
6 × 6	Sym.	364	15	$2.37 \cdot 10^8$	3	$1.72\cdot 10^4$
7 × 7	Sym.	1 093	16	$1.03 \cdot 10^8$	0	$2.15\cdot 10^4$

More results

▶ Multiplication over small extensions of \mathbb{F}_2 and \mathbb{F}_3

• Independent of the choice of definition polynomial of the extension

Einita field	Constraints	#C	k	# of	# of	Calculation
T IIIIte Heiu	Constraints	#9		tests	subspaces	time [s]
\mathbb{F}_{2^2}	None	9	3	3	3	0.00
F _{2³}	None	49	6	$7.03 \cdot 10^{3}$	105	0.02
\mathbb{F}_{2^4}	None	225	9	$2.57 \cdot 10^9$	2 025	955
	None	961	9	$3.10\cdot10^{10}$	0	$1.83\cdot 10^6$
²⁵	Sym.	31	13	$3.49 \cdot 10^{6}$	2 015	13.7
\mathbb{F}_{2^6}	Sym.	63	14	$3.78\cdot10^9$	0	$2.50\cdot10^5$
F ₂₇	Sym.	127	14	$8.93\cdot 10^{10}$	0	$1.22\cdot 10^6$
\mathbb{F}_{3^2}	None	16	3	4	4	0.00
F ₃₃	None	169	6	$2.42\cdot 10^5$	11 843	5.35
E.	None	1 600	7	$6.29\cdot10^8$	0	$1.16\cdot 10^5$
<u></u> 34	Sym.	40	9	$1.10\cdot 10^5$	234	0.98
F _{3⁵}	Sym.	121	10	$1.83\cdot 10^8$	0	$3.77 \cdot 10^3$