
Behavioral IP Specification and Integration Framework
for High-Level Design Reuse

Sebastien Pillement
�
, Daniel Chillet

�
Olivier Sentieys

��� ��
LASTI-ENSSAT-University of Rennes

�
IRISA-INRIA

6, rue de kerampont Campus de beaulieu
22300 Lannion, France 35042 Rennes, France

name@enssat.fr, http://archi.enssat.fr

Abstract

Specifying virtual components at the behavioral level ap-
pears as the most promising solution to achieve a real effi-
ciency of design reuse. In this paper we propose a method-
ology to specify and use Behavioral LevelIP (BL-IP). Thus,
IP designer tasks are easier due to the unified representa-
tion offered by this level of abstraction. The genericity of a
behavioralIP permits efficient optimizations and make ap-
plication context adaptations a reality. We propose a unified
framework to define an IP at the behavioral level and to
tune a particular block according to designer needs. There-
fore, we define theIP generator tool and the Universal High
Level Synthesis concept.

1 Introduction

The electronic industry is moving toward the design and
implementation of entire systems on a single chip (SoC).
Such types of integrated circuits are actually built around a
processor core [3], that is available in the libraries of semi-
conductor companies. Additional functions are added to
this core in order to realize an application or domain specific
processor. Three types of reusable core (IP Core) can be dis-
tinguished [19]: theSoft Coreis described using a high level
description language (i.e. VHDL or Verilog), theFirm Core
is described and synthesized for specific library and finally
theHard Core is described at the layout level. Because of
the growing complexity of SoC designs [2], design reuse
methodologies are known as the better way to bridge the
gap between performance and time-to-market [15, 13] with
nowadays methodologies and tools. For IP integrators, the
challenges consist in understanding all the specifications of
existing blocks responding to his needs, and in testing and
interface development [9, 10]. Unfortunately, IP reuse lacks
design methodologies and tools facing these problems. At
present, all blocks are designed by vendors for one tech-
nology, and without real normalization, expecting research,
validation and integration effort [1, 6].

In this context, we propose an innovative approach, con-

sisting in defining the IP at a higher level of abstraction
(i.e. Behavioral Level). This allows the designer to spec-
ify the behavior of a function, and an IP generator, based
on provider know-how, generates all the descriptions of
the block and the synthesis script needed to achieve user
performance requests. Finally, it includes behavioral syn-
thesis tools in the design flow of the IP integration. In-
ternet, favored by its worldwide access and its great flex-
ibility for both provider and integrator appears as an in-
escapable technology for design-reuse methodology. Re-
lated works on Web-based Framework are focusing on IP
selection [12, 22], on the test and the simulation [8, 21, 5]
of IP blocks. At present, methodologies for design-reuse
are specific for IP provider [16, 11] or for IP integrator
[4, 17, 7]. We propose a unified framework to i) define an IP
at the behavioral (i.e. algorithmic) level ii) tune a particular
block according to designer needs. This level of abstrac-
tion permits a great genericity of blocks and thus offers a
large spectrum of implementations, and finally allows high
optimizations [20].

In the next section, we define the Behavioral-Level IP

(BL-I P) characteristics and objectives and introduces the
BL-I P parameters and rule processing. Section 3 describes
the generator concepts and the framework infrastructure.
The last section describes an exemple of a BL-IP for dig-
ital filtering.

2 Behavioral Level Ip Characteristics����� 	�

�������������������! "�$#
We can define a set of objective criteria for a Behavioral-

Level IP (BL-I P) that guarantees the performances of the
block:% Design methodology must permit behavioral specifi-

cation entry point. The most popular behavioral lan-
guages are VHDL or SystemC, but others can be used.% Blocks models must be uniform. This enables the ex-
traction of generic parameters and rules to define and
compare different implementations of functions.% Methodology should be applied to all kind of blocks.

1

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

% Design and reuse methodology must be cheaper than
classic methodology. Choices and refining block cycle
have to be optimized.% BL-I P overhead development cost must be reasonable.% BL-I P use have to lead to the performance needs of the
integrator.% Flexibility is an important characteristic for BL-IP.
The environmental adaptation of BL-IP is done by set-
ting a set of parameters.% BL-I P performance have to be tool independent. This
criterion introduces the concept of Universal High-
Level-Synthesis (U-HLS) tool.

To reach these goals, we propose to use an interface
called ageneratorand to specify the IP at the behavioral
level associated to the use of a methodology to simplify the
IP integrator task.���&� 	�
'�����)(+*, .-0/1��-321�$#

Most of reusable cores are hard cores that do not achieve
real portability. Differences on the reusable core come from
the level of abstraction for each style. Hard cores defined at
the layout level have the greatest performance but are not
portable. On the other hand, soft cores, usually described at
the RT Level are very flexible but can not easily guarantee
the Intellectual Property for the creators of blocks and needs
high integration effort for designers [11].

Specifying the IP at the behavioral level is mainly char-
acterized by the potential of hardware resource sharing by
different IPs, by a free cycle scheduling of operations that
can enable a single IP to respect different throughput con-
straints. Finally, high abstraction is independent of tech-
nology and performance constraints [20]. It therefore ap-
pears as the most promising solution to achieve a real effi-
ciency of design reuse. In [15], an extension of Synopsys
Design Ware concept is developed, and Behavioral Com-
piler is used to schedule the algorithm for respecting the
constraints. In [18], the authors focus on formalizing be-
havioral reusable generic descriptions, and their communi-
cation interfaces to reduce buffer overhead.

From the designer point of view, the IP block is seen as a
customizable function (a behavioral function) where he can
parameterize some features. This point of view is based on
a good description of the IP provider know-how model in
the BL-IP generator, which provides to the tool (not to the
designer) all informations about synthesis and optimization
directive for a particular degree of performance.���54 67��89/,�!���;:�/<:1=>���)?@-3AB-0CD�����$A�#

IP parameters have three different levels of abstraction:% Algorithm selection parameters are used to select
and customize a specific algorithm. For example, Sig-
nal to Noise Ratio (SNR) in dB associated to the in-
put/output data width can be used in order to define
the datapath bit-width.

% Integrator parameters and constraints. For exam-
ple, the throughput constraint influences the pipeline
depth of the architecture, but can also influence the
loop-unfolding factor or limit the size of the applica-
tion (e.g. number of samples in an FFT).% Synthesis tool parameters. These parameters are
used as synthesis constraints. For example, if there is
no time constraint then the area optimization are taken
into account.

Parameters can interact with another from a different
level, and can be defined by enumerations or bounds.���FE ���G�H/,#���-0/,���I6J��89/,�!���;:�/

We define an IP instanciation as a characterized block
that a designer can implement in his application. This in-
stance is composed of a function described at a behavioral
level associated with two interface blocks, assuming com-
munications between the function and its environment. In
all cases an IP block comes with different description files
[19]:% The synthesis script depends on the CAD tools which

will be used to synthesize the design. It gives the best
option set to obtain an optimal design.% The description file contains the description of the
functionality to synthesize. Generally described in
VHDL at the Register Transfer Level (RTL), some re-
cent works [20, 18, 15] start to use a behavioral level
specification (VHDL or C/C++).% The documentation part resumes all the informations
about the block. This documentation must contain the
function description, a set of performances and char-
acteristics, and the interface description.% A set of testbenches must permit evaluation of differ-
ent IP block characteristics. Evaluations should be per-
formed at different stages of integration.

3 Ip Generator Concept

The BL-IP concept achieves a real reuse of one function.
Due to the high-level description of IP blocks, adaptation of
the function to the designer needs and to the environment
becomes easier. There are two ways to make these adapta-
tions:% The creator adapts the block to the designer needs. It

is the current solution taken for RTL IPs. Creators are
more an integration expert of a block for a particular
technology. The IPDesigner tool has been developed
to simplify this task.% On the other hand, adaptations can be automatic (or
semi-automatic). In this case synthesis is driven by
the designer. This solution permits a better adaptation
to the application context, and accelerates the refining
cycle. This can be achieved, if needs and constraint
specifications can be used by a CAD tool adaptable
to every environment and to every technology. We call
this tool IPCompiler, it is based on the U-HLS concept.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

4K��� LM/,�! "�$AB#H-0NPOQ�!2�RS
T�� "�UNWV�XY/1��R,��#��;#GZ[:�/�������,�M\�LJ��O]
>V,^
The Universal High-Level Synthesis is avirtual tool. It

is a super-set of specifications that we can adapt to different
behavioral synthesis tools.4K�&� ����_J�$/,��AB-.��:1A]_`�U/Y�$AB-0Na(WA��bRc�&��������dYAB�

A generator is specific to a BL-IP function block, from
which we can extract different sub-modules (cf. figure 1).% The interface enables the specification of constraints

and parameters for a particular block, that will help
the integrator in the definition of the IP.% The estimator guides the designer to a good implemen-
tation of the function according to the required perfor-
mances.% The U-HLS generator takes the parameters defined
through the interface and generates an U-HLS IP.% Derivators transform an U-HLS IP to a tool specific
description of the BL-IP.

Ip Generator

U-HLS
IP

U-HLS
Generator

BC
Derivator

Monet
Derivator

My Tool
DerivatorDocumentation

Interface

Estimator

Figure 1. An IP instance generation.

To help the IP Provider and the IP Integrator, we have
developed a framework which helps each of them to spec-
ify the IP block and to implement an instance of an IP block
in the application context. This framework is based on clas-
sical client/server functionalities. The tools are described
as java applet and can be loaded by any browser. The ap-
plet exchange informations with IP Database located on the
server through TCP/IP socket.

Tools server

IPDesigner IPCompiler

IP 1
IP 2
IP 3
...

C
lie

nt
S

er
ve

r IP DataBase

Internet

IP Tool
Provider

IP Tool
Integrator

http and TPC/IP protocol

Figure 2. Framework for IP specification and use

Our approach is independent of the considered applica-
tion. A high adaptation of the description and of the syn-
thesis process depending on the user constraint is proposed.
Some parameters and the way they interact are defined.

4K�54 L`��O]
>Ve���
Ideally, an optimal IP can be obtained from our U-HLS

IP for all CAD tools in an automatic manner. Then, to
achieve this goal the methodology should encompass:% Different algorithms for a same function. These algo-

rithms admit a high level of genericity, and offers a
wide solution panel.% A set of parameters with all the variation domains.% A set of rules that will adapt a U-HLS description to a
specific parameter set definition.% A tool specific set of rules.4K�FE f`OQ6J
<*c�$#H��Ag�;�Y���;:�/Y#h-0/Y*i#H��AB�;�,�j#�XY/1��R,�k�#��;#

The application context (or constraints) can impose to
write several descriptions for one BL-IP, with some descrip-
tions dedicated to a particular High-Level Synthesis (HLS)
tool. Consequently, one specific derivator must be written
for each HLS tool. In figure 3 we present a high-level de-
scription of a Finite Impulse Response filter BL-IP (FIR-
BL-IP) specified for Behavioral Compiler from Synopsys
(BC). The description is generic. According to section 4.2,
size of filter is defined by the parameterl and input/ouput
data is defined bymon�p parameters.

entity direct_fir is
port(xn:in Integer range -2**(Bin-1) to 2**(Bin-1);

yn:out ...
clk, rst:in Std_Logic);

end direct_fir; architecture behavioral of direct_fir is
...
main : Process

Attribute dont_unroll of fir_:label is $LoopDU$;
Variable X:vectorH;
Variable acc:Integer range ...
Variable mult:Integer range -2**($Bin+$Bcoeff-1)
... to 2**($Bin+$Bcoeff-1);

main:loop
tmp:=0;
sig_evol:for i in 0 to x’length-2 loop

x(i):=x(i+1);
end loop sig_evol ;
x(x’length-1):=xn;
fir_:for i in 0 to h’length-1 loop

mult:=x(i)*h(i);
acc:=acc+mult;

end loop fir_loop;
yn<=acc;
...

Figure 3. Generic VHDL specification of a FIR BL-
IP for BC

To optimize this description, a specific synthesis script
must be written. Figure 4 shows a generic BC synthesis
script. For example the effort for the scheduling or the loop
unrolling factor are defined by parameters which will be
fixed according to the application context.4K�&q r[R,�I�;/1����AB=s-3���

To be efficient the interface must guide designers to con-
verge quickly to the best solution according to specific con-
straints. For this reason, the designer specifies through the

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

design=$IPName$; source=design + ".vhd";
clk_periode = Clk;
sch_effort = "$ScheduleEffort$";
mode = "$ScheduleMode$";
schedule_option="$ScheduleOption$";
bc_chaining = true;
...
analyze -f vhdl source;
elaborate -schedule design;
...
set_cycles $Throughput$ -from_beginning design +"/main"

-to_end design +"/main";
schedule -effort sch_effort -extend_latency -io_mode mode;
write -hierarchy -output design+"_sch.db";

Figure 4. Generic synthesis script for BC

interface the function characteristics, the expected perfor-
mances, and some specific tool parameters.

Unfortunately, definition of a particular constraint re-
duces the validity domain of other constraints. We need
then an actuator module to update the new accepted value
for parameters that will guide the designer to a realistic so-
lution. This actuator module will be based on the rule li-
brary. Using Internet technology maintains the up-to-date
version of a BL-IP generator, by integrating a script in the
interface (i.e. a modification of the generator is immedi-
ately accessible for all customers). After the parameter def-
inition (made through a Java Applet) and the verification of
constraints, the generator creates all the needed files for the
function integration. Then, customers can download them
by FTP, for example.4K�5t LJ��O]
>VG_J�$/,�$A�-.��:"A

U-HLS description generator (cf. figure 1) takes param-
eter values from the interface and realizes different tasks:% Parameter processingdetermines in which module

the current parameters is needed. This phase adapts
parameters to a specific module of the design flow. A
specific parameter can be used by different modules,
such as the throughput parameter used in the algorithm
selection module and synthesis constraint module.% Algorithm selection of a specific algorithm is made
according to a rule library and to current value of
parameters according to the designer specifications.
Then, rule resolution consists in tuning the algorithm
characteristics using these parameters and a function
library. The latter is a set of implementations of differ-
ent algorithms proposed by the creator of the generator.
The editor has to search in the library the selected algo-
rithm and specify it with the integrator parameters. Af-
ter selection, the U-HLS description of the algorithm is
passed to the rule processing module, for refining the
description.% Synthesis rule solverenables the derivation of param-
eters into synthesis constraints according to the rule li-
brary. Unresolved rules ortool-dependentparameters
are passed to specific derivator.

The rule library is the most important module of the gen-
erator. A bad parameter definition drives to a bad imple-
mentation solution. This module represents the function

and performance models of a specific BL-IP. Each rule is
a Boolean expression that determines parameter influence
and may depend on the synthesis CAD tools used. Nev-
ertheless, different types of rule exist and each describes
the links between the parameters. Algorithm selection rules
have to be treated first. Derivator rules are tool dependent
and may contain rules like loop unrolling strategies, synthe-
sizer optimization effort, etc.4K�;u 6J��Ag�! .-.��:1A�#

Derivators (cf. figure 1) are used to transform an uni-
versal representation of a function into a tool-specific one.
There is as much derivator as tools considered by the BL-IP

generator. These module are automated, and are IP inde-
pendent. The different tasks assumed by the derivator are :% The transformation of the U-HLS IP into a behav-

ioral description for the specific synthesis tool. At this
point, the description become synthesis dependent.% The specialization of the generic script according to
end-user constraints and precedent calculation.

IP Provider must specify the dependencies between pa-
rameters and how each parameter should be recomputed
(function). This part is very important and must be done
very precisely. The ability to correctly implement BL-IP is
dependent on this specification. All the parameter depen-
dencies are coded in a database, as shown in figure 5, in
order to be treated by the IP Compiler.

Begin functions
Bacc = ComputeBacc
Qacc = ComputeQacc
Qin = ComputeQin ...

Begin dependencies
Bin > Bacc Qin
N > Bacc Tools
Bacc > Qacc ...

End

Figure 5. Parameter derivation rules

Linked to these dependency definition, the IP Provider
must write the mathematical expression of each function.
These functions are grouped together in a Java Object which
is dynamically loaded when a particular BL-IP is chosen. In
the figure 6 we can see the method to compute the parametervawgxyx

through thez|{~}@���$��� vawgxyx function.

public int ComputeQacc(Integer p1) {
int bacc = p1.intValue();

int result = bacc-1;
return result;

}

Figure 6. Java method to compute Qacc

4 Example of an IP for Digital FilteringEY��� �H/1��A�:Y*cd,�k���;:�/<:�/�67�;21�!��-0NT�>��N!���$A�#
A digital filter is usually specified using frequency and

amplitude tolerance schemes. In the frequency domain, the
different passbands and stopbands must be specified. The

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

other desired properties of a filter are the maximum pass-
band and stopband gains. The width of the transition bands
gives the selectivity of the filter, that, configures with the
selected gains, will have an influence on the number of co-
efficients. A number of Signal Processing tools can ex-
tract from these specifications, and for different digital filter
structures, the number of coefficients and their floating or
fixed point values. They will be the main input to the Be-
havioral IP, associated to a desired structure.
A filter can have either a recursive (IIR) or non recursive
(FIR) structure. The equations 1 and 2 give the linear dif-
ferential equations for IIR and FIR filters, from which we
can derive the behavioral specification code for the IP.

�k�F����� �� � �k�1�
� � � �F�>���!�U���� � �k�"�

� � �k�F�@�h�!� (1)

�k�F����� �K���� � �k���
� � � �F���[�!� (2)

EY�&� 6]�!2��!��-0NT�>��N!����A`�H?�?�-0A�-0C�������AB#
The algorithmic parameters have an influence on the be-

havioral code. In this case, the filter type (RII or RIF) and
the filter structures have to be defined in this category. The
classical structures [14] are direct (I and II), cascade, paral-
lel, transposed and lattice forms.
The functional parameters will have an influence on the
generic behavioral code given by the algorithm selection.
In the case of digital filters, the first parameters are the
number of coefficients (l), the value of the coefficients
(�Yn �¡�s¢a£.z|{���£.£) and the bit width of the inputs and out-
puts (m>n�p�¤¥m>{~�$�). Thus, assuming that the IP will use
fixed-point representation of numbers, another important is-
sue in filter design is the quantization noise that is a result
of the coefficient and input/output quantization, and of the
processing unit precision. The last-mentioned have an in-
fluence on the round-off noise and on the scaling scheme.
In order to resolve this problem we have introduced some
functional parameters to modelize the quantization: cod-
ing format and scaling of coefficients (

vax {���£.£) and in-
put/output (

v n�p�¤ v {~�$�), size of accumulator (m wgxyx) and
Signal to Quantization Noise Ratio (¦ v l�§).
Finally, the constraints of the IP can be specified. In our
case the user can define a throughput and a latency con-
straints, but also a¦ v l�§ constraint.EY�54 �H/1����AB-3�k�B�!:�/G�
���©¨����U/��H?ª?@-3A�-"CD�����$A�#

This part of a specific IP design is very important and
will guarantees its performances. We will detail in this sec-
tion the influence of throughput and SQNR for a FIR di-
rect form filter. We assume that the input data are in the
interval «­¬a®Y¯�¯�¯�®�° using a fixed-point representation. The
generalization for all the structures has been treated and im-
plemented in the tool.

Signal to Quantization Noise Ratio ¦ v l±§ will de-
pend on the value of the coefficients and on the param-
eters lP¤²mon�p�¤¥m�{~����¤ v n�p�¤ v {~�$��¤ vax {��~£.£$¤²m wgxyx . Internal

variables have to be computed: the dynamic range, and the
number of guarded bitsm>³ that will guarantee that the fil-
ter will not overflow during computation. Then, the size of
accumulatorm wgxyx must respect the following rule:

´¶µ p w }[n x,·~w pU¸b�º¹ »'¼3½� ¾ ¿.ÀhÁ Â
¾
Ám>³ ¹ Ã&{©¸�Ä�Å ´¶µ p w }[n x,·~w pU¸b�¡Æ
¬M®m wgxyxºÇ m>³ÉÈ7m x {���£.£@È]mon�p

Then, the¦ v l�§ is given by:

¦ v l�§D¹ Ê ÄË,Ì »T¼3½
¾ ¿.À Â Ä

¾
Ê ÄÍKÌ »T¼.½

¾ ¿3À Â Ä
¾ ÈGÎ�ÏÐ;Ñ�Ò½ Ä�Ó ®
¬JÔ ¼ Ä�Õ×Ö�ØyÙ Ù ¼ Ö�Ú¥Û¡Ü5Ý Þ

At this point the user can specify a¦ v l�§ constraint and
IP compiler will derive the suited size for accumulation.

The throughput of the filter , i.e. the sample period, will
first have an influence on the time constraint given to the
synthesis script of the high-level synthesis tool. Secondly, a
real constraint will be on the unfolding factor of the filtering
loop. In tools like Monet or BC, this parameter must be
specified in an optimal manner to obtain efficient results. In
the case of the FIR filter with a multiplier time ofß.à Û©áâÜ this
criteria must follow:ã p0£U{�Ã&ä�n�pU¸>£ wBx ��{ ·�å Å l�¯ ß à Û©áâÜßTæ · {~��¸kæH����� ÆEY�FE �H?çZ[:�CD����N;��AW=s:1A+*��;21�!��-"N'89N!���$A�#

We consider an application context which guide the IP
Integrator to use a RIF BL-IP block. We can suppose that
the IP integrator has some knowledge of hardware con-
straints (for example he knows that the input data of RIF
IP are coded with 8 bits).

With these knowledges, the IP integrator can use the IP
Compiler tool and can gradually design and tune his IP. The
figure 7 present the IP Compiler tool running the RIF BL-IP
generator. When a BL-IP is chosen, the list of parameters is
printed. This list is sorted in 4 types which are: the tools pa-
rameters, algorithmic parameters, functionality parameters
and constraint parameters. The latter allows the IP Integra-
tor to specify the application context.

IP Compiler provides a solver which supports the execu-
tion of rules defined by IP Provider. This solver is manually
activated by IP Integrator and gives consistency informa-
tions (the modification of one parameter have an implica-
tion on one another, or the fixed value of one parameter is
in contradiction with the values of other parameters). Fig-
ure 7 shows the generation of the specification and synthe-
sis script for a direct structure of a FIR filter activated with
specific parameters.

When the BL-IP is completely customized, the IP Inte-
grator can load the best set of BL-IP file description, that top
say he obtain the best VHDL description for the constraint
he have specified and the corresponding synthesis script to
optimize his block (see files on figure 7).

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

Figure 7. Parameter specification and generated
VHDL file

5 Conclusion

We have presented in this paper a new IP design method-
ology. By the use of high level description language, we
expect real reuse possibility for a particular function. The
portability of a BL-IP is assumed by the decomposition of
the design flow in two parts. The first one is algorithm inde-
pendent and is common to all IP generators. The second one
depends on the function to be implemented, and represents
the IP developer experience. This methodology is technol-
ogy independent, and permit a rapid cycle of development.

We have defined BL-IP architectures for Digital filters
(RII and RIF), Fast Fourier Transform and Discrete Cosine
Transform. They are usable through a free access by Inter-
net. The method has also been used for the realization of
a motion estimation IP for MPEG4 video compression. In
this last case, the adaptation of the specification to the con-
straints is really important for the efficiency of the block.
Many motion estimation algorithms are existing, and repre-
sent a trade-off between complexity and quality. Algorithm
selection depending on user’s constraints will represent a
real issue in the quality of the resulting IP.

References

[1] J.-F. Agaesse and B. Laurent. Virtual components applica-
tion and customization. InDATE Conference, pages 726–
727, Munich, Germany, Mar. 9–12 1999.

[2] S. I. Association. The national technology roadmap for
semiconductors. Technical report, http://notes.sematech.org,
1999.

[3] R. A. Bergamaschi and W. R. Lee. Designing systems-on-
chip using cores. In37thDesign Automation Conference,
pages 420–425, Los Angeles, June 2000.

[4] H. Choi, J. Yi, J.-Y. Lee, I.-C. Park, and C.-M. Kyung. Ex-
ploiting intellectual properties in ASIP designs for embed-
ded DSP software. In36th Design Automation Conference,
pages 939–944, New Orleans, USA, June 21–25 1999.

[5] M. Dalpasso, A. Bogliolo, and L. Benini. Virtual simulation
of distributed ip-based designs. In36th Design Automation

Conference, pages 50–55, New Orleans, USA, June 21–25
1999.

[6] Design and Reuse. http://www.design-reuse.com.
[7] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro,

M. Paolini, R. Passerone, M. Sgroi, and A. Sangiovanni-
Vincentelli. Intellectual property re-use in embedded system
co-design: an industrial case study. InInt. Symp. on Systems
Synthesis, pages 37–42, Taiwan, China, Dec. 2–4 1998.

[8] A. Fin and F. Fummi. A web-cad methodology for ip-core
analysis and simulation. In37thDesign Automation Confer-
ence, Los Angeles, June 2000.

[9] D. Gajski, A. C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama,
and P. Bricaud. Essential issues for ip reuse. InProceeding
of Asian and South-Pacific Design Automation Conference,
pages 37–42, Yokohama, Japan, Jan. 25–28 2000.

[10] R. Glover, T. Inoue, and J. Teets. Panel: Challenges in worl-
wide ip reuse. In36th Design Automation Conference, pages
401–402, New Orleans, USA, June 21–25 1999.

[11] J. Haase. Design methodology for ip providers. InDATE
Conference, pages 728–732, Munich, Germany, Mar. 9–12
1999.

[12] J. Kim, K. Kwon, Y. Lee, and C. Lee. Ip database and catalog
system. InInternational Workshop on IP Based Synthesis
and System Design, pages 15–22, Grenoble, France, Dec. 14-
15 1999.

[13] I. Moussa, Z. Sugar, R. Suescun, M. Diaz-Nava, M. Pavesi,
S. Crudo, L. Gazi, and A. Jerraya. Comparing rtl and be-
havioral design methodologies in the case of a 2m-transistor
atm shaper. In36th Design Automation Conference, pages
598–603, New Orleans, USA, June 21–25 1999.

[14] A. V. Oppenheim and R. W. Schafer.Discrete-time Signal
Processing. Prentice Hall, 2nd edition, 1999.

[15] A. Reutter, B. Mossner, and W. Rosenstiel. Design of
reusable modules for high level designs. InInternational
Workshop on IP Based Synthesis and System Design, pages
45–48, Grenoble, France, Dec. 15-16 1998.

[16] W. Savage, J. Chilton, and R. Camposano. Ip reuse in the
system on a chip era. InInt. Symp. on Systems Synthesis,
Madrid, Spain, Sept. 20–22 2000.

[17] F. Vahid and T. Givargis. Incorporating cores into system-
level specification. InInt. Symp. on Systems Synthesis, pages
43–48, Taiwan, China, Dec. 2–4 1998.

[18] F. Vermeulen, F. Cathoor, D. Verkest, and H. D. Man. For-
malized three-layer system-level reuse model and method-
ology for embedded data-dominated applications. InDATE
Conference, pages 92–98, Paris, France, Mar. 27–30 2000.

[19] VSIA. http://www.vsi.org.
[20] K. Wakabayashi and T. Okamoto. C-based soc design flow

and eda tools: An asic and system vendor perspective.IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 19(12):1507–1522, Dec. 2000.

[21] P. Wilsey. Web-based analysis and distributed ip. InProceed-
ing of the 1999 Winter Simulation Conference, pages 1445–
1453, Dec. 5–8 1999.

[22] T. Zhang, L. Benini, and G. D. Michelli. Component selec-
tion and matching for ip-based design. InDATE Conference,
pages 40–46, Munich, Germany, Mar. 12–15 2001.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

