Algorithms and arithmetic for the implementation of cryptographic pairings

Nicolas Estibals
CAIRN project-team, IRISA
Nicolas.Estibals@irisa.fr

What is an elliptic curve?

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let \mathbb{G} be a cyclic group, P a generator, given $Q \in \mathbb{G}$, it is supposed to be hard to compute a such that

$$
Q=[a] P
$$

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let \mathbb{G} be a cyclic group, P a generator, given $Q \in \mathbb{G}$, it is supposed to be hard to compute a such that

$$
Q=[a] P
$$

- Use this hard problem to design cryptographic protocols
- Diffie-Hellman key exchange:
- Alice generates a secret integer a
- Alice sends [a]P to Bob
- Alice computes $[a][b] P$
- Bob generates a secret integer b
- Bob sends $[b] P$ to Alice
- Bob computes $[b][a] P$

They both share the same secret: $[a b] P$

What is a pairing?

What is a pairing?

What is a pairing?

- Cryptographic interest: Mixing two secrets without having to know them

$$
e([a] P,[b] Q)=e(P, Q)^{a b}
$$

What is a pairing?

- Cryptographic interest: Mixing two secrets without having to know them

$$
e([a] P,[b] Q)=e(P, Q)^{a b}
$$

- Useful for advanced protocols
- short signature
- electronic voting
- electronic money

Example: Short signature

Security considerations

- DLP should be hard on all the groups involved

Security considerations

- DLP should be hard on all the groups involved
- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security
2^{128} operations

Why cryptography and hardware implementations?

- Growth of numeric exchanges
- many applications
* bank services
* secure firmware updates
* personal communications
* ...
- many targets
\star embedded electronics
* smart cards
* smartphones

* computers, servers
- Security implies non-trivial computations
- Need for hardware implementations
- CPUs may be inadequate
- limited resources

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Computation time

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- time-area product
- Different designs for the same computation
- optimized for latency
- optimized for compactness
- optimized for throughput

Area

Contributions

- Fast accelerator for pairings [CHES 2009, IEEE TC 2011] Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
- parallel architecture
- pipelined subquadratic multiplier
- Compact design for pairings reaching 128-bit security
- composite extension fields
- hyperelliptic curves
[Paring 2010]
Joint work with Aranha, Beuchat and Detrey
- Formulae for sub-quadratic multiplication
[WAIFI 2012] Joint work with Barbulescu, Detrey and Zimmermann
- exhaustive search
- improved formulae for $\mathbb{F}_{35 m}$

Contributions

- Fast accelerator for pairings [CHES 2009, IEEE TC 2011] Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
- parallel architecture
- pipelined subquadratic multiplier
- Compact design for pairings reaching 128-bit security
- composite extension fields
- hyperelliptic curves
[Paring 2010]
Joint work with Aranha, Beuchat and Detrey
- Formulae for sub-quadratic multiplication
[WAIFI 2012] Joint work with Barbulescu, Detrey and Zimmermann
- exhaustive search
- improved formulae for $\mathbb{F}_{35 m}$

Outline of the talk

- Compact design through composite extension fields

- Pipelined subquadratic multiplier

- Conclusion and Perspectives

An arithmetic coprocessor

- For a supersingular elliptic curve over \mathbb{F}_{3509}
- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

- careful scheduling to keep multiplier busy

An arithmetic coprocessor

- For a supersingular elliptic curve over \mathbb{F}_{3509}
- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

- careful scheduling to keep multiplier busy
- Inverse is only needed once: Itoh-Tsujii algorithm
- no need for hardware support

An arithmetic coprocessor

- For a supersingular elliptic curve over \mathbb{F}_{3509}
- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

- careful scheduling to keep multiplier busy
- Inverse is only needed once: Itoh-Tsujii algorithm
- no need for hardware support
- Synthesis results for \mathbb{F}_{3509} : 9625 slices
- almost fully occupy a Virtex 6 LX 75 T (82\%)
- computation time: $\approx 4 \mathrm{~ms}$
N. Estibals - Algorithms and arithmetic for the implementation of cryptographic pairings

Detailed architecture of the coprocessor (char. 3)

Field of composite extension degree

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm
- Allows supplementary attacks on the curve
- with limited effect on security

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm
- Allows supplementary attacks on the curve
- with limited effect on security
- Results
- 1848 slices of the same Virtex 6 LX (15\%) 5.2 times smaller
- compute a pairing in 1.6 ms 2.5 times faster

Benchmarks

$\left.\begin{array}{l}\text { Pairing implementations at } 128 \text { bits } \\ \text { of security on Virtex } 6\end{array}\right]$

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Outline of the talk

- Compact design through composite extension fields
- Pipelined subquadratic multiplier
- Conclusion and Perspectives

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials

A

$$
A \cdot B
$$

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials

$$
A_{H} B_{H} X^{2 n}+\left(A_{H} B_{L}+A_{L} B_{H}\right) X^{n}+A_{L} B_{L}
$$

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials
$A_{H} A_{L}$
$B_{H} B_{L}$

$$
A_{H} B_{H} X^{2 n}+\left(A_{H} B_{L}+A_{L} B_{H}\right) X^{n}+A_{L} B_{L}
$$

$$
a b^{\prime}+a^{\prime} b=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-a b-a^{\prime} b^{\prime}
$$

$$
A_{H} B_{H} X^{2 n}+\left(\left(A_{H}+A_{L}\right)\left(B_{H}+B_{L}\right)-A_{H} B_{H}-A_{L} B_{L}\right) X^{n}+A_{L} B_{L}
$$

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials

Finite field representation and Karatsuba's formula

- Small characteristic fields
- Polynomial basis representation
- Multiplication is critical
- make use of fast arithmetic
- Karatsuba algorithm for polynomials

Odd-even split for Karatsuba multiplication

$A \cdot B$

Odd-even split for Karatsuba multiplication

$$
\left(A_{O} B_{O} X^{2}+A_{E} B_{E}\right)+X\left(A_{O} B_{E}+A_{E} B_{O}\right)
$$

Odd-even split for Karatsuba multiplication

$$
\left(A_{O} B_{O} X^{2}+A_{E} B_{E}\right)+X\left(A_{O} B_{E}+A_{E} B_{O}\right)
$$

$$
a b^{\prime}+a^{\prime} b=\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)-a b-a^{\prime} b^{\prime}
$$

$$
\left(A_{O} B_{O} X^{2}+A_{E} B_{E}\right)+X\left(\left(A_{O}+A_{E}\right)\left(B_{O}+B_{E}\right)-A_{O} B_{O}-A_{E} B_{E}\right)
$$

Odd-even split for Karatsuba multiplication

Odd-even split for Karatsuba multiplication

Multiplier architecture

- Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result
- Fully parallel evaluation of the subproducts

Multiplier architecture

- Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result
- Fully parallel evaluation of the subproducts
- Recursive scheme
- eventually use different multiplication algorithms
- end with the quadratic paper-and-pencil algorithm

Multiplier architecture

- Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result
- Fully parallel evaluation of the subproducts
- Recursive scheme
- eventually use different multiplication algorithms
- end with the quadratic paper-and-pencil algorithm
- Pipelined
- with the help of optional registers
- cut the critical path
- increase the frequency

Multiplier architecture

- Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result
- Fully parallel evaluation of the subproducts
- Recursive scheme
- eventually use different multiplication algorithms
- end with the quadratic paper-and-pencil algorithm
- Pipelined
- with the help of optional registers
- cut the critical path
- increase the frequency

- Generated VHDL code
- work for all small-characteristic fields
- compare different recursions
- configurable pipeline depth

Outline of the talk

- Compact design through composite extension fields
- Pipelined subquadratic multiplier
- Conclusion and Perspectives

Conclusion

- Hardware implementations of pairing

Conclusion

- Hardware implementations of pairing
- General method for cryptographic implementations
- study mathematical structures
- fix parameters thanks to cryptanalysis
- algorithmic optimizations
- choose the right arithmetic representation
- implement different hardware accelerators

Perspectives

- Lower-level architecture
- FPGA is a good prototyping platform
- but with limited uses in real-life devices
- develop skills in ASIC designs
- power consumption awareness

Perspectives

- Lower-level architecture
- FPGA is a good prototyping platform
- but with limited uses in real-life devices
- develop skills in ASIC designs
- power consumption awareness
- Integrate side-channel counter-measures
- side-channel attacks are very effective threats
- embedded systems need to be protected

Perspectives

- Lower-level architecture
- FPGA is a good prototyping platform
- but with limited uses in real-life devices
- develop skills in ASIC designs
- power consumption awareness
- Integrate side-channel counter-measures
- side-channel attacks are very effective threats
- embedded systems need to be protected
- Use this method on different cryptographic primitives
- scalar multiplication on hyperelliptic curves
- lattice-based cryptography

Thank you for your attention!

Questions?

