Architectures and Tools for the Design of Reconfigurable Radio Systems

Olivier Sentieys
IRISA/INRIA – CAIRN Project-Team
Joint team with INRIA, CNRS
Université de Rennes 1 and ENS Cachan
sentieys@irisa.fr

Agenda

- What is inside a (reconfigurable) radio system (terminal and base-station)?
- Some challenges
- Reconfigurable architectures
- Design, prototyping and compilation
- On-going and past projects
 - 3G/4G, MIMO
 - Wireless Sensor Networks
- Other research activities
- CAIRN project-team

A cairn in Bréhat
Wireless Communications Systems

- What is inside a radio system nowadays?
 - a hardware platform
 - heterogeneous (GPP, DSP, FPGA)
 - mixed A/D, RF
 - domain or application specific
 - use off-the-shelf and specific components
 - and a lot of embedded software
 - spectrum management, middleware

- Specific constraints
 - Energy and power consumption
 - Cost, re-use
 - Limited resources, real-time
 - Reliability, security

Generic Node Architecture

- Power management
- Digital Processing
- Physical Sensing
- Memory
- Transceiver
- Radio
- Battery
- DC/DC conv.
- Processor
- Coprocessor
- A/D D/A
- Sensor Actuator
- RAM
- Flash
Generic Node Architecture

- **PHY**
- **MAC**
- **LINK**
- **NET**
- **APPLICATION**

Infrastructure
- Hardware abstraction, middleware, API

Challenges and Limitations

- **High-performance applications**
 - e.g. 802.11n MIMO, OFDM, WCDMA…

- **Energy and Power constraints**
 - Battery life, manufacturing cost

- **Rapidly changing application standards**
 - SW updates, multi-modes
 - “Software Radio”

- **Technological impacts**
 - Manufacturing reliability issues, transient errors, silicon bugs
A road for reconfigurable chips

“Flexible Software on Flexible Hardware”

- Dynamically adapt the hardware to the application
 - energy-performance-cost trade-off
 - error and fault tolerance
- Self-adapting devices
 - continuously adapt to changing environments

Fresh SoC from CEA with DART
IP from IRISA

Processing Model

RA: Reconfigurable Area
CM: Configuration Management
CAIRN Research Objectives

- Take advantage of CAIRN team skills
 - Compilation, parallelization
 - Architecture, circuit design
 - Signal processing

- to design efficient
 - reconfigurable architectures, multi-mode IP blocks, specialized processors
 - associated compilation or synthesis tools

- for wireless communications (mainly)

Agenda

- What is inside a (reconfigurable) radio system (terminal and base-station) ?
- Some challenges
- Reconfigurable architectures
- Design, prototyping and compilation
- On-going and past projects
 - 3G/4G, MIMO
 - Wireless Sensor Networks
- Other research activities
- CAIRN project-team
Related Research Themes

- Hardware architectures
 - Dynamic reconfiguration in off-the-shelf FPGA
 - Proposition of new architectures
 - Low-power reconfigurable architectures
- Reconfigurable architecture management
 - On-line scheduling and placement
 - Flexible interconnect
- Compilation from high-level software code
 - Compilation for reconfigurable architectures
 - Floating-point to fixed-point transformations

Reconfigurable Architectures

- Fine-Grain Architectures: FPGA
 - Configurable interconnection array of
 - logic blocks, memory, DSP blocks
 - and processor cores (soft or hard)
 - Complete system on a programmable chip
 - Complex design
- Example: Xilinx Virtex 5
 - 65 nm, 550 MHz
 - 1100 DMIPS PowerPC 440
 - 528 GMACS, 68/192 GFLOPS
 - 1.25 Gbps LVDS I/O
 - Dynamic reconfiguration
Reconfigurable Architectures

- Coarse-grain architectures
 - Reconfigurable data-path
 - Dynamic reconfiguration in a few cycles

- Example: DART (IRISA)
 - 3G/UMTS/802.11a
 - 5-10 GOPS/cluster
 - 300 mW @ 200MHz
 - 16 MOPS/mW @ 5 GOPS
 - Simulator, compiler
 - Fabricated circuit in 130nm

Coarse-Grain Reconfiguration

```c
for (n=0;n<1024;n++){
    tmp=0;
    for (i=0;i<N;i++){
        tmp+=x[i]*h[N-i];
    }
    y[n]=tmp<<6;
    X[0]=x[n]+128;
}
```

- Irregular Processing
 - few parallelism
 - few regularity
 - less complex

- Regular Processing
 - massively parallel
 - very regular
 - complex
Reconfiguration management

Dynamic reconfiguration and allocation of embedded heterogeneous multiprocessor

- Based on neural-networks
 - Scheduling
 - Task placement
- Flexible communication management
- Low-power scheduling policies
- Fault-tolerant approach
Agenda

- What is inside a (reconfigurable) radio system (terminal and base-station)?
- Some challenges
- Reconfigurable architectures
- Design, prototyping and compilation
- On-going and past projects
 - 3G/4G, MIMO
 - Wireless Sensor Networks
- Other research activities
- CAIRN project-team

Design and compilation tools

- Goal is to compile from high-level software
 - towards embedded processors
 - towards reconfigurable area
 - to synthesize specific hardware
 - or to extend the instruction-set of a processor
- C to HW tools
 - Source-to-source transformation
 - High-level synthesis
- Dataflow (e.g. Simulink) to HW tools
- Optimization of processing accuracy
Compilation for reconfigurable

- High-level formal transformations
 - Loop parallelization and optimization

- Compilation using complex pattern matching
 - Generation of data-path configurations
 - Automatic extension of instruction-set
 - Constrained-programming optimizations

Accuracy Optimization

- Fixed-point arithmetic
 - Power and cost ↓
 - but more complex design

- Automatic conversion from float to fixed-point
 - Analytical method
 \[
 \min_j [T_{\text{exec}}(WL_j), \text{Cost}(WL_j)]
 \]
 \[
 RSBQ(WL_j) \geq RSBQ_{\min}
 \]
 - *Float2Fix* tool

- Accuracy optimization
 - Optimal structure
 - FWR Matlab toolbox
 - e.g. filtering, control
Agenda

- What is inside a (reconfigurable) radio system (terminal and base-station) ?
- Some challenges
- Reconfigurable architectures
- Design, prototyping and compilation
- On-going and past projects
 - 3G/4G, MIMO
 - Wireless Sensor Networks
- Other research activities
- CAIRN project-team

Wireless Sensor Networks

- Design of an energy-efficient software stack and hardware platform for wireless sensor networks
- Decrease Tx power
- Optimize radio activity
- Power optimization of the hardware
- Optimize software stack
- Cooperative MIMO/relay
Cooperative MIMO technique

- Three phases of cooperative MIMO communications
 - Phase 1: Local data exchange
 - Phase 2: Cooperative MIMO transmission
 - Phase 3: Cooperative reception

$N_i \rightarrow d_m \rightarrow d \rightarrow N_f$

$\begin{align*}
d_m &< d \\
d_m &\geq 1..10 \text{ m}
\end{align*}$

Energy consumption efficiency

- Cooperative MIMO technique is more energy efficient than SISO and multi-hop SISO techniques for long distance transmission

Rapid Prototyping

- Real-time demonstrators
 - FPGA, DSP
 - Reconfigurable SoC

- WCDMA/3G system (2002)

- MIMO/WCDMA (HSUPA)
 - Flexible hardware architecture
 - modulation, Nyquist filter, spatio-temporal searcher and rake, max-ratio combining
 - Real-time prototype of a WCDMA 2-2
 - From matlab/simulink simulations
 - to real-type prototype
 - base-station, RF front-end, reconfigurable platform

Software Defined Radio (SDR)

- Flexible arithmetic operators
- Multi-mode components
 - Different: modes, parameters, algorithms
 - e.g. channel coding, CDMA
- Adaptive architectures
 - dynamically modify the structure of
 - the architecture, the algorithm, the accuracy
 - depending on the context
 - channel condition, standard, environment
 - e.g. to minimize the dissipated power

Rapid Prototyping for SDR

- GNU Radio for Software Radio
MIMO Systems

- Pre-coding or beamforming
 - Goal: migrate processing towards base-station
 - Linear pre-coder (max-dmin)

- Towards a 4G testbed
 - MIMO/OFDM
 - Influence of algorithmic and precision parameters on the quality of transmission and on energy
 - LTE standard context
 - Suitable for radio-over-fibre

Agenda

- What is inside a (reconfigurable) radio system (terminal and base-station) ?
- Some challenges
- Reconfigurable architectures
- Design, prototyping and compilation
- On-going and past projects
 - 3G/4G, MIMO
 - Wireless Sensor Networks
- Other research activities
- CAIRN project-team

A cairn in Bréhat
True Random Number Generation

- True Random Number Generator
 - Based on oscillator sampling with random jitter
 - On-chip jitter measurement
 - Embedded statistical tests
 - Suitable for FPGA and ASIC
 - Focus on increasing bit-rate

- MIMO channel emulator
- Collaboration with SmartQuantum
 - Quantum Cryptography

CAIRN team at a glance

- IRISA : Institut de Recherche en Informatique et Systèmes Aléatoires
 - UMR CNRS 6074, INRIA Rennes
 - Nearly 600 people, 31 research teams

- CAIRN team
 - 37 people, Lannion (ENSSAT) and Rennes (Campus de Beaulieu, ENS Cachan)
 - Domain-Specific and Reconfigurable System-on-Chip (architectures, tools, algorithms)
 - Wireless Communications

- Skills in computer science and electronics engineering
 - Compilation, parallelization
 - Architecture, circuit design
 - Signal processing
Summary

- Reconfigurable architecture for wireless systems
- Adaptive and flexible radio architecture
- Power consumption constraints
- Ad hoc wireless sensor networks
- MIMO
- Cooperative/relay