The power consumption of integrated circuits is one of the most problematic considerations affecting the design of high-performance chips and portable devices. The study of power-saving design methodologies now must also include subjects such as systems on chips, embedded software, and the future of microelectronics. **Low-Power Electronics Design** covers all major aspects of low-power design of ICs in deep submicron technologies, and addresses emerging topics related to future design.

This volume explores, in individual chapters written by expert authors, the many low-power techniques born during the past decade. It also discusses the many different domains and disciplines that impact power consumption, including processors, complex circuits, software, CAD tools, and energy sources and management.

The authors delve into what many specialists predict about the future by presenting techniques that are promising but are not yet reality. They investigate nanotechnologies, optical circuits, ad hoc networks, e-textiles, as well as human powered sources of energy. **Low-Power Electronics Design** delivers a complete picture of today’s methods for reducing power, and also illustrates the advances in chip design that may be commonplace 10 or 15 years from now.

FEATURES

- Covers all major aspects of low-power design of ICs in deep submicron technologies
- Explores the history and ongoing evolution of low-power electronics
- Describes the components of low-power circuits, such as logic circuits and standard cells, arithmetic operators, adiabatic and clock-powered circuits, and more
- Examines battery cells, sources of energy, and chip cooling
- Addresses emerging topics related to future design, including nanotechnologies, optical chips, systems on chips, embedded software, and energy sources
- Contains comprehensive references within each contributed chapter, referring to books, journal articles, and Web links

CONTENTS

TECHNOLOGIES AND DEVICES

- History of Low-Power Electronics, Christian Piguet
- Evolution of Deep Submicron Bulk and SOI Technologies, Marc Belleville and Olivier Faynot
- Leakage in CMOS Nanometric Technologies, Antoni Ferré and Joan Figueras
- Microelectronics, Nanoelectronics, and the Future of Electronics, Jing Wang and Mark Lundstrom
- Advanced Research on On-Chip Optical Interconnects, Ian O’Connor and Frédéric Gaffiot

LOW-POWER CIRCUITS

- Modeling for Designing in Deep Sub-Micron Technologies, Daniel Auvergne, Philippe Maurice, and Nadine Azémard
- Logic Circuits and Standard Cells, Christian Piguet
- Low-Power Very Fast Dynamic Logic Circuits, Jiren Yuan
- Low-Power Arithmetic Operators, Arnaud Tisserand
- Circuits Techniques for Dynamic Power Reduction, Dimitrios Soudris
- VHDL for Low Power, Amara Amara and Philippe Royannez
- Clocking Multi-GHz Systems, Vojin G. Oklobdzija
- Circuit Techniques for Leakage Reduction, Kaushik Roy, Amit Agarwal, and Chris H. Kim
- Low-Power and Low-Voltage Communication for SoCs, Christer Svensson
- Adiabatic and Clock-Powered Circuits, Lars Svensson
- Weak Inversion for Ultimate Low-Power Logic, Eric A. Vittoz
- Robustness of Digital Circuits at Lower Voltages, Harry Veendrick

LOW-POWER PROCESSORS AND MEMORIES

- Techniques for Power and Process Variation Minimization, Lawrence T. Clark and Vivek De
- Low-Power DSPs, Ingrid Verbauwhede
- Energy-Efficient Reconfigurable Processors, Raphaël David, Sébastien Fillement, and Olivier Sentieys
- Macgic, a Low-Power Reconfigurable DSP, Flavio Rampogna, Pierre-David Pfister, Claude Arm, Patrick Volet, Jean-Marc Masgonty, and Christian Piguet
- Low-Power Asynchronous Processors, Kamel Slimani, Joao Fragoso, Mohammed Es Sahliene, Laurent Fesquet, and Marc Renaudin
- Low-Power Baseband Processors for Communications, Dake Liu and Eric Tell
- StandBy Power Reduction for SRAM Memories, Stefan Cserveny, Jean-Marc Masgonty, and Christian Piguet

See reverse side for continuation of contents and ordering information
Low-Power Cache Design, Vasily G. Moshnyaga and Koji Inoue
Memory Organization for Low-Energy Embedded Systems, Alberto Macii

LOW-POWER SYSTEMS ON CHIPS
Power Performance Trade-Offs in Design of SoCs, Victor Zyuban and Philip Strenski
Low-Power SoC with Power-Aware Operating Systems Generation, Sunjoo Yoo, Aimen Bouchhima, Wander Cesarino, Ahmed A. Jerraya, and Lovic Gauthier
Low-Power Data Storage and Communication for SoC, Miguel Miranda, Erik Brockmeyer, Tycho van Meeuwen, Cedric Ghez, and Francky Catthoor
Networks on Chips: Energy-Efficient Design of SoC Interconnect, Luca Benini, Terry Tao Ye, and Giovanni De Micheli

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks, Mortaza Maleki and Massoud Pedram
Modeling Computational, Sensing, and Actuation Surfaces, Phillip Stanley-Marbell, Diana Marculescu, Radu Marculescu, and Pradeep K. Khosla

EMBEDDED SOFTWARE
Low-Power Software Techniques, Catherine H. Gebotys
Low-Power/Energy Compiler Optimizations, Ulrich Kremer
Design of Low-Power Processor Cores Using a Retargetable Tool Flow, Gert Goossens, Dirk Lanneer, and Peter Dytrych
Recent Advances in Low-Power Design and Functional Coverification Automation from the Earliest System-Level Design Stages, Thierry J.-F. Omnès, Youcef Bouchebaba, Chidambarm Kulkarni, and Fabien Coelho
High-Level Power Estimation and Analysis, Wolfgang Nebel and Domenik Helms

Power Macro-Models for High-Level Power Estimation, Enrico Macii and Massimo Poncino
Synopsys Low-Power Design Flow, Renu Mehra and Barry Pangrle
Magma Low-Power Flow, Ed Huijbregts, Lars Kruse, and Eric Seelen
Sequence Design Flow for Power-Sensitive Design, Jerry Frenkil

BATTERY CELLS, SOURCES OF ENERGY, AND CHIP COOLING
Battery Lifetime Optimization for Energy-Aware Circuits, Davide Bertozzi and Luca Benini
Miniature Fuel Cells for Portable Applications, Didier Bloch
Human-Generated Power for Mobile Electronics, Thad Starner and Joe Paradiso
Chip Cooling: Why – How, Yervant Zorian and Dimitris Gizopoulos