
Benjamin Barrois and Olivier Sentieys

IRISA/INRIA – Cairn team
University of Rennes olivier.sentieys@irisa.fr

2

Energy Cost in a Processor/SoC

28nm
CMOS

500 pJ Efficient
off-chip
link

16 nJ DRAM
Rd/Wr

• 64-bit FPU: 20pJ/op

• 32-bit addition: 0.05pJ

• 16-bit multiply: 0.25pJ

• Wire energy
– 240fJ/bit/mm per ⇵
– 32 bits: 40pJ/word/mm

– 8 bits: 10pJ/word/mm

50 pJ (8 kB SRAM)

• Memory/Register-File
– Depends on word-length

[Adapted from Dally, IPDPS’11]

Energy strongly depends on data representation and size

3

Many Applications are Error Resilient

• Produce outputs of acceptable quality
despite approximate computation
– Perceptual limitations
– Redundancy in data and/or computations
– Noisy inputs

• Digital communications,
media processing, data
mining, machine
learning, web search, …

e.g. Image Segmentation

4

Approximate Computing

• Play with number representation to reduce
energy and increase execution speed while
keeping accuracy in acceptable limits
– Relaxing the need for fully precise operations

• Trade quality against
performance/energy
– Compile-time/run-time

• Different levels
– Operators/functions/algorithms

Application quality degradation

En
er

gy

X

X

X
X

X

5

Outline

• Introduction
• Number Representation
– Fixed-Point
– Floating-Point

• Customizing Arithmetic Operators
• Direct Comparison of Custom Operators
• ApxPerf Framework
• Results on K-Means Clustering Algorithm
• Conclusions

6

Number Representation

• Floating-Point (FlP)

s: sign, m: mantissa, e: exponent

– Easy to use
– High dynamic range
– IEEE 754

• Fixed-Point (FxP)

p: integer, K=2-n: fixed scale factor

– Integer arithmetic
– Efficient operators
• Speed, power, cost

6

x = p⇥K

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1 bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Format e m bias
Single Precision 8 23 127

Double Precision 11 52 1023

• Accuracy (error) • Dynamic range

• Need for explicit normalization

• Use of popular libraries (e.g. sc_fixed, ac_fixed)

Fixed-Point Arithmetic

(int)(((INT64)a * (INT64)b) >> N)

1.640625
* 2.3125
= 3.7939453125

1.640625
+ 2.5125
= 4.153125

2-n2-121 202m-2

Integer part
m bits

Fractional part
n bits

S bm-2 bm-1 b1 b0 b-1 b-2 b-n+2b-n+1 b-n
x = s.(�2)m�1 +

m�2X

i=�n

bi.2
i

overflow

8

Floating-Point Arithmetic

• Floating-point
hardware is doing the
job for you!

• Arithmetic operators
are therefore more
complex

J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009.

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

Fixed-point addition
equivalent

FlP Adder

9

Customizing Fixed-Point

• Minimize word-length W=m+n
• Determine integer and fractional parts
– Fixed-point refinement

Integer part
m bits

Fractional part
n bits

S b1 b0 b-1 b-2

Dynamic
Range

Ensure no overflow (or
limit the overflow occurrence)

Accuracy

Provide a minimal
numerical accuracy

10

Customizing Floating-Point

• Minimize word-length W=E+M+1
• Determine exponent and mantissa (and bias)
• Error is relative to number value

Exponent
E bits

Mantissa
M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Range &
Accuracy

Ensure no overflow and
accuracy of small numbers

Accuracy

Provide a minimal
numerical accuracy

11

Floating-Point Multiplication

• Representation
(W,E,M)

• Exponent e
– E bits

• Mantissa m
– M bits

9.4. Binary Floating-Point Multiplication 297

1 0

0 1 incrementer

p p

p� 1

p� 1

2p
z�1

or

mz

inc

moderounding
logic

b� 1b

ez + b

ey + b 1.mx 1.myex + b

z�1 · · · z�p+1

z�1z0z1 · · · z2p�2

z
p

s

z0 · · · zp�2

e
x

+
e
y

+
b

e
x

+
e
y

+
b

+
1

z
p
�

1

zp+1 · · · z2p�2

c
ou

t

sticky

Figure 9.14: Basic architecture of a floating-point multiplier without subnormal
handling.

• Subnormal handling is not a strong requirement for applications
using FPGA floating-point accelerators. The floating-point format used
in these accelerators can be nonstandard, and in particular can have an
ad hoc exponent range.

• Significand multiplication can be performed efficiently using the small
integer multipliers embedded in the FPGA fabric of high-performance
FPGAs. These multipliers are typically able to perform 18⇥18-bit prod-
ucts, and recent FPGAs have increased this size to 25⇥18-bit to facilitate
the implementation of binary32 arithmetic. For larger significand sizes,
several of these multipliers have to be grouped together; for instance, a
36⇥ 36-bit product can be implemented using four 18⇥ 18-bit multipli-
ers and a few adders. In recent FPGAs, the embedded multipliers are
tightly coupled to specific adders. The main purpose of these blocks is
efficient multiply-and-accumulate operations for digital signal process-
ing (DSP), but they also allow for building larger multipliers [104].

• Embedded multipliers are not able to compute the sticky bit as a
by-product. However, a wide OR can be computed using the fast-carry
circuitry. As soon as more than one embedded multiplier is needed, the
higher part of the result comes from an addition, and the sticky compu-
tation can be overlapped with this addition.

J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009.

12

Floating-Point Addition

• Representation
(W,E,M)

• Exponent e
– E bits

• Mantissa m
– M bits

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009.

13

ct_float: a Custom-FlP C++ Library

• ct_float: a Custom Floating-Point C++ Library

– Operator simulation and (High-Level) synthesis

– Templated C++ class

• Exponent width ! (int)

• Mantissa width " (int)

• Rounding method # (CT_RD,CT_RU,CT_RND,CT_RNU)

– Many synthetizable overloaded operators

• Comparison, arithmetic, shifting, etc.

13

ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;

14

FxP vs. FlP: Adders

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FxP adders are
always smaller,
faster, less
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

15

FxP vs. FlP: Multipliers

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FlP multipliers
are smaller,
faster, but more
consuming

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

16

Outline

• Introduction
• Number Representation
– Fixed-Point
– Floating-Point

• Customizing Arithmetic Operators
• Direct Comparison of Custom Operators
• ApxPerf Framework
• Results on K-Means Clustering Algorithm
• Conclusions

17

Energy-Accuracy Trade-offs

• ApxPerf2.0 framework
– Based on C++ templates,

HLS, and Python

– VHDL and C/C++ operator
descriptions
• Approximate, FxP, FlP

operators, especially adder and subtractor, are smaller than for
FlP since they are equivalent to integer operators.

C. Floating-Point and Fixed-Point Direct Comparison

Because of the different nature of FlP and FxP errors, this
section only compares them in terms of area, delay, and energy.
Indeed, FlP error magnitude strongly depends on the amplitude
of the represented data. Low-amplitude data have low error
magnitude, while high amplitude data have much higher error
magnitude. FlP error is only homogeneous considering relative
error. Oppositely, FxP has a very homogeneous error magni-
tude, uniformly distributed with well-known bounds. Thus, its
relative error depends on the amplitude of the represented data.
It is low for high amplitude data and high for low amplitude
data. This duality makes these two paradigms impossible to
be atomically compared using the same error metric. The
only interesting error comparison which can be performed is
applying them on a real-life application, which is done on the
K-means clustering algorithm in Section IV.

In all performance studies in this paper, our open-source
framework ApxPerf2.0, whose flow is described by Figure 3,
is used. HLS is achieved by Catapult from Mentor Graph-
ics, RTL synthesis by Synopsys Design Compiler, gate-level
simulation by Modelsim leveraging SystemC Verify, and time-
based power analysis by Synopsys PrimeTime. A 100 MHz
clock is set for designing and estimating performance, and the
technology used is 28 nm FDSOI. Energy per operation is

High Level
Synthesis

Simulation
+ Verification

Logic Synthesis

Power
Estimation

C
at

ap
ul

tC

C/C++
Source

+
Config.

fileRTL VHDL

gate VHDL SDF file

testbench

VCD file

Area report
Timing report
Power report

Error
Estimation

Error
metrics

Fig. 3: ApxPerf2.0 framework
estimated using detailed power results given by PrimeTime at
gate level. Given the critical path of the design Tc and the
clock period Tclk, only the energy spent before stabilization
is extracted, which allows to have an energy per operation
independent of the clock period.

In this section, 8-, 10-, 12-, 14- and 16-bit fixed-width
operators are compared. For each of these bit-widths, several
versions of the FlP operators are estimated with different
exponent widths. 25.103 uniform couples of input samples are
used for each operator characterization. A tweak ensures that at
least 25% of the FlP adder inputs activate the close path of the
operator, which has the highest energy by nature. Adders and
multipliers are all tested in their fixed-width version, meaning
their number of input and output bits are the same. The output
is obtained using truncation of the result.

Fig. 4: Relative area, delay and energy per operation compa-
rison between FxP and FlP for different fixed-width adders

Fig. 5: Relative area, delay and energy per operation compari-
son between FxP and FlP for different fixed-width multipliers

Figure 4 (resp. Figure 5) shows the area, delay and energy
of adders (resp. multipliers) for different bit-widths, relative
to the FxP operator. FlPN (k) represents N -bit FlP with k-bit
exponent width. As discussed above, FlP adder has an impor-
tant overhead compared to FxP adder. For any configuration,
results show that area and delay are around 3⇥ higher for FlP.
As a consequence, the higher complexity of the FlP adder
leads to 5⇥ to 12⇥ more energy per operation.

Results for the multiplier are very different. Indeed, FlP
multipliers are 2-3⇥ smaller than for FxP. Indeed, the control
part of FlP multiplier is much less complicated than for the
adder. Moreover, as multiplication is applied only on the
mantissa, the multiplication is always applied on a smaller
number of bits for FlP than for FxP. Timing is also slightly
better for FlP, but not as much as area since an important
number of operand shifts may be needed during computations.

– Fully automated characterization

– Generates delay, area, and power results

– Extract error metrics
• mean square error, mean average error, relative error,

min/max error, bit error rate, etc.

18

K-Means Clustering

• Data mining, image
classification, etc.

• A multidimensional
space is organized as:
– k clusters Si,
– Si defined by its

centroid µi

• Finding the set of clusters
satisfying
is NP-hard

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {Si}i2[0,k�1] satisfying

argmin
S

kX

i=1

X

x2Si

kx� µik2 , (1)

where µi is the centroid of cluster Si. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size Ndata, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2e.

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {Si}i2[0,k�1] satisfying

argmin
S

kX

i=1

X

x2Si

kx� µik2 , (1)

where µi is the centroid of cluster Si. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size Ndata, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2e.

19

K-Means Clustering

• Lloyd’s iterative
algorithm
– approximations of the

optimal centroids
– estimation-maximization

three-step iterative
process

• Distance computation
• Iteration of computations until
– sum of distances from data points x to centroid µi between

two iterations is less than a given threshold
– maximum number of iterations

regarding FxP representation in this case study and closes with
what could be expected in a more general purpose.

II. K-MEANS CLUSTERING ALGORITHM

This section describes the K-means clustering algorithm.
First, the principle of K-means method is described. Then, the
specific algorithm used in this case study is detailed.

A. K-Means Clustering Principle

K-means clustering is a well-known method for vector quan-
tization, which is mainly used in data mining, e.g. in image
classification or voice identification. It consists in organizing
a multidimensional space into a given number of clusters,
each being totally defined by its centroid. A given vector in
the space belongs to the cluster in which it is nearest from
the centroid. The clustering is optimal when the sum of the
distances of all points to the centroids of the cluster they
belong to is minimal, which corresponds to finding the set
of clusters S = {Si}i2[0,k�1] satisfying

argmin
S

kX

i=1

X

x2Si

kx� µik2 , (1)

where µi is the centroid of cluster Si. Finding the optimal
centroids position of a vector set is mathematically NP-hard.
However, iterative algorithms such as Lloyd’s algorithm allow
us to find good approximations of the optimal centroids by
an estimation-maximization process, with a linear complexity
(linear with the number of clusters, with the number of data to
process, with the number of dimensions and with the number
of iterations).

B. K-Means Using Lloyd’s Algorithm

The iterative Lloyd’s algorithm [12] is used in our case
study. It is applied to bidimensional sets of vectors in order
to have easier display and interpretation of the results. From
now, we will only refer to the bidimensional version of the
algorithm. Figure 1 shows results of K-Means on a random
set of input vectors, obtained using double-precision FlP
computation with a very restrictive stopping condition. This
results is considered as the reference golden output in the rest
of the paper. The algorithm consists of three main steps:

1) Initialization of the centroids.
2) Data labelling.
3) Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is
met. In our case, the main stopping condition is when the
difference of the sums of all distances from data points to
their cluster’s centroid between two iterations is less than a
given threshold. A second stopping condition is the maximum
number of iterations, required to avoid the algorithm getting
stuck when the arithmetic approximations performed are too
high to converge. The detailed algorithm for one dimension
is given by Algorithm 1. Input data are represented by the
vector data of size Ndata, output centroids by the vector c of
size k. The accuracy target for stopping condition is defined by

Fig. 1: 2-D K-means clustering golden output example

acc target and the maximum allowed number of iterations by
max iter. In our study, we use several values for acc target,
and max iter is set to 150, which is nearly never reached in
practice.

The impact of FxP and FlP arithmetic on performance and
accuracy is evaluated considering the distance computation
function distance comp, defined by:

d (x� y)⇥ (x� y). (2)

Details about accuracy and performance estimation can be
found in Section IV.

III. FIXED-POINT AND FLOATING-POINT ARITHMETIC

In this study, two paradigms for real number representation
are compared: floating-point (FlP) and fixed-point (FxP). Both
are often opposed, FlP being the representation the most used
in software engineering thanks to its high dynamic range and
ease of use. On the other side, FxP evokes simple, fast and
energy-efficient computing kernels, which dynamic, accuracy
and scaling need to be managed by the system/software
designer, costing design time and a certain lack of computing
safety (e.g., overflows, underflows). This section compares FlP
and FxP in terms of accuracy, performance and hardware cost,
and discusses more general advantages and drawbacks.

A. Floating-Point

Thanks to its high dynamic range, ease of use for the
programmer and IEEE-754 normalization, most processors
now include powerful FlP computing units. This makes FlP
representation a high standard for general-purpose computing.
A FlP number is represented by three elements: exponent
e, mantissa m, and sign bit s, which can also be contained
into the mantissa in some representations. The dynamic and
accuracy of a FlP representation is intimately linked to the
number of bits allocated. The value of a FlP number xFlP is
given by:

xFlP = (�1)s ⇥m⇥ 2e.

20

Approximate K-Means Clustering

• Experimental setup
– 20 data sets composed of 15.103 samples
– Gaussian distributions with random covariance

matrices around 15 random mean points
– Accuracy targets: 10−2, 10−3, 10−4

– Reference is double-precision floating-point
– 28nm, 100MHz

• Error metrics
– Mean square error of cluster centroids (CMSE)

• lower is better

– Classification error rate (ER)
• i.e. proportion of points not being tagged by cluster identifier

21

Approximate K-Means Clustering

• Results with 8-bit and 16-bit FlP and FxP
arithmetic operators

• Stopping condition set to 10−4

22

Approximate K-Means Clustering

• W = 16 bits, accuracy = 10−4

• No major (visible) difference with reference

ac_fixed16
3-bit integer part

13-bit fractional part

ct_float16
5-bit exponent
11-bit mantissa

23

Approximate K-Means Clustering

• W = 8 bits, accuracy = 10−4

• 8-bit float is better and still practical

ac_fixed8
3-bit integer part

5-bit fractional part

ct_float8
5-bit exponent
3-bit mantissa

24

Energy versus Classification Error Rate

• Average
energy
consumed
by K-means
algorithm

• Stopping
conditions:
10−2 to 10−4

10−4

10−3

10−2

25

Conclusions

• Total energy (algorithm) depends on:
– Energy of arithmetic operations
– Algorithm convergence speed

• Slower increase of errors for floating-point
• Small floating-point (e.g. 8-bit) provides

better error rate/energy ratio
• Perspectives
– Custom exponent bias in ct_float
– Towards an automatic optimizing compiler

considering both FxP and FlP representations

Customizing Number Representation

• Loss of accuracy incurs quality degradation
• Essentially, an optimization process
– Determine the number of bits for each data
– Determine the format for each data

Quality
DegradationSpeed

Power
Area

C(•) �(•)
26

Benjamin Barrois and Olivier Sentieys

IRISA/INRIA – Cairn team
University of Rennes olivier.sentieys@irisa.fr

