Customizing Fixed-Point and Floating-Point Arithmetic – A Case Study in K-Means Clustering

Benjamin Barrois and Olivier Sentieys

IRISA/INRIA – Cairn team University of Rennes

olivier.sentieys@irisa.fr

Energy Cost in a Processor/SoC

Energy strongly depends on data representation and size

Many Applications are Error Resilient

- Produce outputs of acceptable quality despite approximate computation
 - Perceptual limitations
 - Redundancy in data and/or computations
 - Noisy inputs
- Digital communications, media processing, data mining, machine learning, web search, ...

Approximate Computing

- Play with number representation to reduce energy and increase execution speed while keeping accuracy in acceptable limits
 - Relaxing the need for fully precise operations

- Trade quality against performance/energy
 - Compile-time/run-time
- Different levels
 - Operators/functions/algorithms

Outline

- Introduction
- Number Representation
 - Fixed-Point
 - Floating-Point
- Customizing Arithmetic Operators
- Direct Comparison of Custom Operators
- ApxPerf Framework
- Results on K-Means Clustering Algorithm
- Conclusions

Number Representation

Floating-Point (FIP)

$$x = (-1)^s \times m \times 2^{e-127}$$

s: sign, m: mantissa, e: exponent

- Easy to use
- High dynamic range
- IEEE 754

Format	е	m	bias
Single Precision	8	23	127
Double Precision	11	52	1023

Fixed-Point (FxP)

$$x = p \times K$$

p: integer, $K=2^{-n}$: fixed scale factor

- Integer arithmetic
- Efficient operators
 - Speed, power, cost

$$x = s.(-2)^m + \sum_{i=-n}^{m-1} b_i.2^i$$

s: sign, m: magnitude, n: fractional

Integer part: m bits Fractional part: n bits

Fixed-Point Arithmetic

$$x = s.(-2)^{m-1} + \sum_{i=-n}^{m-2} b_i.2^i$$

s: sign, m: magnitude, n: fractional

Accuracy (error)

Dynamic range

1.640625
+ 2.5125
= 4.153125
$$x \in [-4; 4[$$

overflow

Need for explicit normalization

$$(int)(((INT64)a * (INT64)b) >> N)$$

Use of popular libraries (e.g. sc_fixed, ac_fixed)

Floating-Point Arithmetic

 Floating-point hardware is doing the job for you!

 Arithmetic operators are therefore more complex

Customizing Fixed-Point

- Minimize word-length W=m+n
- Determine integer and fractional parts
 - Fixed-point refinement

Customizing Floating-Point

- Minimize word-length W=E+M+1
- Determine exponent and mantissa (and bias)
- Error is relative to number value

Floating-Point Multiplication

- Representation (W,E,M)
- Exponent e
 - E bits
- Mantissa m
 - M bits

J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009.

Floating-Point Addition

- Representation (W,E,M)
- Exponent e
 - E bits
- Mantissa m
 - M bits

ct_float: a Custom-FIP C++ Library

- ct_float: a Custom Floating-Point C++ Library
 - Operator simulation and (High-Level) synthesis
 - Templated C++ class
 - Exponent width e (int)
 - Mantissa width m (int)
 - Rounding method r (CT_RD,CT_RU,CT_RND,CT_RNU)
 - Many synthetizable overloaded operators
 - Comparison, arithmetic, shifting, etc.

```
ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;
```

FxP vs. FIP: Adders

- FxP_N
 - Fixed-Point
 - N bits
- FIT_N(E)
 - Floating-Point
 - N bits
 - Exponent *E* bits
- FxP adders are always smaller, faster, less energy

FxP vs. FIP: Multipliers

- FxP_N
 - Fixed-Point
 - N bits
- FIT_N(E)
 - Floating-Point
 - N bits
 - Exponent E bits
- FIP multipliers
 are smaller,
 faster, but more
 consuming

Outline

- Introduction
- Number Representation
 - Fixed-Point
 - Floating-Point
- Customizing Arithmetic Operators
- Direct Comparison of Custom Operators
- ApxPerf Framework
- Results on K-Means Clustering Algorithm
- Conclusions

Energy-Accuracy Trade-offs

- ApxPerf2.0 framework
 - Based on C++ templates,
 HLS, and Python
 - VHDL and C/C++ operator descriptions
 - Approximate, FxP, FIP

- Fully automated characterization
- Generates delay, area, and power results
- Extract error metrics
 - mean square error, mean average error, relative error, min/max error, bit error rate, etc.

K-Means Clustering

- Data mining, image classification, etc.
- A multidimensional space is organized as:
 - -k clusters S_i ,
 - $-S_i$ defined by its centroid μ_i

• Finding the set of clusters $S = \{S_i\}_{i \in [0,k-1]}$

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{s \in S} \|x - \mu_i\|^2$$

satisfying

K-Means Clustering

- Lloyd's iterative algorithm
 - approximations of the optimal centroids
 - estimation-maximization three-step iterative process

- Distance computation $d \leftarrow (x y) \times (x y)$
- Iteration of computations until
 - sum of distances from data points x to centroid μ_i between two iterations is less than a given threshold
 - maximum number of iterations

Experimental setup

- 20 data sets composed of 15.10³ samples
- Gaussian distributions with random covariance matrices around 15 random mean points
- Accuracy targets: 10^{-2} , 10^{-3} , 10^{-4}
- Reference is double-precision floating-point
- 28nm, 100MHz
- Error metrics
 - Mean square error of cluster centroids (CMSE)
 - lower is better
 - Classification error rate (ER)
 - i.e. proportion of points not being tagged by cluster identifier

- Results with 8-bit and 16-bit FIP and FxP arithmetic operators
- Stopping condition set to 10⁻⁴

	$\operatorname{ct_float}_8(5)$	$\operatorname{ct_float}_{16}(5)$	$ac_fixed_8(3)$	$ac_{16}(3)$
Area (μm^2)	392.3	1148	180.7	575.1
$N_{ m cycles}$	3	3	2	2
$E_{\rm dc} (nJ)$	1.23E-4	5.99E-4	5.03E - 5	3.25E-4
$N_{ m it}$	8.35	59.3	14.9	65.1
$E_{\text{K-means}}(nJ)$	38.24	1100	23.90	644.34
CMSE	1.75E - 3	3.03E-7	1.85E-2	3.28E-7
Error Rate	35.1 %	2.94 %	62.3 %	0.643 %

• W = 16 bits, accuracy = 10^{-4}

No major (visible) difference with reference

• W = 8 bits, accuracy = 10^{-4}

8-bit float is better and still practical

ac_fixed₈
3-bit integer part
5-bit fractional part

5-bit exponent 3-bit mantissa

Energy versus Classification Error Rate

Average energy consumed by K-means algorithm

 Stopping conditions:
 10⁻² to 10⁻⁴

Conclusions

- Total energy (algorithm) depends on:
 - Energy of arithmetic operations
 - Algorithm convergence speed
- Slower increase of errors for floating-point
- Small floating-point (e.g. 8-bit) provides better error rate/energy ratio
- Perspectives
 - Custom exponent bias in ct_float
 - Towards an automatic optimizing compiler considering both FxP and FIP representations

Customizing Number Representation

- Loss of accuracy incurs quality degradation
- Essentially, an optimization process
 - Determine the number of bits for each data
 - Determine the format for each data

Customizing Fixed-Point and Floating-Point Arithmetic – A Case Study in K-Means Clustering

Benjamin Barrois and Olivier Sentieys

IRISA/INRIA – Cairn team University of Rennes

olivier.sentieys@irisa.fr

