ID.Fix
Optimisation de la précision des calculs dans les systèmes embarqués : méthodes et outils
Avril 2009

Olivier Sentieys, Daniel Ménard
IRISA/INRIA
Université de Rennes 1
ENSSAT Lannion
sentieys@irisa.fr

Number Representation

- Floating-Point
 \[x = (-1)^s \times m \times 2^{e-127} \]
 - \(s \): sign, \(m \): mantissa, \(e \): exponent

- Pros and cons
 - Simple to use
 - High dynamic range
 - but
 - Accuracy problems
 - Complex operators

- Fixed-Point Numbers
 \[x = (-1)^s (-2)^m + \sum_{i=-n}^{m-1} b_i 2^i \]
 - \(s \): sign, \(m \): magnitude, \(n \): fractional
 - Efficient operators
 - Stable, predictable
 - but complex to use, overflow, precision loss
Fixed-Point Arithmetic

- Dynamic range $[-2^m, 2^m]$
- Precision: 2^{-n}
- Arithmetic rules
 - Multiplication, addition: $(\text{int})(((\text{INT64})a * (\text{INT64})b) >> N)$
 - Scaling operations are explicit in software code
- Precision (noise) | Overflow
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.640625</td>
<td>1.640625</td>
</tr>
<tr>
<td>+ 2.3125</td>
<td>+ 2.5125</td>
</tr>
<tr>
<td>= 3.953125</td>
<td>= 4.153125</td>
</tr>
</tbody>
</table>

Fixed-Point Arithmetic

- Speed, power, cost
- Efficient computation
 - Faster execution time
 - Fix/float: ratio of 9
 - Energy efficient (us/mW)
 - Fix/float: ratio of 5
 - Cost efficient (us/$)
 - Fix/float: ratio of 5
 - (DSP C6x from TI)
- Stable calculations across platforms
 - Predictable by simulations
- Accuracy is limited but often sufficient for many applications
Fixed-Point Arithmetic is Mainstream in Embedded Systems

- Many application domains
 - Telecommunications, wireless
 - e.g. wireless receiver is sampled with low precision
 - e.g. error-correcting codes still work for very-low precision
 - Signal and image processing, audio, video
 - Control (automotive)
 - Graphics (OpenGL ES 1.x)

Fixed-Point Arithmetic is Mainstream in Embedded Systems

- Most of embedded platforms use only fixed-point arithmetic
 - Embedded processors, microcontroller, digital-signal processors, application platforms
 - FPGA, system-on-chip
 - FPU is big and hot!
Fixed-Point Conversion

- Determine the number of bits for each data
 - Range estimation: integer part word-length
 - Precision estimation: fractional part word-length
- Insert scaling instructions after every operations
 - Arithmetic rules
- Manual conversion
 - Long, tedious and error-prone
 - 25% to 50% of the total design time (according to Mathworks)
- Strong need of tools to reduce the time-to-market

Fixed-Point Conversion

- Existing tools for helping the designer in the fixed-point conversion process
 - Fixed-point Matlab Toolbox (Mathworks)
 - AcceleDSP (Xilinx)
 - Catalytic (Mentor Graphics)
- Performance evaluation using bit-true simulation
 - Fixed-point simulation is very long
 - Data word-length optimisation time is prohibitive
 - Limited design space exploration
ID.Fix
A Framework for Fixed-Point Conversion

- Source-to-source code transformation
 - C with float to C/VHDL using fixed-point types
 - Compiler framework: GECOS (Eclipse)

- Contracts
 - ANR ROMA
 - Nano 2012 (STMicro.)
 - INRIA: engineer

ID.Fix
A Framework for Fixed-Point Conversion

Highlights from ID.Fix tool

- **Analytical estimation of accuracy**
 - Output noise power P_0 is a mathematical expression which is formulated for every data wordlengths
 - P_0 can be linked to application performance
 - with system-level floating-point simulations
 - e.g. BER (bit error rate), PSNR (peak signal-to-noise ratio)

- System-level estimation and design space exploration are possible
- Optimisation time of the process is significantly reduced
ID.Fix
A Framework for Fixed-Point Conversion

- Automatic conversion from floating-point to fixed-point
- Wordlength optimisation
 - Cost minimisation under accuracy constraint

\[\min_j \left[T_{\text{exec}} (W_L) + \text{Cost} (W_L) \right] \]
\[SQNR(W_L) \geq SQNR_{\text{min}} \]

Conclusion

- Fixed-point arithmetic in embedded systems
- State-of-the-art tools are limited by long simulation time
- ID.Fix is a framework for automatic fixed-point conversion and design-space exploration
- Current work
 - Hierarchical approach for system-level estimation
 - Extension of source code support in the compiler