
Simon Rokicki, Joseph Paturel, Davide Pala, Olivier Sentieys

Univ. Rennes, Inria, IRISA

2

• Traditional Processor Design Flow
– Maintain two coherent models:
• RTL and simulation (ISS) models

ISS

RTL
Simulation

RTL
Synthesis

SW
Validation

HW Design
& Verification

Compiler

Physical
Design

Compiled code

ARCHITECTURE

3

• Traditional Processor Design Flow
– Maintain two coherent models:
• RTL and simulation (ISS) models

• Proposed Flow
– Design the processor as well as its

software validation flow from a
single high-level model

ISS

SW
Validation

HW Design
& Verification

Compiler

RTL
Simulation

RTL
Synthesis

Physical
Design

ARCHITECTURE

HLS

C++
Model

4

• The answer is yes but….

Is HLS suitable for designing processors?

5

Advantages and Challenges

Advantages
• Improves readability,

productivity, maintainability,
and flexibility of the design

• Object-Oriented processor
model can easily be modified,
expanded and verified

Challenges
• How to specify core/un-core

components, cache memory
hierarchy, synchronization,
etc.?

• How to specify parallel
computing pipelines using
HLS?

5

6

Comet

• This work describes Comet
– 32-bit RISC-V instruction set
– In-order 5-stage pipeline

micro-architecture

• Designed from a single C++
specification using High-
Level Synthesis (HLS)

ARCHITECTURE
Is HLS suitable for processor design?

https://gitlab.inria.fr/srokicki/Comet

7

Synthesizing from an Instruction Set Simulator

• Main loop is pipelined
• Inter-iteration dependencies:
– register file read/write

dependencies
– determining PC value

• Cycles per Instruction ≈ 3

Need to explicit the pipeline and the stall/forwarding logic!

8

Explicitly Pipelined Simulator (1/2)

• Pipelined stages are explicit
• Pipeline registers are

variables
• One iteration is the

execution of each stage
• Main loop is pipelined (II=1)

9

Explicitly Pipelined Simulator (1/2)

• Pipelined stages are explicit
• Pipeline registers are

variables
• One iteration is the

execution of each stage
• Main loop is pipelined (II=1)

• Explicit stall mechanism

10

Explicitly Pipelined Simulator (1/2)

• Pipelined stages are explicit
• Pipeline registers are

variables
• One iteration is the

execution of each stage
• Main loop is pipelined (II=1)

• Explicit stall mechanism
• Forwarding

11

Explicitly Pipelined Simulator (2/2)

RegFile

In
st

ru
ct

io
n

Ca
ch

e

Branch Unit

Fe
tc

h

De
co

de AL
U

Data
Cache

M
em

Fetch Decode Execute Memory Write Back

Forward

12

Dealing with Multi-Cycle Operators

RegFile

In
st

ru
ct

io
n

Ca
ch

e

Branch Unit

Fe
tc

h

De
co

de AL
U

Data
Cache

M
em

Forward

-
<<1

result

done

ba

• Multi-cycle operators combine
state machine & execution logic

• State machine encoded in the C
code using a switch/case

• Used for:
– Division
– Caches
– FPU

13

Comet Simulation Environment

• A C++ simulator handles all
features that cannot be
synthesized

• Two ways of handling syscalls
– Syscall emulation
– Through an OS

RegFile

In
st

ru
ct

io
n

Ca
ch

e

Branch Unit

Fe
tc

h

De
co

de AL
U

Data
Cache

M
em

Forward

Synthesizable

Not Synthesizable
• Instrumentation
• Syscall emulation

• Elf reader
• Not-yet-synthesized extensions

14

(Ongoing work) Handling interrupts

• Support for CSR registers
• Ecall instruction fire an interrupt
• When external interrupt (if not masked)
– Disable fetched instruction
– Save current PC
– Jump to ISR

• Not synthesized yet
• Simulator can boot RT os

15

Design and Validation Flow

core.c

C compiler

Xilinx
Vivado HLS

Mentor
Catapult HLS

Simulator

rtl.v

FPGA Flow

ASIC Flow

Bitstream

Floor-
plan

Simulation performance
• 18 Millions cycles per sec.
• MiBench
• 8th-gen. Intel core i7

What about quality of the hardware?

16

Experimental Study - ASIC

• Comparison of Comet against similar implementations
• Target technology is STMicro 28nm FDSOI

17

Experimental Study - FPGA

• Comparison of Comet against similar implementations
• Target technology is Xilinx Artix 7 (Catapult + Vivado 2018.3)

18

Pros/Cons of Proposed Paradigm

• Pros
– Debugging is done at C++ level
– Fast simulation using the C++ simulator (~20.106 cycles per second)
– Simulator is equivalent to RTL model
– Modifying the core is simpler than at HDL level
– Software development techniques (e.g., continuous integration)

• Cons
– Some features are difficult to describe (e.g. multi-cycle operators)
– Pipeline has to be explicit
– HLS tools may have trouble synthesizing multi-core systems
– Late modifications (e.g. metal fix)

19

Conclusion & Roadmap

• Efficient processor core design (HW µarch + SW simulator)
from a single C++ code

• Current projects
– VLIW Dynamic Binary Translation, Non-Volatile Processor, Fault-

Tolerant Multicore

• Perspectives
– Dedicated source-to-source transformations for HLS
– Multi-core system with cache coherency (Q4 2019)
– Many-core system with NOC (2020)

20

Questions

https://gitlab.inria.fr/srokicki/Comet

Thank you for your attention!

?

21

Tracing – Code Instrumentation

• Instrumenting Comet simulator is simple
• Overload function everyCycle() from the simulator
– Example: counting stall caused by cache miss

22

Adding Custom Instruction

• Custom FFT accelerator as a custom instruction
• Overview of FFT algoritm

23

Adding Custom Instruction

• Custom FFT accelerator as a custom instruction
• Overview of FFT algoritm

Butterfly computation

24

Adding Custom Instruction

• What can custom instructions do?
– Read two registers
– Write one result
– Can stall if needed
– Can encode internal state machine

• Custom instruction limitations
– Cannot access memory
– Cannot use more than 2R/1W

25

Adding Custom Instruction

• Butterfly computation:
– Reads two complex values

• Two 16-bit fixed-point values in a 32-bit register

– Writes two complex values
• Main custom instruction computes the two values and output first value
• Second custom instruction output the second value

– Uses two twiddle factors
• Index encoded in immediate field
• Use of internal state machine to select the one to use

26

Adding Custom Instruction

• Results:
– Around 50 lines of C code in the ALU
– Execution of FFT is 14x faster
– Core area increased by 31% (baseline is rv32im)

