Dynamic precision scaling
for low power WCDMA receiver

H.-N. Nguyen D. Menard O. Sentieys

IRISA/INRIA, University of Rennes 1
6 rue de Kerampont
F-22300 Lannion, France
hai-nam.nguyen@irisa.fr, menard@irisa.fr, sentieys@irisa.fr

ISCAS 2009
Introduction

Dynamic Precision Scaling

Energy reduction with DPS on a WCDMA receiver

Conclusions

H.-N. Nguyen, D. Menard, O. Sentieys

Dynamic precision scaling
Introduction

- Wireless communications
 - one of the most important domains for Digital Signal Processing (DSP) applications
- New and high datarate services: complexity growth of baseband digital part
- Energy-efficient implementations are required
- Fixed-point architectures are preferred for implementation

⇒ Energy reduction by adaptation of word-length and fixed-point representation of the data
State of the art

Energy consumption reduction by fixed-point adaptation:
- Multi-mode applications
 - In the Wi-Fi standard (802.11n): different modes (modulation scheme, coding rate) are proposed
 - Each mode has a specific fixed-point specification
 - Average energy consumption can be decreased by a factor of three [Novo08]
- Word-length reduction as a function of observed error rate
 - OFDM demodulator with word-length search symbols inserted in the frame
 - Run-time adaptation of operator word-length according to errors observed at the system output [Yosh06]
 - Between 24% and 32% of energy saving
Our approach

Fixed-point adaptation inside one mode:
- Modulation scheme and data rate are fixed
- Fixed-point specification is adapted according to external environment conditions
- External parameters are estimated inside a standard system

Applied in this paper to a WCDMA Rake Receiver
Outline

1 Introduction

2 Dynamic Precision Scaling

3 Energy reduction with DPS on a WCDMA receiver

4 Conclusions
Principle of Dynamic Precision Scaling (DPS)

Principle:
- Switch between different fixed-point specifications (determined at the design-time)
- Adaptation at run-time according to an external parameter p

In the case of WCDMA receiver:
- SNR is used as external parameter
- SNR is determined by the help of control frames (DPCCH)
Architecture for DPS

- Programmable or reconfigurable architectures
- Flexible operators which support different word-lengths (WL)
 - e.g. multiplier: 9, 11, 14 and 16 bits [Bhard00]
- Sub-Word Parallelism (SWP) operators: number of operations executed in parallel depends on the operand WL

![Diagram of architecture for DPS]

- Power consumption models of these operators
Outline

1. Introduction
2. Dynamic Precision Scaling
3. Energy reduction with DPS on a WCDMA receiver
4. Conclusions
WCDMA standard

WCDMA is a standard for 3G cellular networks
- Based on DS-CDMA (Direct Sequence CDMA) technology
 - Channelization codes C_{ch}
 - Scrambling codes C_{G}

Two main modules
- Path Searcher: to find the delays of the different paths
- Rake Receiver: to maximize the received signal energy in the multipath channels
Rake Receiver estimates symbols in different paths and combines them

- Channel estimation by pilot symbols in DPCCH
- Correlation process amplifies the useful signal
- Decision taken by combination of different fingers
Fixed-point conversion process

1. **Fixed-point data on** b **bits:** integer *plus* fractional word-lengths

2. **Integer word-length determination**
 - Estimates the dynamic range to guarantee *no overflow*
 - Determines the minimal integer word-length through dynamic range

3. **Fractional word-length determination**
 - Determines the *accuracy constraint* (according to the performance)
 - Optimizes the energy consumption under accuracy constraint (word-length optimization)
Dynamic range estimation

Input signal \(s(n) = \sum R_x k = \sum \alpha_k T x(-\tau_k) + n_i k \)

- Input signal is normalized into \([-1, 1]\)
 - Considering noise plus interference \(n_i k \) gaussian with variance \(\sigma^2 \), normalization is processed by dividing \(s(n) \) by \(1 + 3\sigma \)
 - After normalization, useful signal power: \((\frac{1}{1+3\sigma})^2 \)

- Only the useful signal is considered when estimating range after accumulation
Range depends on E_b/N_0: difference of 3 – 4 bits between 0 dB and 25 dB (for acc)
Accuracy constraint determination

Performance criterion:

\[\text{BER}_0 \leq \text{BER}_{P_{nq}(WL)} \leq (1 + \epsilon)\text{BER}_0 \] \hfill (1)

Fixed-point accuracy criterion:

\[P_{nq}(WL) \leq P_{nq_{\text{max}}} \] \hfill (2)

- \(P_{nq}(WL) \): quantization noise power for a given WL
- \(P_{nq_{\text{max}}} \): accuracy constraint
 - Obtained from the desired performances [Menard07]
- \(\text{BER}_0 \): reference Bit Error Rate (floating-point)
Accuracy constraint determination (2)

$P_{s_{out}}$: power level of desired signal s_{out}; $P_{n_{out}}$: noise power n_{out} at output
Energy consumption optimizations

Word-length optimization under accuracy constraint:

$$\min \text{Energy}(WL) \quad \text{with} \quad P_{nq} \leq P_{nq_{\text{max}}}$$

Savings of 40% energy consumption between 0 dB – 25 dB
Outline

1. Introduction
2. Dynamic Precision Scaling
3. Energy reduction with DPS on a WCDMA receiver
4. Conclusions
Conclusions

We have addressed:

- Concept of energy consumption reduction by adapting the fixed-point specification
- Up to 40% energy savings in WCDMA Rake receiver with DPS

Future works:

- Adaption between different data rates/spreading factors
- Other wireless communication systems
Bibliography

M. Bhardwaj, R. Min, and A. Chandrakasan.
Power-aware systems.

D. Menard, R. Serizel, R. Rocher, and O. Sentieys.
Noise model for Accuracy Constraint Determination in Fixed-Point Systems.

D. Novo, B. Bougard, A. Lambrechts, L. Van der Perre, and F. Catthoor.
Scenario-based fixed-point data format refinement to enable energy-scalable software defined radios.

S. Yoshizawa and Y. Miyanaga.
Tunable word length architecture for low power wireless OFDM demodulator.
Thank You