
Journées Nationales de Calcul Formel — November 14–18, 2011

A unifying algorithm finding all formulae for
bilinear computations

Nicolas Estibals
CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA
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Some history

I Multiplication is an expensive arithmetic operation

I Well-studied problem

• Karatsuba (1962)
• Toom–Cook (1963), evaluation-interpolation schemes
• CRT-based algorithms
• Schönhage–Strassen algorithm (1971)
• . . .

I Five, six-, and seven-term Karatsuba-like formulae, P. Montgomery (2005)

• Ad-hoc formulae
• Exhaustive search for five-term multiplication
• Non-exhaustive search for six- and seven-term multiplications
• (January 2011) start a task group to reproduce his search

N. Estibals — A unifying algorithm finding all formulae for bilinear computations 2 / 18



Outline of the talk

I Some history

I Formulae for polynomial multiplication

I Enumerating formulae

I Results and conclusion

N. Estibals — A unifying algorithm finding all formulae for bilinear computations 3 / 18



Example: a 2-term polynomial times a 3-term one

I Formula to compute:

C (X ) = (a1 · X + a0)× (b2 · X 2 + b1 · X + b0)

= a1b2 · X 3 + (a1b1 + a0b2) · X 2 + (a0b1 + a1b0) · X + a0b0

I 5 products needed only instead of 6

• Use Karatsuba’s trick

C (X ) = a1b2·X 3+(a1b1+a0b2)·X 2+((a0 + a1)(b0 + b1)− a1b1 − a0b0)·X+a0b0

• Products to compute:
p0 = a0·b0,
p1 = a0·b2,
p2 = a1·b1,
p3 = a1·b2,
p4 = (a0 + a1)·(b0 + b1).

• Reconstructing the result

C (X ) = p3 · X 3 + (p1 + p2) · X 2 + (p4 − p2 − p0) · X + p0
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General form of a multiplication formula
I Formula to compute

cn+m−2 · X n+m−2 + · · ·+ c0 = (an−1 · X n−1 + · · ·+ a0) · (bm−1 · Xm−1 + · · ·+ b0)

I All formulae for multiplication can be expressed as:
• Compute some linear combinations of the ai

a′j =
∑

αi ,j · ai

• Compute some linear combinations of the bi

b′j =
∑

βi ,j · bi

• Perform some products
pj = a′j · b′j

• Reconstruct the result by linearly combining the products

ci =
∑

γj ,i · pj
I This is also true for every bilinear application F such that

(c0, . . . , c`−1) = F ((a0, . . . , an−1), (b0, . . . , bm−1))
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Formal framework

Formulation in term of vector space for a n ×m multiplication over a given field K

I Represent the coefficients of the result and the products as elements of

V the nm-dimensional K -vector space generated by {aibj}0≤i<n,0≤j<m

where the aibj ’s are seen as formal elements

I Our target: the coefficients of the result is a family

T = {ci}0≤i<n+m−1 ⊂ V

that spans the target subspace T = Span T of V

I The set G of the potential products to use in a formula

G ′ =
{(∑

αiai
)
·
(∑

βjbj
) ∣∣∣ ∀i , αi ∈ K ∧ ∀j , βj ∈ K

}
\ {0}

We only consider products modulo a scalar factor

G = G ′/ ∼ where p ∼ p′ ≡ ∃k ∈ K s.t. p = k · p′
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Formal framework: example

Consider previous example: 2× 3 polynomial product in F2[X ]

I V is a 6-dimensional vector space generated by

{a0 · b0, a1 · b0,
a0 · b1, a1 · b1,
a0 · b2, a1 · b2}

I The target is {a1b2, a1b1 + a0b2, a0b1 + a1b0, a0b0}

I G contains 21 products:

G = {a0 · b0, a1 · b0, (a1 + a0) · b0,
a0 · b1, a1 · b1, (a1 + a0) · b1,
a0 · (b1 + b0), a1 · (b1 + b0), (a1 + a0) · (b1 + b0),

a0 · b2, a1 · b2, (a1 + a0) · b2,
a0 · (b2 + b0), a1 · (b2 + b0), (a1 + a0) · (b2 + b0),

a0 · (b2 + b1), a1 · (b2 + b1), (a1 + a0) · (b2 + b1),

a0 · (b2 + b1 + b0), a1 · (b2 + b1 + b0), (a1 + a0) · (b2 + b1 + b0)}
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Naive algorithm

I Goal: find the optimal formulae (i.e. with a minimum number of products)

• enumerate the subsets W ⊂ G of exactly k products which give a valid formula
• for every k until a solution is found

I Look for W
• a set of k products

W ⊂ G and #W = k

• that linearly generate the coefficients of the results

T ⊂ SpanW

I Naive approach:

• enumerate the
(
#G
k

)
subsets of cardinal k

• G has to be finite

? look for formulae in finite fields K
? take a finite subset of the potential products ⇒ May not get all formulae

• and test them

I Drawback

• Different subsets may span the same subspace
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Construct an efficient algorithm: formula spaces

I Look now for subspaces W of V s. t.

• W can be generated by products: Span (W ∩ G) = W
• only k products are needed: dimW = k
• contains the target space: W ⊃ T

I Algorithm

1: procedure extend to dim k(W , H) :
2: if dimW = k then
3: W is a solution if T ⊂ W
4: else
5: while H 6= ∅ :
6: Pick a g in H
7: if g /∈ W
8: extend to dim k(W ⊕ Span(g), H)
9: end procedure

10: extend to dim k(∅, G)

I Many formulae could correspond to one solution subspace W

• each basis of W with elements of G gives a formula
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Construct an efficient algorithm: incomplete basis

I We already know part of W !

• target space T is a subspace of every solution space W
• find each W by constructing I s.t. W = T ⊕ Span I

I Modified algorithm

1: procedure extend to dim k(W , H) :
2: if dimW = k then
3: if rk(W ∩ G) = k then
4: W is a solution
5: else
6: while H 6= ∅ :
7: Pick a g in H
8: if g /∈ W
9: extend to dim k(W ⊕ Span(g), H)

10: end procedure
11: extend to dim k(T, G)

I Complexity now depends on (
#G

k− rk T

)
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Apply our algorithm to 2× 3 polynomial multiplication

I Find formulae 2× 3 polynomial multiplication in F2[X ]

I Out target: T = {a1b2, a1b1 + a0b2, a0b1 + a1b0, a0b0}
• Rank of the target T is 4

? At least, 4 products needed

• Attempt with k = 4

? T ∩ G = {a0b0, a1b2, (a1 + a0)(b2 + b1 + b0)}
? rk (T ∩ G) = 3
? No solutions with k = 4 products only

• Attempt with k = 5

? Try with W = T ⊕ Span {a0b1}
? W ∩ G = {a0 · b0, a1 · b0, (a1 + a0) · b0,

a0 · b1, a1 · b2, (a1 + a0) · (b2 + b1),

a0 · (b1 + b0), a1 · (b2 + b0), (a1 + a0) · (b2 + b1 + b0)}
? rk (W ∩ G) = 5, W is solution!
? {a0b0, a1b0, a0b1, a1b2, (a1 + a0)(b2 + b1)} form a basis of W which gives a

formula
? There are 3 solution spaces
? which give a total of 162 formulae
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Algorithm works for every bilinear application

I First remark: our algorithm finds all formulae with a given number of products

• As long as we take all the potential products in G
• Proves lower bounds on the number of required products

I General algorithm: works for every bilinear application

• Short products, middle products, cross products
• Multiplication in complexes, quaternions, field extensions, matrices
• Multiplication of sparse polynomials and matrices
• . . .

I Also works for applications where the coefficients are quadratic forms

• Simply requires extending the definition of G

G ′ =
{(∑

αiai
)
·
(∑

βjaj
) ∣∣∣ (αn−1, . . . , α0) 4lex (βn−1, . . . , β0)

}
\ {0}

• Apply to the squaring versions of the previous problem
• Example: squaring of 2-term polynomial

G = {a0 · a0,
a0 · a1, a1 · a1,
a0 · (a1 + a0), a1 · (a1 + a0), (a1 + a0) · (a1 + a0)}
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Real-life example (at least for a crypto Ph.D. student)

I Implementing a pairing over a genus-2 supersingular hyperelliptic curve

I Working in the sextic extension F2m[i , τ ]
where i2 + i + 1 = 0 and τ 3 + iτ 2 + iτ + i = 0

I Rely on a multiplication algorithm for sparse elements of the form

a3 · τ 2 + a2 · τ + a1 · i + a0

I Our algorithm exposes an optimal algorithm that necessitates 9 products in F2m

I Previously known algorithms require at least 11 products
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An optimization
Limit the form of the formulae

I Only for symmetric bilinear applications

• Same number of coefficients in a and b
• F ((a0, . . . , an−1), (b0, . . . , bn−1)) = F ((b0, . . . , bn−1), (a0, . . . , an−1))
• Verified for multiplication of polynomials of same size

I Only use products with the same linear combination of the ai ’s and bi ’s

G ′ =
{(∑

αiai
)
·
(∑

αibi
) ∣∣∣ ∀i , αi ∈ K

}
\ {0}

• Reduce the cardinal of G

I Example: 2× 2 multiplication in F3[X ]

G = {a0 · b0, a1 · b0, (a1 + a0) · b0, (a1 − a0) · b0,
a0 · b1, a1·1, (a1 + a0) · b1, (a1 − a0) · b1,
a0 · (b1 + b0), a1 · (b1 + b0), (a1 + a0) · b1 + b0), (a1 − a0) · (b1 + b0),

a0 · (b1 − b0), a1 · (b1 − b0), (a1 + a0) · (b1 − b0), (a1 − a0) · (b1 − b0)}
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Outline of the talk

I Some history

I Formulae for polynomial multiplication

I Enumerating formulae

I Results and conclusion
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Computation and results

I Two implementations

• Generic sage code
• Core of the algorithm in optimized C with support for multi-threading and large

scale distribution

I Multiplication over F2[X ]

n×m Constraints #G k
# of # of Calculation

tests subspaces time [s]

2× 2 None 9 3 1 1 0.00

3× 3 None 49 6 9 2 0.00

4× 4 None 225 9 6.60 · 103 4 0.10

5× 5
None 961 13 9.65 · 109 24 9.90 · 105

Sym. 31 13 2.10 · 103 20 0.01

6× 6
None 3 969 14 4.37 · 109 0 1.85 · 106

Sym. 63 17 8.08 · 106 6 54.3

7× 7 Sym. 127 22 3.42 · 1012 2 460 5.43 · 107
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Conclusion

I General algorithm

I Method that proves lower bounds on the number of subproducts

I Gives all formulae

• Provides new formulae that cannot be found with previous method
• We can cherry-pick the one with minimum number of additions

I Work in progress and perspectives

• Lifting formulae for higher-characteristic or characteristic-0 fields
• Find formulae for your bilinear application!
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Thank you for your attention!

Questions?



More results

I Multiplication over F3 [X]

n×m Constraints #G k
# of # of Calculation

tests subspaces time [s]

2× 2 None 16 3 1 1 0.00

3× 3 None 169 6 24 13 0.00

4× 4 None 1 600 9 4.11 · 105 595 61.9

5× 5
None 14 641 11 4.89 · 107 0 1.09 · 105

Sym. 121 12 3.93 · 104 31 0.71

6× 6 Sym. 364 15 2.37 · 108 3 1.72 · 104

7× 7 Sym. 1 093 16 1.03 · 108 0 2.15 · 104
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More results

I Multiplication over small extensions of F2 and F3

• Independent of the choice of definition polynomial of the extension

Finite field Constraints #G k
# of # of Calculation

tests subspaces time [s]

F22 None 9 3 3 3 0.00

F23 None 49 6 7.03 · 103 105 0.02

F24 None 225 9 2.57 · 109 2 025 955

F25

None 961 9 3.10 · 1010 0 1.83 · 106

Sym. 31 13 3.49 · 106 2 015 13.7

F26 Sym. 63 14 3.78 · 109 0 2.50 · 105

F27 Sym. 127 14 8.93 · 1010 0 1.22 · 106

F32 None 16 3 4 4 0.00

F33 None 169 6 2.42 · 105 11 843 5.35

F34

None 1 600 7 6.29 · 108 0 1.16 · 105

Sym. 40 9 1.10 · 105 234 0.98

F35 Sym. 121 10 1.83 · 108 0 3.77 · 103
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