What You Simulate is What You Synthesize:

Designing a Processor Core from C++ Specifications

Simon Rokicki, Joseph Paturel, Davide Pala, Olivier Sentieys

Univ. Rennes, Inria, IRISA

UNIVERSITE DE%

RENNES 1

What You Simulate is What You Synthesize

HW Design SW

* Traditional Processor Design Flow e Validation

— Maintain two coherent models: =

e RTL and simulation (ISS) models Simulation

Compiled code

RTL
Synthesis

Physical
Design

What You Simulate is What You Synthesize

HW Design C++ SW
& Verification | Model) Validation

RTL
* Proposed Flow Simulation
— Design the processor as well as its RTL
software validation flow from a Synthesis

single high-level model Physical
Design

Is HLS suitable for designing processors?

 The answer is yes but....

Advantages and Challenges

Advantages Challenges
* Improves readability, * How to specify core/un-core
productivity, maintainability, components, cache memory
and flexibility of the design hierarchy, synchronization,
etc.?

* Object-Oriented processor
model can easily be modified, * How to specify parallel
expanded and verified computing pipelines using
HLS?

Is HLS suitable for processor design?

 This work describes Comet
— 32-bit RISC-V instruction set

— In-order 5-stage pipeline
micro-architecture

* Designed from a single C++
specification using High-
Level Synthesis (HLS)

eeeeee

(T 7Y

DA
MMMMMM

TA 5

https://gitlab.inria.fr/srokicki/Comet 6

Synthesizing from an Instruction Set Simulator

while true do

* Main loop is pipelined ot = memipel
switch opcode do
* |nter-iteration dependencies: it | e el
. . : | pc = reg[rsl];
— register file read/write emd
dependencies e ¢

| reg[rd] = mem|reg|rsl] + imm)];
— determining PC value -

case ADD do

| reg[rd] = reg[rsl] + reg[rs2]
end

* Cycles per Instruction = 3 o=

end

Need to explicit the pipeline and the stall/forwarding logic!

Explicitly Pipelined Simulator (1/2)

struct FtoDC ftodc:

* Pipelined stages are explicit struct DCtoEx detoex;

struct ExtoMem extomem:

® Plpellne reglste rS are struct MemtoWB memtowb:
_ while true do
variables /* --- Execute the stages
ftodc_temp = fetch();
° One |terat|0n |S the dctoex_temp = decode(ftodc);
extomem_temp = execute(dctoex):
execution of each stage memtowb_temp = memory (extomem):

writeback(memtowb):
* Main loop is pipelined (l1=1) Commit the registers
ftodc = ftodc_temp;
dctoex = dctoex_temp;
extomem = extomem_temp;
memtowb = memtowb_temp:

end

Explicitly Pipelined Simulator (1/2)

* Pipelined stages are explicit

* Pipeline registers are
variables

* One iteration is the
execution of each stage

 Main loop is pipelined (lI=1)

e Explicit stall mechanism

struct FtoDC ftodc;

struct DCtoEx dctoex;
struct ExtoMem extomem;
struct MemtoWB memtowb;

whi

end

le true do

ftode_temp = fetch();
dctoex_temp = decode(ftodc);
extomem_temp = execute(dctoex);
memtowb_temp = memory(extomem);
writeback(memtowb);

bool stall = stallLogic():

if /stall then

ftodc = ftodc_temp;

dctoex = dctoex_temp;
extomem = extomem_temp;
memtowb = memtowb_temp:

end

Explicitly Pipelined Simulator (1/2)

struct FtoDC ftodc;
° P|pe||ned Stages are explicit struct DCtoEx dctoex:
struct ExtoMem extomem:;
struct MemtoWB memtowb;
while frue do

* Pipeline registers are

. ftode_temp = fetch();
varia b | es dctoex_temp = decode(ftodc);
: : 7 extomem_temp = execute(dctoex);
o One Iteration IS the memtowb_temp = memory(extomem);
: writeback(memtowb): L
eXECUtIOn Of eaCh Stage bool forward = forwardLogic():

bool stall = stallLogic();
 Main loop is pipelined (lI=1) if /stall then |

ftodc = ftodc_temp;
dctoex = dctoex_temp;
extomem = extomem_temp;
memtowb = memtowb_temp;

e Explicit stall mechanism end

if forward then

| dctoex.valuel = extomem.result;
end

end 10

* Forwarding

Explicitly Pipelined Simulator (2/2)

struct FtoDC ftodc:
struct DCtoEx dctoex:

RegFile struct ExtoMem extomem:;
Forward <— struct MemtoWB memtowb;
st | EEE = while rrue do
) [todc_temp = fetch():
<
o =
Q —
Lé % e < >y —
o< W S memtowb_temp = memory(extomem):
= L 3 = . _ :
o a) V writeback(memtowb);
E % bool forward = forwardLogic();
k= bool stall = stallLogic():
: Data ftodec = ftodc_temp;
Branch Unit | |
Cache dctoex = dctoex_temp;

i extomem = extomem_Ltemp.
. Write Back memtowb = memtowb_temp:
' end
if forward then
| dctoex.valuel = extomem.result;
end

end 11

Fetch

L__ N éx N | {k if /stall then
: Memory !

Dealing with Multi-Cycle Operators

Instruction Cache

Forward
I i =

|
Fetch
|
L
Decode
ALU
i
Mem
-
|

L

l A
PR
A A | A
. Da
Branch Uni \\\\Cache
/// ab \\\\
L
IO

result

L

done

Multi-cycle operators combine
state machine & execution logic

State machine encoded in the C
code using a switch/case

Used for:
— Division
— Caches
— FPU

12

Comet Simulation Environment

Not Synthesizable * A C++ simulator handles all

* Instrumentation < Elf reader
* Syscall emulation * Not-yet-synthesized extensions features that cannot be

synthesized

Synthesizable .
Y e Two ways of handling syscalls

RegFile — Svyscall emulation
L i/_ Forwzird <— - Y
— Through an OS

)

Instruction Cache
|
Fetch
|
L
Decode

ALU
1
em
=
|

A - -~ Y A
Data

Branch Unit Cache

13

(Ongoing work) Handling interrupts

e Support for CSR registers
e Ecall instruction fire an interrupt

 When external interrupt (if not masked)
— Disable fetched instruction
— Save current PC
— Jump to ISR

* Not synthesized yet
e Simulator can boot RT os

14

Design and Validation Flow

Simulation performance

18 Millions cycles per sec.
> Ccomp”er —)Simu|ator % MiBenCh
« 8th-gen. Intel core i7

/
Y Xilinx —>» ASICFlow | | Floor-
Vivado HLS plan
core.c Ly rtlv
o i -
»| FPGAFlow [y|Bitstream

What about quality of the hardware?

15

Experimental Study - ASIC

 Comparison of Comet against similar implementations
* Target technology is STMicro 28nm FDSOI

Core ISA freq. Area | Lang.
(MHz) | (um?)
rv32i 8 168
Comet [14] rv32im 11099 | C++
rv32imf 26760
rv321 700 11114
Rocket [12] | rv32im 12606 | Chisel Design Area (um?)
rv32imf 26550 FPU 8 147
: rv32i 7747 : Core w/o FPU 15299
PicoRV [15] 30 1176 Verilog Core w/ FPU 76760

Experimental Study - FPGA

 Comparison of Comet against similar implementations
* Target technology is Xilinx Artix 7 (Catapult + Vivado 2018.3)

Core ISA freq. Area
(MHz) | LUT FF | Mux | DSP
rv32i 80 2032 | 1503 | 260 0
Comet | rv32im 70 2910 | 2244 | 227 3
rv32imf 74 6460 | 3527 | 448 5
rv32i 2253 | 1154 41 0
Rocket | rv32im 76 2570 | 1275 43 2
rv32imf 8132 | 3094 | 586 4
: rv321 140 880 583 0 0
PIORY = 3%im [110 [1977 [1085 | 0] 0

17

Pros/Cons of Proposed Paradigm

* Pros
— Debugging is done at C++ level
— Fast simulation using the C++ simulator (~20.10° cycles per second)
— Simulator is equivalent to RTL model
— Modifying the core is simpler than at HDL level
— Software development techniques (e.g., continuous integration)
* Cons
— Some features are difficult to describe (e.g. multi-cycle operators)
— Pipeline has to be explicit
— HLS tools may have trouble synthesizing multi-core systems
— Late modifications (e.g. metal fix)

18

Conclusion & Roadmap

e Efficient processor core design (HW parch + SW simulator)
from a single C++ code
* Current projects

— VLIW Dynamic Binary Translation, Non-Volatile Processor, Fault-
Tolerant Multicore

* Perspectives

— Dedicated source-to-source transformations for HLS
— Multi-core system with cache coherency (Q4 2019)
— Many-core system with NOC (2020)

19

Questions

Thank you for your attention!

?

https://gitlab.inria.fr/srokicki/Comet
20

Tracing — Code Instrumentation

* |Instrumenting Comet simulator is simple

* Overload function everyCycle() from the simulator

— Example: counting stall caused by cache miss

21

Adding Custom Instruction

e Custom FFT accelerator as a custom instruction

* Overview of FFT algoritm

x(0) A~

x(2)

>
x(6) | W2 Xi’:
o\

x(1)

o <

e
\/::

x(5)_.

0
WZ NS

X(3)

X(7)—> W2 Xj:

22

Adding Custom Instruction

e Custom FFT accelerator as a custom instruction

* Overview of FFT algoritm

x(0) A~

x(2)

>
x(6) | W2 Xi’:
o\

X(2) — W)

. Butterfly computation

o e

e
\/::

x(5)_.

0
WZ NS

X(3)

X(7)—> W2 Xj:

23

Adding Custom Instruction

 What can custom instructions do?
— Read two registers
— Write one result
— Can stall if needed
— Can encode internal state machine

e Custom instruction limitations

— Cannot access memory
— Cannot use more than 2R/1W

24

Adding Custom Instruction

e Butterfly computation:

— Reads two complex values

* Two 16-bit fixed-point values in a 32-bit register

— Writes two complex values

* Main custom instruction computes the two values and output first value
e Second custom instruction output the second value

— Uses two twiddle factors
* |Index encoded in immediate field
e Use of internal state machine to select the one to use

25

Adding Custom Instruction

e Results:
— Around 50 lines of C code in the ALU

— Execution of FFT is 14x faster
— Core area increased by 31% (baseline is rv32im)

26

