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ABSTRACT
The implementation of adaptive filters with fixed-point

arithmetic requires to evaluate the computation quality. The
accuracy may be determined by calculating the global quan-
tization noise power in the system output. In this paper,
a new model for evaluating analytically the global noise
power in the LMS algorithm and in the NLMS algorithm
is developed. Two existing models are presented, then the
model is detailed and compared with the ones before. The
accuracy of our model is analyzed by simulations.

1. INTRODUCTION

The aim of adaptive filters is to estimate a sequence of
scalars from an observation sequence filtered by a system
in which coefficients vary. These coefficients converge to-
wards the optimum coefficients which minimize the mean
square error (MSE) between the filtered observation signal
and the desired sequence. This type of filters is used in
different fields such as noise cancellation, equalization, li-
near prediction and channel estimation. The different al-
gorithms existing for adaptive filtering are mainly classi-
fied in two types : Recursive Least Square (RLS) and Least
Mean Square (LMS). Nevertheless, the LMS algorithm is
the most used in applications because its implementation
in embedded systems is more simple than the RLS algo-
rithm. However, the use of fixed-point arithmetic is requi-
red. This type of arithmetic is less expensive in terms of cost
and power consumption than the floating-point arithmetic.
But, the coding of fixed-point data introduces an error cal-
led quantization noise. These different quantization noise
sources are propagated in the system and lead to an output
quantization noise. The power of this quantization noise is
determined in order to compute the signal to quantization
noise ratio (SQNR). The knowledge of the analytical ex-
pression of the SQNR allows to determine the fixed-point
format of the system data for a given SQNR minimal value.
Some different models have been proposed for the LMS al-
gorithm in [2] and [4] but they are valid only for convergent
rounding. So, the aim of this paper is to find an analytical
expression for the noise power in the LMS algorithm for all
types of quantization (convergent and non-convergent roun-
ding, truncation). The truncation is the most common mode
used in embedded systems. Indeed, its implementation re-
quires no additional hardware.
This paper is organized as follows. The basic properties of
the LMS algorithm are first recalled in section 2. Then, the
existing models are detailed and their limits discussed. In
section 3, the developed model is explained and the method
is clarified. A model is also shown for the NLMS algorithm.
Finally, in section 4, the quality of our model is evaluated

through different experimentations. This allows to under-
line its validity and to compare its results with the others.

2. RELATED WORK

The LMS adaptive algorithm addresses the problem of
estimating a sequence of scalars yn from a sequence of
length N vectors xn [3]. The linear estimate of yn is wt

nxn

where wn is a length N weight vector which converges
to the optimal vector w∗ in the mean-square error (MSE)
sense. This optimal vector is equal to w∗ = R−1p where
R = E(xnxt

n) and p = E(xnyn). The vector wn is upda-
ted according to the equation

wn+1 = wn + µxn(yn − wt
nxn) (1)

where µ is a positive constant representing the adap-
tation step. The maximum value of µ to ensure stability is
equal to 2/λmax with λmax the maximum eigenvalue of
R.

In the model presented in [4], the expression of the
MSE in fixed-point implementation is determined. In that
case, the MSE is the second order moment of the diffe-
rence between the desired signal in infinite precision and
the quantified computed output. Thus the MSE is given by
the sum of the mean square error in infinite precision and
of the noise power which is composed of three terms.

– The error due to input data quantization filtered by
the coefficients.

– The input sequence filtered by the deviation of the
filter coefficients from their exact values in infinite
precision.

– The noise inside the filter due to fixed-point arithme-
tic operations.

The expression of these three terms has been determi-
ned. The two first terms are expressed as in the case of li-
near systems. The last term is more complex. A recurrence
is determined on the deviation of the coefficients. But, few
hypothesis are made to simplify the complexity of the equa-
tion. The final result is complicated (term of second order
in µ2).

The model detailed in [2] deals with the MSE like the
one before but the method is different. This model also de-
termines the MSE in the case of fixed-point implementa-
tion. Only two noises are considered. They correspond to
the noise inside the filter due to arithmetic operations and
the noise in the multiplication between the input signal and
the error µxn(yn − wt

nxn). A recurrence is developed on
the deviation between the coefficients and their optimum
value. This recurrence, calculated before in the case of infi-
nite precision, is injected in the equation of the MSE. Then,



expression leads to the same result as in [4] if the input
noise is not considered.

In these models, the means of the quantization noises
are considered as equal to zero. However, this equality is
only valid in the case of quantization by convergent roun-
ding. The mean of a noise due to the quantization of a dis-
crete amplitude signal in the case of classic rounding is gi-
ven by [5]

mb =
q

2
2−k (2)

where q is the quantization step and k the number of
eliminated bits. The model proposed in the next section is
developed for all types of quantization.

3. DEVELOPED MODEL

The new developed model is described in this part. The
analysis of the error is done at the steady-state, once the
filter coefficients have converged. Let x′

n be the input signal
after quantization and y′

n the quantified desired signal.

x′
n = xn + αn

y′
n = yn + βn (3)

where αn and βn are quantization noises with respecti-
vely means mαn and mβn and variance σ2

αn
and σ2

βn
. The

filter coefficient vector is written as

w′
n = wn + ρn (4)

where ρn is the error vector of length N due to the
quantization effects. This noise can not be considered as
the noise due to the quantization of a signal. The error in
finite precision is given by

e′n = y′
n − w′t

nx′
n − ηn (5)

with ηn the global noise in the inner product w′t
nx′

n.
Moreover, the updated coefficients expression becomes

w′
n+1 = w′

n + µe′nx′
n + γn (6)

where γn is the noise associated with the term µe′nx′
n and

depends on the way the filter is computed.
So, the error is measured at the filter output. The po-

wer of the error between filter output in finite precision and
in infinite precision is determined. It is composed of three
terms.

E(by)2 = E(αt
nwn)2 + E(ρt

nxn)2 + E(η2
n) (7)

3.1. Expression of the term E(αt
nwn)2

At the steady-state, the vector wn can be approximated
by the optimum vector w∗. So the term E(αt

nwn)2 is equal
to |w∗|2(m2

αn
+σ2

αn
) with |w∗|2 =

∑
w∗2

i . It corresponds
to the input noise filtered by the optimum coefficients.

3.2. Expression of the term E(η2
n)

The second term E(η2
n) depends on the specific imple-

mentation chosen for the computation of the filter output
(filtered data). If the N products are computed in double
precision (no multiplication bit are eliminated), this noise
corresponds to a noise on the output. On the other case, it
corresponds to the sum of the N product noises. These two
first terms are the same as in linear systems and can be eva-
luated very easily as proposed in [1]

The last term E(ρt
nxn)2 is more complex since ρn is

not a quantization noise. With IN the length N identity ma-
trix, it can be demonstrated that the noise ρn is given by:

ρn+1 = Fnρn + bn (8)

where Fn = IN − µxnxt
n

bn = −µxnwt
nαn + µxn(βn − ηn) + µαnen + γn

Introducing the matrice Pn = E(ρnρt
n), the equation

9 can be obtained

Pn+1 = E(bnbt
n) + E(Fnρnbt

n)

+ E(bnρt
nFn) + E(Fnρnρt

nFn) (9)

This expression is composed by four terms which are deve-
loped in the next paragraphs.
The term E(bnbt

n) can be estimated by approximating bn

by γn (γn is the noise associated with the term µe′nx′
n). In-

deed, bn is composed of several terms of which γn is the
most important since the other terms are products of weak
power terms. So, the term E(bnbt

n) is approximated by

E(bnbt
n) = E(γnγt

n) (10)

For the term E(Fnρnbt
n), bn is replaced by γn.

E(Fnρnbt
n) = E(ρn)E(γt

n)−µE(xnxt
nρn)E(γt

n) (11)

However, from equation 8 at the steady-state, the term E(xnxt
nρn)

is equal to
µE(xnxt

nρn) = E(γn) (12)

The computation of equation 11 requires the knowledge
of E(ρn). The recurrence ρn+1 = FnFn−1ρn−1+Fnbn−1+
bn can be developed as follows

E(ρn) = (E(Fn) + E(FnFn−1)....)E(γn) (13)

But calculating this series is a very tedious task and can
only be done by simulation. So an hypothesis is made. We
suppose ρn and xn non-correlated. This hypothesis will be
discussed in section 4.3. Thus, with equation 12, the term
E(ρn) is equal to

E(ρn) =
R−1E(γn)

µ
(14)

where R is the autocorrelation matrix of the input si-
gnal. Finally, the next expression is obtained

E(Fnρnbt
n) =

R−1E(γn)E(γt
n)

µ
− E(γn)E(γt

n) (15)

With the same method, the term E(bnρt
nFn) can be com-

puted with the following expression

E(bnρt
nFn) =

E(γn)E(γt
n)R−1

µ
− E(γn)E(γt

n) (16)

If the term in µ2 is neglected, E(Fnρnρt
nFn) can be

written as

E(Fnρnρt
nFn) = Pn − µ(RPn) − µ(PnR) (17)



the expressions 10,15,16 and 17 in the equation 9 and using
the trace operator, the following expression is obtained

2µTr(RPn) = 2
Tr(E(γn)E(γt

n)R−1)

µ
+ Tr(E(γnγt

n))

− 2Tr(E(γn)E(γt
n)) (18)

Moreover, the next equation can be written

Tr(RPn) = E(ρt
nxn)2 (19)

Thus, developing the others terms of equation 18, the
term E(ρt

nxn)2 can be obtained from equation 20

E(ρt
nxn)2 = m2

γn

N∑

i=1

N∑

k=1

(R−1
ki )

µ2
+

N(σ2
γn

− m2
γn

)

2µ
(20)

This term corresponds to the input signal filtered by the
deviation on the coefficients.

3.4. The global noise power

According to the previous analyse, the global noise po-
wer Pb can be written as

Pb = |w∗|2(σ2
αn

+ m2
αn

) + (m2
ηn

+ σ2
ηn

)

+ m2
γn

N∑

i=1

N∑

k=1

(R−1
ki )

µ2
+

N(σ2
γn

− m2
γn

)

2µ
(21)

This model is presented for quantization by truncation
and rounding. In the case of rounding, the means of ηn and
γn are not equal to zero since they represent the quantiza-
tion of a discrete signal. From equation 21, mαn is the only
term to be equal to zero in rounding quantization.

However, if the implementation is made in convergent
rounding quantization, the means of ηn and γn are equal to
zero leading to

Pb = |w∗|2σ2
αn

+ σ2
ηn

+
N(σ2

γn
)

2µ
(22)

In that case, the expression is quite similar to the model
in [2] and [4] but more tractable (no term of second order
in µ2).

3.5. The NLMS algorithm

In this section the NLMS algorithm is considered. The
expression of the updated equation is equal to

wn+1 = wn +
µ

xt
nxn

(yn − wt
nxn)xn (23)

The term 1
xt

nxn
is a normalization term which let µ

be between 0 and 2. To prevent from a division in fixed-
point arithmetic, the term is approximated by a power of
two which greatly simplify the implementation. Thus, the
division is equivalent to a shift of some bits. This method
does not introduce a new noise. Here, that case of norma-
lization is considered. The mean of 1

xt
nxn

can be approxi-

mated by 1
N(σ2

x+m2
x)

where mx and σ2
x are the mean and

the variance of the input signal. The noise power is given
by replacing µ by µ

N(σ2
x+m2

x)
in equation 21

Pb = |w∗|2(σ2
αn

+ m2
αn

) + (m2
ηn

+ σ2
ηn

)

+ m2
γn

N2(σ2
x + m2

x)2

N∑

i=1

N∑

k=1

(R−1
ki )

µ2

+
N2(σ2

x + m2
x)(σ2

γn
− m2

γn
)

2µ
(24)

4. ACCURACY

In this section, simulations are made to analyse the ac-
curacy of our model for evaluating the fixed-point noise
power in a LMS algorithm. The input signal chosen is an
AR(1) process given by

xn+1 = βxn + un (25)

where un is a white noise with zero mean, with va-
riance σ2

u and β ∈ [0,1[. So, the input signal can be very
correlated (β −→ 1) or not (β −→ 0). For these simu-
lations, tests are made for quantization by truncation and
rounding. The relative error between the noise power ob-
tained with simulations and the estimated noise power with
our model is computed. For these simulations, µ can vary
from 0 to 0.6µmax. Indeed, the filter coefficients conver-
gence is ensured if µ < µmax. But, in reality, to be sure
that the coefficients do not diverge, a limit of 0.6µmax is
chosen. However, as µmax depends on the length filter, µ
is represented by µ

µmax
to be normalized. Moreover, the

length filter N varies from 1 to 32. The input signal is fairly
correlated (β = 0.5) for the two simulations.

4.1. Evaluation of the model accuracy

Figure 1 shows the relative error between the real and
the estimated noise power in rounding quantization. This
relative error is smaller than 25% which is a good result
since it represents a difference of 1 dB between the output
quantization noise power estimated by simulation and the
power given by our model. So, this new developed model
is valid for the case of quantization by rounding.
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FIG. 1 –. Relative error for rounding quantization

Figure 2 represents the relative error in the case of quan-
tization by truncation. As in the rounding quantization case,
our model leads to an accurate estimation of the noise po-
wer. The relative error is smaller than 20%.



0.1  
0.2  

0.3  
0.4  

0.5  
0.6  

1

2

4

8

16

32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

mu/mu
max

N

R
el

at
iv

e 
er

ro
r

FIG. 2 –. Relative error for truncation quantization

4.2. Comparaisons with the other models

Our model is valid but we need to compare it with the
two others models presented before [2, 4]. For this simu-
lation in figure 3, N is fixed at 16 and µ varies from 0 to
0.8µmax. This test is made in the case of quantization by
rounding for which the two other proposed models are pre-
sented.
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FIG. 3 –. Comparaison between the three models

The model in [2] is the less accurate because it does not
integrate the input noise. Our model has better results than
the model in [4]. Our simplifications are not prejudicial for
the estimation quality. Moreover, the terms we have added
in our model let us have a better result. In some cases, the
models [2] and [4] are not accurate because they do not

integrate the terms m2
ηn

, m2
γn

N∑

i=1

N∑

k=1
(R−1

ki
)

µ2 and −Nm2
γn

2µ

for a rounding quantization.

4.3. Validity of the hypothesis

In this part, the validity of the hypothesis made in sec-
tion 2 is examined. It corresponds to the non-correlation
between ρn and xn. With this hypothesis, the following
equality is obtained

E(ρn) =
R−1E(γn)

µ
(26)

An alternative to this hypothesis is to develop the re-
currence and to compute the different terms by simulation
as follows

E(ρn) = (E(Fn) + E(FnFn−1)....)E(γn) (27)

In this case, this approach takes into account the correla-
tion between ρn and xn. However, the series (E(Fn) +

lated by simulation here. In figure 4, the two methods to
estimate E(ρn) are compared. The relative error between
the real value of E(ρn) and its estimation by 27 and 26 is
presented. The length N is 16, µ = 2−7 and β varies from
0 (white noise) to 0.95 (very correlated signal).
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FIG. 4 –. Relative error between E(ρn) and its estimation

This hypothesis of non-correlation between ρn and xn

is valid for a slightly correlated signal, but when the input
signal is very correlated, the hypothesis is no more valid.
On the other hand, the method using the recurrence leads
to a very small relative error for all types of correlation for
the input signal. However, the difficulty is to determine the
order to stop the series. For our simulations, we stop the
series after 200 terms to have a satisfying result. But, even
if this method gives good results, it is very tedious and very
expensive in computing time. So, some works need to be
carried out to have a global method to estimate E(ρn) in
all cases.

5. CONCLUSION

In this paper, a new model for evaluating the noise po-
wer in a fixed-point implementation of the LMS algorithm
is presented. This approach has for main advantage to be
more tractable than the models [2] and [4] and to be valid
for all types of quantization. This model can be improved
through the determination of E(ρn) since the two methods
(equations 26 and 27) can be improved. A global model
must be developed for this term. Nevertheless, further stu-
dies have to be carried out in order to develop this metho-
dology for all types of systems and particularly, non-linear
systems.
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