
Control unit for parallel embedded system

Stéphane Chevobbe, Raphael David, Frederic Blanc, Thierry Collette
CEA-List DRT/DTSI/SARC/LCEI

F-91191 Gif sur Yvette
FRANCE

{stephane.chevobbe,raphael.david,frederic.fblanc,thierry.collette}@cea.fr

Olivier Sentieys
IRISA - ENSSAT

6 rue de Kérampont
22305 Lannion Cedex

olivier.sentieys@enssat.fr

ABSTRACT
New integration methodologies as IP reuse have become more
and more popular since few years. These methodologies represent
an opportunity to reduce the gap between the integration
capacities and the ability of the designers to develop complex
systems. SOC (System On Chip), that are composed of different
heterogeneous cores, have taken benefit of these methodologies.
Recent SOCs are usually Globally Asynchronous and Locally
Synchronous and exploit a lot of parallelism. Up to now, research
efforts have mainly been focused on the definition of new
communication and processing primitives. Unfortunately, control
mechanisms have not evolved as fast as the rest of the system.
Besides, these devices are usually organized around a
microprocessor supporting an operating system managing the
execution of the different tasks on the processing primitives and
their communications. We propose in this paper a hardware
solution to manage tasks and communication in such parallel
systems. This controller focus on the implementation of Petri nets
and has the property to be reconfigurable and to self-manage its
configurations. Physical implementation of this component has
been done in 0.13µm technology.

Keywords
SOC, parallel controller, Petri-net, asynchronous, GALS

1. Introduction
In one hand, to take benefits from technology improvements
while trying to reduce more and more design costs, recent design
methodologies are based on IP reuse. In the other hand, to achieve
more and more computing power new execution models are
proposed. Here are introduced the main execution models
proposed in the literature.
Commercial products based on the SOC paradigm are often
dedicated to specific domains. Those designs are usually based on
a central CPU, which manages hardwired accelerators executing
time-consuming tasks. For example, the platforms Nomadik
architecture from STMicroelectronics [1] and the Nexperia [2]
from Philips are dedicated to multimedia applications. They are
composed of a central CPU which manages with I/O controllers
and hardware accelerators optimize for audio or video. In these
platforms the control is assumed by an OS running on the host
processor. The main drawbacks of this kind of solutions are both
the lack of scalability and their poor ability to execute parallel
applications. Due to the CPU, the execution model of such SOC is
too sequential to achieve high level of parallelism, and because of
centralized control, these architectures can not be extended
keeping the same organization.

On the contrary, dataflow architectures propose to use a spatial
distribution of tasks on the chip. IPs are connected by a network
on chip and synchronizations between tasks are performed by the
data [3]. As an example the RAPID architecture [4] is composed
of ALU and memories elements connected by a reconfigurable
network. These approaches are very efficient for regular
applications, whose control flows can be statically predicted, but
are not suitable for irregular ones.

Hybrid architectures try to solve drawbacks of the two previous
solutions by mixing them. Hybrid SOCs are composed of two
kinds of resource. The first one is in charge of the task level
control. The second one is composed of processing elements that
can be eventually heterogeneous (specific data-path or
reconfigurable structures). As example, DART is a reconfigurable
coarse-grained architecture in which the operators and the data-
path are dynamically reconfigurable [5]. PACT proposes the XPP
[6] architecture which is a dynamically reconfigurable data-path
composed of DSP, ALU and memory elements. Even if these
solutions offer some real advances in embedded computing, they
still fail to cope with dynamic control flows which needs tight
coupling between control and computations and reactive
solutions.

As we briefly show upper, the management of computation and
exploitation of the potential parallelism of the application is a key
for the system performance. The kind and the amount of
parallelism may however significantly vary between two
applications, and even between two implementation of a same
application. Parallelism properties have thus to be extracted from
the applications.

It can be done by extracting and analyzing data-dependencies
between these applications [7]. However, once extracted, the
parallelism will also be limited by the computation model of the
hardware structure. For example, SIMD architecture will only
efficiently exploit similar independent tasks because of its control
structure. Furthermore, hardware structures may add extra
constraints to the system, such as the sharing of memories which
imply the introduction of synchronization primitives in the
application control flow.

The aim of the study is to propose a control solution that
does not add those extra constraints. The paper is organized as
follow. The next section presents the control requirements at
system level and a state of the art of hardware implementing Petri
Nets. The third section introduces the RAMPASS platform and
the fourth describes in detail our controller named RAC. The fifth
section presents performances and implementation results of the
architecture.

mailto:olivier.sentieys@enssat.fr

2. System control requirement
2.1 Definition of control functionalities
Control is defined as a process able to make decisions regarding a
set of events and a history of previous taken decisions. Four kinds
of control structures can be used to describe the control flow of an
application:
1 Free Choice: a set of actions is possible depending on the

forthcoming events. In a software point of view this is
equivalent to a “if…then…else…” structure.

2 Parallel divergence: This control structure creates branches
in the decision tree. It is equivalent to a fork instruction used
in parallel language.

3 Parallel Convergence: This control structure joins decision
branches. It is equivalent to a join instruction used in parallel
language.

4 Mutual exclusion: This structure permits to manage
synchronizations due to any shared resources.

2.2 Control system and Petri net
Finite state machines have been intensively used to describe the
control flow of application in specific integrated circuit, it is not
well suited for concurrency description. This model imposes to
describe each states of the system, which can be enormous in case
of concurrent behavior. Petri nets have been proposed as an
alternative modeling formalism to exploit the advantages that they
offer over automata models [8]. Petri net models are generally
more compact and more powerful than automata models. They are
a powerful formalism for describing and studying systems that are
characterized as being concurrent, asynchronous, distributed,
parallel and non deterministic [9].
A Petri Net is a particular kind of directed graph with an initial
state called the initial marking. The underlying graph of a Petri
net is a directed, weighted, bipartite graph consisting of two kinds
of nodes, called places and transitions. Edges connect either a
place to a transition and a transition to a place. A change in the
net marking corresponds to the execution of actions (known as
transition firing or occurrence). These changes occur according to
the following basic rules:

(a) a transition is enabled if every of its input places has
at least one token;

(b) any enabled transition can occurs. Their firing
removes a token from each of the corresponding input places and
insert a new token in all their output places;

(c) enabled transitions can occur concurrently as long as
they are independent, i.e., as long as they use different tokens.
Different subclass of Petri net can be described according to their
decision and modeling power. SMs (State Machine) admit no
synchronization, MGs (Marked Graphs) admit no conflict, FCs
(Free Choice) allows asymmetric confusion but disallow
symmetric confusion which are admitted by PNs (Pure Net) [10].
On a control point of view, the computational units in the system
need only an untimed model, in this sense that there is only a
sequence of actions that have to be completed. Some actions must
occur before others to respect data precedence constraints and
causality, whereas others can occur in parallel. No timing
considerations are needed for the controller to guarantee this
action scheduling.

2.3 Related work
The use of controllers based on Petri net is very large. The first
architectures were dedicated to the control of asynchronous
concurrent systems. A lot of others applications have also been
found from that time, as industrial systems control or used in
synthesis methodology of asynchronous design [10].
First published hardware implementations of Petri Nets controller
were developed by S. S. Patil in 1972 [11]. They propose this
kind of controller because of the ease of describing concurrent
behavior with Petri Nets. These implementations were based on
the use of flip-flops to substitute each individual place and
transition.

P
er

fo
rm

an
ce

Flexibility

Direct synthesis

Programmable

Dynamic
reconfiguration

75’, S. Patil
82’, L. Hollaar
88’, R. Hartenstein
96’, V. Varashavsky

Dedicated IPs
97’, Murakoshi
02’, Bulach

GPP
83’, R. Vallette
87’, Crockett

Figure 1: Architectural space of controller based on Petri Net
The architectures implementing Petri Net can be classified
according to the execution model to compute the PN and the
target architecture on which is implemented the PN. Globally, the
space of these architectures can be divided in two fields as shown
in figure 1. The first one is related to the implementation of a
particular Petri Net, while the other support the modification of
the implemented Petri net after the component fabrication. In each
field, several architectural targets are available to implement the
Petri Net. Hardwired as well as programmable processors
controllers can be found in the literature.

2.3.1 Direct implementation
When Petri nets are directly synthesis in hardware with glue logic
and flip-flops it is called direct implementation. A configurable
architecture based on the Kolte Array is proposed in 1988 by R.
W. Hartenstein and al. [12]. Thus, the architecture is a little more
flexible than dedicated one. The main drawback is the
interconnect network between the places and the transitions. It is a
crossbar to allow connection between each place and transition
but it is under used because of static configuration. This kind of
architecture is used to implement safe Petri nets, which are a
subclass of Petri nets with no more than one token at a place and
where no place is both the input and the output of the same
transition.
A dataflow machine based on implementation of Petri net is
proposed by J. P. David [13]. Different nodes are used to
implement an application. The methodology is limited by the
interconnection. Indeed, the size of the bus that connects the
nodes of the net is equal to the size of the data.

2.3.2 Programmed implementation
Petri net implementations based on commercial platforms are
based on the use of general-purpose processors which do not
inherently behave in an event-driven manner. S. Bulach proposes
a dedicated programmable controller based on the execution of
PN [14]. Starting from the net structures supporting concurrent
processes and the inclusion of I/O signals in the firing conditions,

an encoding scheme for the storage of the net structure in an
EPROM memory is generated. The cyclic net execution algorithm
consists of transition enabling checks and firings. New output
signals are set after all enabled transitions of the current marking
have been fired. Although the execution model of the controller is
based on PN, the computation of the next marking is sequential.
Performances of the architectures implementing Petri Net are a
limitation to use it as a control unit of systems on chip. We thus
propose an architecture which takes advantage of the flexibility of
programmable solutions without reducing performance (cf. figure
1). We propose in the next section a new computation platform,
named RAMPASS (Reconfigurable And Advanced Multi-
Processing Architecture for future Silicon Systems), whose
control unit is based on an efficient implementation of Petri nets.

3. RAMPASS platform
RAMPASS is divided in three parts [15], depicted in figure 2. An
application memory stores the complete description of the
application. The active control part (RAC: Reconfigurable
Architecture for the Control) manages the tasks execution on all
the resources of the computing part (RAO : Reconfigurable
Architecture for the Operators). The computing part is composed
of processing elements that receive commands from the control
part. Processing elements can be programmable processors,
reconfigurable operators or hardwired accelerators.
This platform is event driven and is able to manage synchronous,
asynchronous, as well as hybrid Globally Asynchronous Locally
Synchronous systems. Because of the modular structure of SOC,
this control part has to be able to manage concurrently several
independent control flows to manage the different computing
primitives independently.
To be implemented in the RAC, the application has to be splitted
into tasks and described as a safe labeled Petri net. Places
describe local states of the application execution and transitions
are associated to a command/event couple. The command is sent
to the computing part to start the execution of a computation. The
events point a specific transition of the application that evaluates
the state of the execution. This description formalism will be
detailed in section 5.2.
The RAC executes active windows of the whole application
described in the application memory. These windows depict the
parts of the application containing at least one active place in the
Petri net describing the application. It is continuously updated by
internal building and release mechanisms. The set of tokens
propagated in the window is sufficient to describe the global state
of the system. Each active token in the window will trigger the
sending of a command to the computing part. Next, the computing
part executes the commands as soon as they are received, and sent
back event at the end of the executions. Finally, according to
these events, all the tokens move from the input places of the
transitions to their output places. As the events are sent
independently by computing resources of the RAO, several tokens
can evolve in parallel.

Instructions

RAO

Op
1

Op
2

Events…

Op
3

Op
2

Op
1

…

RAC
P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

Application
Control Memory

Tasks dependencies
and

synchronizations

IP supporting
controls

Heterogeneous
operators

Instructions

RAO

Op
1

Op
2

Events…

Op
3

Op
2

Op
1

…

RAC
P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

P3 P12

P4

P9 P13

P8

P6

t3

t4

t4 t12

t8

Application
Control Memory

Tasks dependencies
and

synchronizations

IP supporting
controls

Heterogeneous
operators

Figure 2: RAMPASS overview

There are thus two interfaces between the control part and the
computing part. The first one (command interface) is used to send
the commands to the computing resources and the second one
(event interface) allows to send events from the computing part to
the control part. The command interface implements a simple
two-phase handshaking protocol.

4. RAC description (Reconfigurable
Adapted to Control)
The control part of RAMPASS is an architecture dedicated to the
implementation of PN. We discus at first in this section its
architectural principles. In subsection 4.2 we will detail some
prototyping issues of this solution. Finally section 4.3 will clarify
the application description formalism.

4.1 Architectural description
The RAC implements directly PN on a dynamically auto-
adaptable architecture. It self-manages its hardware resources,
through the realization of three basic functions:

• Execution: the RAC fires transitions when all their input
places own a token and when its associated condition is
high. The execution is in charge of moving the tokens
from input place of transitions to their output places.
Finally, it sends the associated commands to transitions.

• Building: The RAC is able to identify the branches of
the active windows that have to be extended. It is also
able to place and route new cells on its network of cells
to implement the new active windows.

• Release: This action is needed to free resources on the
RAC network of cells. Basically, cells without token in
their input branches are released slowly but
continuously. When there is an urgent need of
resources, the RAC is also able to release concurrently
all the cells of its input branch.

All these three functions are done concurrently to optimize the
use of the hardware. This makes the architecture dynamically
reconfigurable. All the decisions concerning the allocation and the
routing of the PN build in the hardware are done by the
architecture itself. Thanks to the self managing of the building
and release actions, the description of the application can be
shortened. Indeed no place and route information have to be
added to the functional description of the PN to implement it in

the RAC. These properties enable new tradeoff between
flexibility (programmable processor) and performance (direct
implementation of PN).
To illustrate the execution model of the RAC a simple example
can be used. Let consider at first a network of cells totally free. A
boot sequence configures a boot cell from which the whole net
will be built. This boot cell points the initial marking of the PN in
the application memory. The architecture has next to select
enough free cells in the hardware structure to begin the
implementation of the PN. Each new cell is then selected to
develop every branch of the PN starting from the boot cell. These
new cells are named leaf cells.
When a leaf cell is selected to build a new cell, its description is
loaded from the application memory. For each cell connected
from the selected leaf, two cases can occur. Indeed the cell can be
already mapped in the cell network. In that case, the connection is
directly performed. On the contrary, if the cell is not mapped in
the network, a free cell has to be selected before to perform the
connection. Next the graph continues to be developed, by
searching new leaf cells. When all the cells are used, reset
processes are executed to release cells. In this way, the PN is
continuously extended.

CPL

…

Instruction Memory

Rac Net

ev
en

ts

RAC

Description of the
application coming from
the application memory

Bus event

Bus instruction

Free Finder

Leaf Finder

CAM

Figure 3: RAC overview

The RAC is divided into six basic blocs as shown in figure 3. The
RAC net and the instruction memory are involved in the execution
of the PNs. The others modules (Configuration Protocol Layer,
Freefinder, Leaffinder, Content Addressable Memory) are only
involved in the management of the resources.

4.1.1 CPL
The Control Protocol Layer manages at high level the
implementation of the PN on the hardware. It triggers the
different steps of the building and release of the PN in the
hardware. It is not involved in the execution of the PN.

4.1.2 CAM
Pointers on mapped cells are loaded in a Content Addressable
Memory (CAM). These pointers are used to find and locate nodes
that are already mapped in the network. The CAM selects the
node whose pointer is set by the CPL. If it is not present in the
CAM the cell is not mapped and the CPL as to load it in the
network. This CAM has been designed with standard registers and
XOR gates.

4.1.3 Freefinder & Leaffinder
These two elements locate free cells and leaf cells in the network.
They are implemented thanks to asynchronous round robins. Each

free cell and leaf cell set up flags that are sent to these
asynchronous round robins to select one cell at a time. These
elements can be seen as asynchronous arbiter.

4.1.4 Rac net
The RAC net is composed of a set of cells, representing places
and transition of the PN communicating through a reconfigurable
network. In order to support the three basic functionalities
explained previously, each cell is composed of three processes.
Each of them is implemented as an asynchronous one-hot FSM.
Additional synchronizations between FSMs guarantee the
coherency of the system.
The execution part implementing nets has to allow multiple
connections between places and transitions (to implement
convergence and divergence in the PN). Consequently, the events
coming from the operative part have to be distributed to all the
cells. The links between the event and the mapped places are done
during the configuration of the cell.
The interconnection network allows connections between every
cell. Each cell can be connected with any other one through a
hazard free full-connected network. The mapping strategy is thus
very simple. The connections between two cells are performed by
selecting of the source and the destination cells. A simple crossing
enables to find the connection point between two cells. When two
cells are connected together two kinds of information goes
through the network:

1. Tokens: they are implemented by asynchronous hand-
shaking between cells. Tokens are thus modeled as
synchronization mechanisms between two cells.

2. Accessibility flags: this information permits to identify
cells that can be released. Indeed a cell that is not
connected to any other could not receive any tokens and
is thus useless.

4.1.5 Instruction Memory
The instruction memory sends tasks to the operative part. This
memory is particular for several aspects. First, the cells directly
command the line of the memory. This memory has thus no
address decoder. Secondly, the memory is splitted in several
flows which are independent and can be accessed concurrently. A
cell can thus command independently either one or several blocks
of a memory line according to its configuration. Consequently, as
several blocks of the memory can be activated in parallel, the
controller can manage several tasks in parallel.

Line of
instruction
memory

Cell of
Rac Net

Event bus
p1

t1

predicat

action

11 2
2

3

3

44

(a) (b)
Figure 4: Equivalence between place and transition of PN

formalism and hardware cell of the RAC.

4.2 Implementation
A prototype of the RAC has been designed using a 0.13µm design
kit provide by STMicroelectronics (HCMOS9). Logical synthesis
flow from Synopsys has been used for front-end while backend
has been performed with Cadence Soc Encounter.

A first model has been developed in SystemC to provide fast and
accurate simulations. A set of PNs testbenches has been used to
validate the architecture and provide a good functional coverage
(up to 90%). Each implemented graph validates basic
functionalities as parallelism support, tasks synchronization or
dynamic reconfiguration.

p1

p2 p3

p4

p5

p8

p7

p6

t1= a t7 = b.c

t2 = c

t3 = b t4 = c

t6 = a.c t5 = a.b

t8 = b.c

Figure 5: Interpreted Petri Net with {a;b;c} as event

4.3 Application description
The formalism used to describe a safe labeled Petri net,
executable by the RAC, respects the theory of Petri. As shown in
the figure 4, each cell of the RAC corresponds to a couple
place/input transitions. The hardware and the function of routage
are simplified since the network does not have to connect
heterogeneous resources.

p1

p3

p4

p5

p8

p7

p6

t1 = a
t7 = b.c

t2 = c

t3 = b

t4 = c

t6 = a.c

t8 = b.c

t5 = a.b

c10 c11

c12

p13c14

c15 c16

p2

Figure 6: Translation of the PN figure 4 in the formalism

understandable by the RAC
As said before, the whole graph is described in a static memory.
Places of the PN are identified with a memory address and an
offset corresponding to the size of the description. Input events,
tasks, modes, and following cells addresses are contained in the
description of every cell. Each cell is associated to input ports to
receive the incoming events and tasks acknowledgement, and to
an output port control the associated task.

These cells allow the implementation of pure nets. The figures 5
and 6 respectively show a simple Petri net and the associated
implemented graph on the RAC. Except places p1, which needs
cells {c10; c11; c12; c13; c14; c15; c16} to be mapped, all the others
places just need one cell of the hardware structure. This
transformation thus infers only a small overhead between on, the
PN modeling the application.

5. Results
The results presented below come from the analysis of the logical
synthesis and the post place-and-route models. The gate-level
netlist is used to study the scalability of the architecture while the
post place-and-route model is used to exhibit accurate area and
performance results. This section is divided in three parts. The
first one presents some implementations results. The second
discusses the performances of the architecture and the third
subsection analyzes the implementation of a MPEG4-AVC
application into the RAC.

5.1 Layout analysis
Because of a limited amount of pins available for our prototype, it
is composed of 16 cells and provides 6 8-bit independent
instruction streams. The area of the prototype is 0.81 mm2 of
which only 0.2 mm² are needed for the RAC. The figure 7 shows
this layout.

rac_net
59%

CPL
5%

mem_commande
22%

mem_cam
6%

leaffinder
1% freefinder

1%

rest
6%

Figure 8: Functional distribution of the RAC in area

The area distribution in the chip (Fig. 8) is relatively well
balanced. Indeed, the execution part of the design fills 81 % of the
layout, dynamic management of the cells network and debug
resources of the circuit fill the rest. The interconnect network
occupies 59 % of the area for a 16-cell RAC. For a 60-cell RAC,
this interconnect will grows up to 79 % of the area. Its size
evolving in O(N²), where N is the amount of cell,, it limits the
scalability of this architecture.
The modules of the resource management part are well balanced
and their areas are homogeneous. Their contributions fall under
5% of the area for a RAC with 60 cells. The RAC had been
synthesized for different number of cells, ranging from 8 to 60.
The minimum area obtained is 0.6 mm² (mainly devoted to the
application memory) and the maximum is 2.9 mm².

Application memory

RAC

Figure 7: Layout of the RAC and the Application Memory

5.2 Performances
The two main features discussed in this section are the response
time of the RAC (in ns) and the output bandwidth of the
instruction memory (in Million Commands Per Second: MCPS).
The response time depicts the time between the arrival of an event
at the input of the RAC and the triggering of the corresponding
output in the instruction memory.
These two parameters depend on the execution mode, i.e. static or
dynamic. The static mode depicts the execution of a PN
completely mapped on the RAC, while the dynamic one concerns
the executions of PNs bigger than the RAC capabilities, that need
to build and to release new cells during the execution. The static
mode limits strongly the complexity of the application, which can
be mapped on the architecture, but it gives the maximum
performance. On the contrary, the dynamic mode allows mapping
very complex application, but is associated to a bigger timing
overhead.

1
2

3
5

Instruction
Memory

Rac Net

event

sending a command

acknowledge

6

4

7

Computing part
Figure 9: Timing elements in the execution cycle : 1 time
between the arrival of an event and the sending of a command
; 2 time between the sending of a command and its reception
by the computing part ; 3 response time of the computing part
; 4 execution time of the task ; 5 propagation time of the event
; 6 propagation time of the acknowledge ; 7 propagation time
of the tokens between two cells.
In the static mode, the response time is independent of the graph
mapped into the RAC. This time is due to a sequence of actions to
be done in the RAC (1, 2 and 5 in the figure 9) to propagate

signals between events, cells and commands. Even in the worth
conditions this time is lower than 10ns.
The total bandwidth of the instruction memory is directly
proportional to the amount of command flows that are configured.
So in calculating the bandwidth of one flow the total bandwidth
can be determined. The bandwidth of one flow is inversely
proportional to the sum of the times 1, 2, 3, 6 and 7. This
bandwidth for one flow is 48 MCPS. It can go up to 288 MCPS
when the 6 command flows are used.
In dynamic mode other timing constraints, mainly due to
resources management, have to be taken into account. This timing
highly depends on the graph mapped into the RAC. The evolution
of the active windows within the hardware is very hard to predict.
It is thus not possible to define all the contributions involved in
the response time and in the bandwidth of the instruction memory
as for the static mode. Nevertheless, the building of a graph is
highly sequential and is done by the CPL. It takes 65 ns (13
cycles at 200 MHz) to configure every new cell. The CPL could
have been synthesized at 400 MHz but due to limitations on the
input clock pin of the prototype, a slower version has been
implemented.
Lots of simulation involving dynamic graphs had shown that the
bandwidth of the instruction memory is ranging from 8 MCPS to
15 MCPS in average. Although the bandwidth can not be
computed for a given application, the maximum is limited by the
building of a cell. Indeed, the upper limit is equal to:

build
MCPS T

Max 1
= , where Tbuild is the time of build of one

cell.
The response time can however be more precisely defined.
Several cases can occur according to the execution time. First, if
the execution on the RAO is low enough to hide the dynamic
behaviour, the response time will be identical to that of the static
mode. Conversely, if the execution time is in the same range than
the building time, the response time will correspond to that of the
building (70 ns).
The RAC performances have been studied with several numbers
of cells. The response time is relatively independent of it. The
upper limit of the bandwidth is however clearly dependent of this
number. The figure 10 shows both the evolution of the maximum
static bandwidth for a flow versus the number of cells into the
RAC and the maximum bandwidth for the instruction memory.

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120
nb cells

M
C

PS

MCPS max
build limit @ 200 MHz

Figure 10: MCPS versus number of cells in the RAC

It appears in figure 10 that the MCPS highly depends on the
number of cells. For a 8-cell RAC, the maximum frequency for a
flow is 70 MCPS. For a 128-cell RAC it falls to 11 MCPS. This
is due to the contribution of the interconnect network which
become prohibitive (time 7 on figure 9). Secondly, the crossing
between the horizontal lines and the MCPS curve points the
number of cells where the building time and the maximum
bandwidth is the best balanced. According to the prototype results
this 100 cells seems to be a good trade-off.
The performance analysis reveals two drawbacks. First, the
interconnect network is a limitation in term of area and
performance. To improve the performances of the architecture, a
better communication media have to be studied. Secondly, the
management of resource is too sequential. It has been clearly
shown that the dynamic management has a strong impact on the
performance. Parallelizing the building process will thus
significantly improve the performance of the controller.

5.3 Case study
As an example we have implemented the motion estimation of the
MPEG-4 AVC encoder using the RAMPASS approach. The PN
model of the application required 60 states with 6 branches,
several synchronizations and parallel execution. The partionning
of the application has been studied in [16] and has been done
according to the analysis of the control flow and the data flow.
The figure 11 shows some simulation results for a 16-cell RAC. It
shows the execution overhead due to RAC according to the
average task length. For a video in QCIF format the partionning
leads to tasks whose average execution time is 4 µs. The RAC
overhead is that case is very low. For tasks granularity around 1
µs the overhead grows up to 5%. Finally for shorter tasks like that
extracted to handle VGA video (300 ns) the RAC overhead
become significant (12,1%).

95,9 %99 %
87,9 %

12,1 %
4,1 %1 %

0

20

40

60

80

100

QCIF CIF VGA

%

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

µs

RAC
Execution
average time / task (µs)

Figure 11: Overhead due to the RAC versus granularity of

task.
In this case study, several granularities of tasks had been tested.
This example shows that for tasks bigger than 500 ns the
overhead due to the RAC is lower than 10% of the execution. As
a comparative example, this task granularity corresponds to a
mutex access in an embedded OS like µCOS II running in a ARM
926 at 200 MHz.

6. Conclusions and future works
In this paper we have discussed an auto-adaptive asynchronous
parallel controller component implementing in 0.13µm CMOS
technology. This module executes Petri nets that model the
control flow of an application. This programming model is simple

and enables to describe complex applications merging several
kinds of parallelism.

The RAC is a trade off between the direct implementation of Petri
net and the programming implementation found in the art. The
features and the performances reached by the RAC allow new
tradeoff between the dynamicity and the flexibility of the control
flow and the performance of the system. The regular structure of
the RAC provides it good scalability properties which have been
verified in this paper.

To ease application development on RAMPASS, software tools
able to take an application specified in a procedural language and
able to split it in tasks handled by the RAC has to be studied. A
board had been developed to validate the prototype. The circuit is
coupled to a Virtex 4 on which can be implemented the operators
managed by the RAC. The validation of the prototype is actually
running.

7. REFERENCES
[1] Nomadik. Open multimedia platform for next generation
mobile devices. Technicla report, ST Microelectronics, 2004
[2] Nexperia, PNX15xx Series Data Book – Connected Media
Processor. Technical report, Philips, 2004
[3] João M. P. Cardoso, Self Loop Pipelining and
Reconfigurable Dataflow Arrays, in International Workshop on
Systems, Architectures, MOdeling, and Simulations, LNCS 3133,
july 2004, pp. 234-243
[4] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C.
Ebeling. Architecture Design of Reconfigurable Pipelined
Datapaths, Twentieth Anniversary Conference on Advanced
Research in VLSI 1999
[5] R. David, D. Chillet, S. Pillement, and O. Sentieys. DART: a
dynamically reconfigurable architecture dealing with next-
generation telecommunication constraints, Int. Reconfigurable
Architecture Workshop, Fort Lauderdale, April 2002
[6] PACT XPP - A self-Reconfigurable Data Processing
Architecture, International Conference on Engineering of
Reconfigurable Systems and Algorithm, Las Vegas, NV, June
2001
[7] A. J. Bernstein. Program analysis for parallel processing.
IEEE Transaction on Electronic Computers, 1966
[8] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of Petri
Net methods for controlled discrete event systems. Discrete Event
Dynamic Systems, 1997.
[9] J. L. Peterson. Petri Nets. ACM Computing surveys, 1977
[10] T. Murata. Petri Nets: Properties, analysis and applications.
Proc. of the IEEE, 1989
[11] S. S. Patil. An asynchronous logic array. MIT, Project MAC,
Comp. Struct. Group Memo 111-1, 1975
[12] R. W. Hartenstein, A. Hirschbiel, M. Weber. Patil Array - a
Petri Net Hardware Implementation, IEEE Comput. Soc. Press,
CompEuro 88 - System Design: Concepts, Methods and Tools,
1988
[13] J. P. David. Architecture synchronisée par les données pour
système reconfigurable, PhD thesis, Université catholique de
Louvain, 2002

[14] S. Bulach. The design and realization of a custom Petri Net
based programmable discrete event controller. PhD thesis,
University of Ulm, 2002.
[15] Nicolas Ventroux, Stéphane Chevobbe, Frédéric Blanc,
Thierry Collette. An Auto-adaptative Reconfigurable Architecture
for the Control, Asia-Pacific Computer Systems Architecture
Conference, Beijing 2004.

[16] Eva Dokladalova, Stéphane Chevobbe, Frédéric Blanc.
Advances in Practical Implementation of the Digital Media
Processing: Towards Reconfigurable Computation. European
Workshop on the Integration of Knowledge, Semantic and Digital
Media Technologies, London 2004

http://www.informatik.uni-trier.de/%7Eley/db/conf/aPcsac/aPcsac2004.html#VentrouxCBC04
http://www.informatik.uni-trier.de/%7Eley/db/conf/aPcsac/aPcsac2004.html#VentrouxCBC04
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dokladalova:Eva.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Blanc:Fr=eacute=d=eacute=ric.html

	1. Introduction
	2. System control requirement
	2.1 Definition of control functionalities
	2.2 Control system and Petri net
	2.3 Related work
	2.3.1 Direct implementation
	2.3.2 Programmed implementation

	3. RAMPASS platform
	4. RAC description (Reconfigurable Adapted to Control)
	4.1 Architectural description
	4.1.1 CPL
	4.1.2 CAM
	4.1.3 Freefinder & Leaffinder
	4.1.4 Rac net
	4.1.5 Instruction Memory

	4.2 Implementation
	4.3 Application description

	5. Results
	5.1 Layout analysis
	5.2 Performances
	5.3 Case study

	6. Conclusions and future works
	7. REFERENCES

