
Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

A Neural Network Model for Real-Time Scheduling on

Heterogeneous SoC Architectures

Daniel Chillet, Sebastien Pillement and Olivier Sentieys

Abstract-With increasing embedded application complexity,
designers have proposed to introduce new hardware archi-
tectures based on heterogeneous processing units on a single
chip. For these architectures, the scheduling service of a
realtime operating system must be able to assign tasks on
different execution resources. This paper presents a model of
artificial neural networks used for real-time task scheduling to
heterogeneous system-on-chip architectures. Our proposition is
an adaptation of the Hopfield model and the main objective
concerns the minimization of the neuron number to facilitate
future hardware implementation of this service. In fact, to
ensure rapid convergence and low complexity, this number
must be dramatically reduced. So, we propose new constructing
rules to design smaller neural network and we show, through
simulations, that network stabilization is obtained without re-
initialisation of the network.

I. INTRODUCTION

A high number of scheduling algorithms have been de-
veloped for constraint satisfaction in real-time systems. The
majority of these algorithms consider very specific and
homogeneous set of characteristics (such as periodic, spo-
radic tasks, preemptive tasks, homogeneous multiprocessor
architectures, etc). Optimal solutions are difficult to find,
and the problem becomes NP-hard when all these constraints
must be satisfied. To solve this type of problem, approximate
methods are classically used, such as genetic algorithms,
simulated annealing and Artificial Neural Networks (ANNs).
On the other hand, embedded applications are usually

implemented on complex System-on-Chip (SoC) which are
built around heterogeneous processing units. Classically, the
system is built around a general-purpose processor which
runs an Operating System (OS). The other resources, such
as Digital Signal Processor core(s), intellectual property
block(s) or dynamically reconfigurable accelerator(s), have
to be controlled by the OS. In particular, task instantiation
on execution resources is realized by using the scheduling
OS service. As each task can be defined for several targets,
this service must decide, on-line (i.e. at run time), on which
resource the task should be instantiated.

Neural networks have demonstrated their efficiency in op-
timizing problems that take into account several constraints.
They converge in a reasonable time (i.e. in a few cycles) if the
number of neurons and connections between neurons can be
limited as much as possible. Another limitation concerns the
need to regularly re-initialize the network when it converges

Daniel Chillet is associate professor at ENSSAT, Rennes I University;
Sebabtien Pillement is associate professor at IUT, Rennes I University;
Olivier Sentieys is professor at ENSSAT, Rennes I University; INRIA/IRISA
- UMR 6074 - R2D2 Research Team - BP 80518 - 6 Rue de Kerampont
22305 LANNION - FRANCE - first.lastname g)irisa.fr

towards a stable state which does not belong to the set of
valid solutions.

In this paper, we propose an on-line scheduling based on
a neural network for heterogeneous system-on-chip (SoC)
architectures with a limited number of neurons. In section II,
we present the state of art of the scheduling solutions based
on neural networks. Our proposition is detailed in section III.
Results are presented in section IV. Finally, we present our
conclusions and discuss our future researches to define the
hardware implementation of the scheduling service.

II. RELATED WORKS

Many scheduling algorithms have been developed for
constraint satisfaction in real-time systems. The majority of
these algorithms take into consideration very specific and
homogeneous constraints. They take into account periodic,
sporadic or aperiodic tasks, which may or may not allow
preemption, on mono or multiprocessor architectures, etc.,
but rarely combine them. In the context of SoC architecture,
specific task scheduling services have been proposed to take
into account parallel and heterogeneity characteristics [11],
[4], [14]. These service implementations are often complex,
and are not always appropriate to real-time systems [9];
they are generally time costly and do not consider the
dynamic behavior of the application. Propositions addressing
multiprocessor scheduling have been developed [1], [15],
[13]. The PFair algorithm is proposed in these papers which
focus on an optimal solution for periodic tasks on homoge-
neous multiprocessors. In fact, a particular solution has been
declined to ensure partitioning on multiprocessor systems
[2], [3]. The main idea of the PFair algorithm is to assign
each task on a processor, with an uniform and fixed exe-
cution rate by breaking tasks into quantum-length subtasks.
Preemptions and migrations are completely free with this
scheduling algorithm, and this can increase execution time
due to first-level cache misses. Another major limitation
of this solution concerns the targeted multiprocessor which
must be homogeneous, and it is now admitted that SoC
architectures are always built with heterogeneous execution
blocks. Furthermore, we can also note that defining on-line
Pfair scheduling is still a difficult problem. In [13], the
authors propose an approximate solution to reduce global
complexity and to design hardware implementations.
Some solutions have also been proposed through the use

of neural networks. For example, in [5], [6], the authors
have proposed the ANNs for on-line real-time scheduling.
Their solution extends the results obtained in [16] where the
theoretical basis for ANN design for optimization problems

1-4244-1 380-X/07/$25.00 ©2007 IEEE

defined in [8], [10]. By using a Hopfield model [12], they
ensure the existence of a Lyapunov function, called energy
function. This model ensures that the network evolution
converges towards a stable state for which the optimization
constraints are respected. This function is defined as:

N N N

E - Tij .Xi * >j- Ii xi (1)
i=l j=1 i=1

where Tij is the connection weight between neurons i and
jxxi is the state of neuron i and Ii is the external input of
neuron i.

Based on this model, a design rule that facilitates the
neural network construction can be defined using equality or
inequality constraints. The k-out-of-N rule is a major result
in ANN for optimization. It has been introduced in [16] and
reused in multiple works. For example, in [7], the authors
define a fuzzy state for the neuron and propose a scheduling
problem formulation for a homogeneous multiprocessor with
no process migration and constrained times. The network
convergence is a complex problem, the complexity is 0(n3 x
c3), with n the number of tasks and c the number of the
machines.

The k-out-of-N rule allows the construction of a network of
N neurons for which the evolution leads to a stable state with
"exactly k active neurons among N". The evolution of the
network can start from random states. The energy function
is defined as:

N

E= (k - Xi)2 (2)
i=l

This function is minimal when the active neuron sum is equal
to k, and is positive in the other cases. Equation 2 can be
written as follows:

IN N

E =--2 I:> Tii Xi -Xj
i=l j=l
wt{i

with {Tij 2k 2 6i,

N

- 1Ii xi
i=l

Vi, j
Vi

6ij is the inverse Kronecker function and is equal to zero

if i = j, or one in the other cases.
Cardeira and Mammeri [5], [6] demonstrate the efficiency

of applying ANNs for on-line task scheduling. The ability to
take into account numerous and different constraints is made
possible by the additive character of the Hopfield model.
The results for this real-time scheduling solution exhibit
interesting convergence speed which make ANN suitable
for on-line utilization. But this technique has two major
drawbacks. The first is the important number of necessary
slack neurons needed to model the problem. The number of
slack neurons is cycle dependant, i.e. when the schedule time
increases, the number of slack neurons increases too. The
second problem is the presence of several local minima when
several rules are applied to the same set of neurons. These
local minima are particular points of the energy function

which represent invalid solutions. To ensure convergence
towards valid solutions, these minima must be detected and
the network needs to be re-initialized.

In this paper, the number of slack neurons is drastically
reduced and independent of the period. Moreover no re-
initialization is necessary due to the fact that there is no local
minimum in the energy function. The direct consequence is
the simplification of network control.

III. SCHEDULING PROBLEM MODELLING THROUGH
NEURAL NETWORK

Our proposition is guided by two main objectives: to
reduce the number of neurons and to guarantee network
convergence without re-initialization.

In the case of monoprocessor architecture, the scheduling
problem is modelled through ANN by the following repre-
sentation:

* Neurons nij are arranged in a matrix form, with the size
NT x NC, where line i corresponds to the task i and
the column j corresponds to schedule time unit j. The
number of time units NC depends on the hyperperiod
of tasks (i.e. the least common multiple of all the task
periods) and NT is the number of tasks.

. An active neuron nij indicates that during the corre-
sponding time unit j, the task i is being executed.

. One line of neurons is added to model the possible
inactivity of the processor during the schedule times.
These neurons are called slack neurons since they are
not used to represent the solution.

In the case of homogeneous multiprocessor architecture,
several matrices organized in layers are required to model
the different execution resources. New slack neurons are
then necessary to manage the exclusive execution of each
task on resources. Figure 1 presents an example of network
with p resource layers. For each couple (task i, resource j),
Cij new slack neurons must be added. So the total number
of slack neurons can be very important, especially when
the system is composed of a large number of application
tasks and execution resources. This number is equal to
NT p

EljC1,j+p NC.
i=l j=l

Resource layer 1

Ti 000000

T2 00000-

T3 000000
T4 000000

Resource layer 2

Fig. 1. Classical structure used to model the
ANN. Grey circles represent slack neurons

Resource layer p

scheduling problem with

In order to reduce the number of required neurons, we
propose two modifications of the neural network structure.
These two modifications correspond to an adaptation of the
Hopfield model.

Firstly, a specific neuron is placed for each task and each
type of execution resource, this neuron is called inhibitor
neuron. The main idea consists in creating a mutual exclu-
sion between the possible task instantiations on execution
resources. This mutual exclusion is ensured by the presence
of one inhibitor neuron INij by task i and by execution
resource j. In figure 2, an example of the scheduling problem
is presented with one task Ti and R possible resources. A

Execution resource 1 Execution resource 2
Ci, C Cil2 Cil2

<--t-1~~~~~~~~ -------.- ---1--------
Ti

(Ci,1 1)

Execution resource R
Cj ...

--f------ ...--- ,

CZ
6i,R

-(Cj p-1)

Fig. 2. Scheduling problem modelled with the use of inhibitor neurons,
C,7 is the worst case execution time of task Ti on resource j

set of NC neurons is called Sjj (NC = 5 in the case of
figure 2) and represents the possible scheduling cycles of
task i on the resource j. For each resource j, the worst case
execution time (WCET) of task i is defined as Cjj. The set of
neurons Sj is configured (definition of inputs and weights)
to converge towards Cjj active neurons among NC. When
one set Sjj has Cjj active neurons, the state of inhibitor
neuron INi,j can be changed, and set to the value 1. So, all
the neurons included in the other sets will be forced to the
inactive state (this is due to the great negative value -Ci,k
of weights which cancel the neuron inputs of all the other
sets Si,k with k#j).
The main characteristic of this neuron network is its

capacity to converge to a stable state from any initial state.
No local minimum exists in the energy function, i.e. no
network re-initialization is needed to ensure the convergence.

Secondly, we propose to remove the slack neurons which
model the possible inactivity of the processor (idle cycles). In
[5], [6], the authors add one or several lines of slack neurons
to ensure the network convergence when applying a k-out-
of-N rule on each vertical line of neurons. The number of
added lines in each layer is equal to the number of identical
processors in this layer (for example in figure 8.a, two
resources can execute the tasks, so two lines of slack neurons
are added, line T1 and T2). In this case, the convergence can
not be always obtained, re-initializations are often necessary
to extract the network from a local minimum of the energy
function.

To delete these lines, we propose the application of a kl-
out-of-Ni classical rule on the horizontal sets of neurons
and a at-most-k2-among-N2 rule on the vertical sets of
neurons. For example, if NT tasks must be scheduled on
p identical resources (i.e. p processors in the same layer)
during the NC cycles, NC at-most-p-among-NT rules must

be applied on each vertical set of NT neurons. To ensure the
convergence towards a valid solution, the problem concerns
the application of two rules on two sets of neurons with one
common neuron between the two sets. Figure 3 shows an
example of two sets of neurons, the first is composed of
three horizontal neurons nlI, n2, n3, the second is composed
of three vertical neurons nl, n4, n5 (i.e. neuron nl is the
common neuron of the two sets). The classical additivity for
several rules says that if a kl-out-of-3 rule is applied on
the first set and a at-most-k2-among-of-3 rule is applied on
the second set, then the inputs and weights are defined as
follows:

. inputs are equal to I1 = (2 k -1) + (2 k2 -1),
12 = 13= (2 ki -1) and 14 = 15 (2 k2 -1)

* weights are equal to wij =-2 V i,j = {1 5}
To ensure the at-most-k2-among-of-3 rule, k2 slack neurons
can be added with a specific weight connection with others
neurons. In the figure 3, the slack neurons (snl, sn2) are
represented.

To remove the slack neurons while ensuring convergence,
we firstly need to simplify the k-out-of-N rule by a simple
re-definition of input and weight values. Rather than use the
energy function given in equation 2, we propose to rewrite

N
2

energy as E (12k 12 E xi)2. This modification does

not change the convergence point of the energy function.
This expression can be transformed and written as:

IN N
E =-2 , , (-1) Xi x

i=l j=l

N

E (k
i=l

1) Xi2i (4)

With a simple re-definition of the threshold value of the
sigmoid function, which is classically fixed at value 2' it
is possible to simplify the input value of each node. We
define a sigmoid function with a threshold value fixed at 0,
it corresponds to a shift of the sigmoid function. In this case,
the input and weight values are equal to:

Tij = -1. 6i,j
It = k Vi

Vi,J (5)

With these new input and weight values, we can propose
a simple additivity between kl-out-of-Ni and at-most-k2-
among-N2 rules. The main idea consists in firstly applying
kl-out-of-Ni on horizontal lines and k2-out-of-N2 on vertical
lines and secondly modifying the weights of horizontal lines.
So, the common neuron has its input fixed to the value k,+k2
as shown in figure 4. The modification of the weight values
of the horizontal rule (here the horizontal rule kl-out-of-3)
compensates the increase of input values on the common
neuron. This compensation is done by decreasing the weight
value between the horizontal neurons and the neuron which
belong to the two rules. An example of additivity of two
rules is given in figure 4. This construction corresponds to
an energy function which can be expressed as:

(2k -1) (2k -1)

(2 k2 -1

(2k2-

(2.k2 -1)

-4

4 *

(2.k2 1)

Fig. 3. Additivity of ki-out-of-N, and at-most-k2-among-N2 rules with
slack neurons (the dashed arrow indicates that all the neurons in the two
sets must be connected with a weight value equals to -4)

k1+ k2 k1 k1

T1(X C, 1-p/C 1-p/C 1-p/C

C+p C+p C2j+p C2j+p C2j+p

T2(C

-1-1 -1 ~ ~ ~~~~~~~~~~-1-

C3j+p C +p Clj+p Cj+p C+p

T3(C) t
1 c< L/

CN N CN N CN

p o Lp

Fig. 5. Our proposition for rule additivity between k-out-of-N and at-most-
k-among-of-N rules

-1-lkk

k2

Fig. 4. Additivity of ki-out-of-Ni and at-most-k2-among-N2 rules without
slack neurons

F= (ki 3) I (j- E) (6)
i=1 j=0 ief1,4,5}

The first term is null when k1 neurons are active among the
three horizontal neurons. The second term is null when 0 or
1 or 2 or ... or k2 neurons are active among the three vertical
neurons. So the energy function is null when k1 neurons of
N1 are active and when at most k2 neurons of N2 are active.
A complete example is given on figure 5 which concerns

three tasks (T1, T2 and T3) to schedule on p homogeneous
resources (on layer j) during five schedule cycles (with p < 3
on the figure). To simplify the figure, all connections between
neurons are not represented. The input value of each neuron
is increased by the value p which corresponds to the number
of resources on the considered layer j. This figure does not
show the inhibitor neurons which ensure the exclusive task
instantiation on the different resource layers.

In combining our two propositions, we can model the
task scheduling problem on a heterogeneous SoC architecture

with an important decrease of slack neurons and without any
re-initializations of the neural network. In the next section,
we compare these structures to other previous works.

IV. RESULTS AND COMPARISONS

In this section, we present some comparisons of our
proposition with the previous solutions proposed in [6]. We
show that our proposal is more efficient (i.e. convergence
speedup) and does not need network re-initialisations.

A. Comparisons with previous works
The first example concerns the schedule of three tasks T1,

T2 and T3 on one execution resource. To solve this problem,
the previous proposition needed to add one neuron line to
model the processor idle cycles. In figure 6.a, the initial state
of the network is presented. Figure 6.b presents one possible
network final state. In their paper [6], the authors indicate that
convergence is obtained after more than 600 fired neurons.

Ti * E

Time units

* E

T20 * SO * * ° °

T30 * *0 O * ° 0

T' * * 0 0 0

Ti * C

Time units

Ti* * * O O

T2 C O 0 0

T3 C O O O 0 C

.

S C

T20 * O O* * ° °

T3 C * * O * 0 C

Fig. 6. Exampl) of state representation of neural network (task WCET are
equal to 3, 2, 2 for respectively TI, T2, T3) a) Initial state with one slack
neuron line; b) Stable state and valid solution; c) Initial state without slack
neurons

Figure 6.c presents our model for the same scheduling
problem. As we can see, the number of neurons is lower

C"j+p C"j+p C"j+p C"j+p C"j+p(2.k, 1)+(2.k2 1)

p

b)

than the classical solution. Moreover, for all simulations from
random initial state, our network always converges to a valid
solution. This convergence is then obtained with an average
number of fired neurons equal to 79.

35

30

25

>20

w 15

10-

5-

0-
lb(C, O <b "A ~b -\!>A)\ >

Number of fired neurons

Fig. 7. Example of energy function evolution with our network model

(GPP), resources r2, r3 and r4 specific Intellectual Property
blocks (IP) and resource r5 a Dynamically Reconfigurable
Accelerator. The complete application is composed of 10
tasks. Seven tasks have been described for the GPP resource
(t2, t3, t4, t6, t8, tg, tjo). Three tasks have been defined
for the three IP blocks (t1, t5, t7). Finally, four tasks have
been also described for DRA (t2, t3, t6, t8, tg, tio). This
information is summarized in the matrix which define the
WCET of each task on each resource (value oc indicates that
the task cannot be executed on the corresponding resource).

oo 2 2 4 oc 4 oc 4 4 2 r1
oo oo oo oo oo oo 10 °° °° oc r2

Cij = °° °° °° °° 5 °° °° °° °° °° r3
4 oo oo oo oo oo oo °° °° °° r4
oo 2 1 oc oc 2 oc 2 1 2 r5
tl t2 t3 t4 t5 t6 t7 t8 t9 tlo

(7)
Figure 9 presents results obtained on the application with

the number of tasks varying from 1 to 10.

Figure 7 shows the evolution of the energy function
for one simulation. This simulation converges to a valid
solution in 65 fired neurons. Contrary to the classical
energy function evolution, we can notice that this function
decreases monotonously with the number of fired neurons.

Figure 8.a presents another example with two execution
resources which is modelled by the classical network. On
figure 8.b, we can see the limitation of required neurons to
model the same problem with our proposition. The classical
solution converges to a valid solution with more than 300
fired neurons. Our proposition limits the number of fired
neurons to approximatively 70.

Time units

Ti * *O * O

T20 0O * O

0

Time units

Ti * *O * O

T20* O * O

0

T3 O * O 0 0 0 0 T3 O * O * O * O

T'i O O O O 0 0 * O

T2 * O *0 0 0 0O

a) b)

Fig. 8. a) Initial state of neural network; b) Initial state of our neural
network

The number of slack neurons removed is directly pro-
portional to the hyperperiod which can be important. This
reduction favorably impacts the hard implementation.

B. Results on a System-on-Chip architecture

The actual SoC architectures are composed of several
heterogeneous resources (between five and ten resources)
and execute applications which are composed of ten to
twenty tasks. We consider that several tasks are defined
for different resources while the others are defined for one
specific resource.

This section shows the results obtained for a specific
architecture which is composed of 5 different resources.
It corresponds to: resource r1 General Purpose Processor

Fig. 9. Results for a SoC architecture running application; Ten tasks of
the complete application are introduced step by step

This figure shows that the number of fired neurons seems
to evolve linearly with the number of tasks, i.e. linearly with
the neural network complexity. Another important result is
the relatively constant number of evaluations of each neuron.
In our example, each neuron is evaluated between 8 and 12
times.

V. CONCLUSION AND FUTURE WORK

In this paper, a scheduling service modelled by neural
network is presented. An adaptation of the Hopfield model
is proposed to facilitate the hardware implementation of the
scheduling service. The major contributions of our work con-
cern the limitation of slack neurons and the simplification of
the network control thanks to the absence of re-initializations
of network to ensure the convergence. To limit the number of
neurons, we propose replacing the numerous slack neurons
of classical solutions by several inhibitor neurons. Based on
these inhibitor neurons, a new structure of a neural network

- Average number of fired neurons Average number of evaluation by neuron

14000

12000

10000
I

2
1

2 8000
z
2
E
. 6000

2

4000

2000

14

12

10

I

8 .
.2
Z.
-2

. I

6 '.
-. c
E .:,
I

21
2

4 -

2 3 4 5

Nb of tasks

10

is presented. The main characteristic is its capacity to always
ensure the convergence towards a valid solution.

Furthermore, in classical solutions, a lot of neuron network
re-initialisations are necessary to converge towards a valid
solution. This is due to the existence of local minima of
energy function which is the consequence of the classical
additivity of k-out-of-N rules. We propose replacing the
addition of two k-out-of-N rules by the addition of kl-out-of-
N1 and at-most-k2-among-N2 rules. We have shown that this
specific additivity of rules always ensures the convergence
and yet limits the number of slack neurons.
We have shown the efficiency of our proposition compared

to the previous works. These two contributions are important
advances for our future works which consist in defining a
hardware implementation of the scheduling service in the
context of SoC architecture. Globally, the limitation of the
network size ensures that the hardware implementation will
be as simple as possible, i.e. as fast as possible. Furthermore,
the absence of network re-initialization is also interesting
because it will probably lead to a simple control of the neural
network.

Our future researches will consist of defining a hardware
implementation of the neuron, which is not too complex,
and to define a complete network. The major problem for
the hardware implementation concerns the large number of
connections between neurons. By exploiting the connection
symmetry between neurons, we think that several optimiza-
tions can be applied to limit hardware cost.

REFERENCES

[1] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task
systems. In Proc. of the 7th International Conference on Real-Time
Computing Systems and Applications, pages 297-306, Cheju Island,
South Korea, december 2000.

[2] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In Proc. of the 26th IEEE International Real-

Time Systems Symposium, pages 321-329, Washington, DC, USA,
2005.

[3] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems. IEEE Trans. Comput.,
55(7):918-923, 2006.

[4] S. Baruah and J. Goossens. Rate-monotonic scheduling on uniform
multiprocessors. Technical Report 472, ULB, 2002.

[5] C. Cardeira and Z. Mammeri. Preemptive and non-preemptive real-
time scheduling based on neural networks. In Proc. of Distributed
Computer Control Systems, pages 67-72, Toulouse, France, September
1995.

[6] C. Cardeira, M. Silva, and Z. Mammeri. Handling precedence
constraints with neural network based real-time scheduling algorithms.
In Proc. of the 9th Euromicro Workshop on Real Time Systems, pages
207-214, Toldeo, Spain, june 1997.

[7] R.-M. Chen and Y.-M. Huang. Multiprocessor task assignment
with fuzzy hopfield neural network clustering technique. In Neural
computing & applications, 10(1): 12-21, 200 1.

[8] M. Cohen and S. Grossberg. Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks.
IEEE transactions on systems, man, and cybernetics, 13, no 5:815-
826, 1983.

[9] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in
Real-Time Systems. John Wiley & Sons, England, 2002.

[10] S. Grossberg. Studies ofmind and brain: neuralprinciples oflearning,
perception, development, cognition and motor control. D. Reidel
publishing Company, 1988.

[11] B. Hamidzadeh, D. Lilja, and Y. Atif. Dynamic scheduling techniques
for heterogeneous computing systems. Journal of Concurrency:
Practice and Experience, 7:633-652, October 1995.

[12] J. J. Hopfield and D. W. Tank. Neural computation of decisions in
optimization problems. Biological Cybernetics, 52:141-52, 1985.

[13] D. Liu and Y-H. Lee. Pfair scheduling of periodic tasks with allocation
constraints on multiple processors. In Proc. of the 18th International
Parallel and Distributed Processing Symposium, volume 03, page 119,
Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[14] J. Noguera and R. M. Badia. Multitasking on reconfigurable architec-
tures: microarchitecture support and dynamic scheduling. ACM Trans.
on Embedded Computing Systems, 3(2):385-406, may 2004.

[15] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah. The case
for fair multiprocessor scheduling. In Proc. of the 17th International
Symposium on Parallel and Distributed Processing, page 114, Wash-
ington, DC, USA, 2003.

[16] G. Tagliarini, J. F. Christ, and W. E. Page. Optimization using neural
networks. IEEE Trans. Comput., 40(12):1347-58, December 1991.

