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ABSTRACT
The analytic evaluation of the system output roundoff noise is
an interesting approach to analyze the effect of a Finite Word
Length implementation of linear filters. Previous works have
introduced the Roundoff Noise Gain in this context and ap-
plied it to shift and δ -realizations.
To generalize them, the paper is based on a more general rep-
resentation and exhibits the output noise power in the general
case.
Finally, the problem optimal realization problem, according
to the Roundoff Noise Gain measure, is considered.

1. INTRODUCTION

The majority of signal processing systems (and also con-
trol systems) are digitally implemented with general purpose
microprocessors, DSP or specific computing devices like
FPGA. Since the processor cannot compute with infinite pre-
cision and use most of the time fixed-point arithmetic, the Fi-
nite Word Length (FWL) implementation of signal process-
ing algorithms leads to deterioration in performance. This
induced deterioration has two separate origins [1]:
• the quantization of embedded coefficients,
• the roundoff errors in the numerical computations.

They can respectively be formalized as parametric errors and
numerical noises. If the filter and the target architecture are
specified, they both depend on the realization (the param-
eters of the mathematical algorithm used to implement the
filter), the fixed-point representation of the variables and co-
efficients, and the software/hardware design.
Numerous works in the control and filtering communities
have been done ([1, 7, 17, 9, 16], etc.) on the parametric
errors (transfer function sensitivity, etc.) and the search of
optimal realizations (relatively to different criteria).

The roundoff errors have been studied in two different
ways: works in [4, 13, 1] deal with a roundoff noise mea-
sure (the Roundoff Noise Gain) unlinked to hardware con-
siderations in order to optimize the realization with respect
to that criteria, whereas works in [11, 8] deal with the Sig-
nal Quantization Noise Ratio and are more focused on the
software/hardware realizations.

Various algorithms exist to numerically realize a linear
time invariant filter. As shown in section 5, they present
various computational cost and FWL comportment (evaluate
here with the RNG). In order to compare and find optimal
realizations, our objective is to propose an analytic, efficient
and general measure to evaluate the output noise power of
various possible implementation schemes. It allows to an-
swer the optimal design problem and help to solve the com-
putation cost and roundoff noise errors trade-off. Due to a

lack of place, only the RNG scheme is studied here.
This paper is organized as follows. After presenting the

implicit state-space framework in section 2, a general round-
off noise analysis, applied to this form, is exhibited in sec-
tion 3. The classical RNG scheme is then derived. Section
4 presents the optimal design problems and some numerical
results are finally proposed in section 5.

2. THE IMPLICIT STATE-SPACE FRAMEWORK

Work in [2] highlights the interest of the implicit state-space
representation in the context of FWL implementation prob-
lems and proposes to use a specialized form directly con-
nected to the in-line computations to be performed. It can be
used as a unifying framework to allow a more detailled (but
macroscopic) description of FWL implementations. Various
realizations, like q (shift) or δ -realizations, classical Direct
Form I and II, cascade or parallel decompositions, mixed
structures, etc. may be then described in a single unifying
form.
Equation (1) recalls the specialized implicit form that explic-
itly expresses the parametrization and the intermediate vari-
ables used:( J 0 0
−K In 0
−L 0 I

)(T (k +1)
X(k +1)

Y (k)

)
=

(0 M N
0 P Q
0 R S

)(T (k)
X(k)
U(k)

)
(1)

where
• J ∈Rl×l , K ∈Rn×l , L ∈Rp×l , M ∈Rl×n, N ∈Rl×m, P ∈

Rn×n, Q∈Rn×m, R∈Rp×n, S∈Rp×m, T (k)∈Rl , X(k)∈
Rn, U(k) ∈ Rm and Y (k) ∈ Rp,
• U(k) represents the m inputs, and Y (k) the p outputs,
• X(k + 1) is the n stored states (X(k) is effectively stored

from one step to the next, in order to compute X(k + 1)
at step k),
• T (k+1) is the l intermediate variables in the calculations

of step k (the column of 0 in the second matrix shows
that T (k) is not used for the calculation at step k: that
characterizes the concept of intermediate variables),
• the matrix J is lower triangular with 1 on the diagonal,

T (k +1) and X(k +1) form the state-vector: X(k +1) is
stored from one step to the next, while T (k +1) is computed
and used inside one time step.

It is implicitly considered throughout the paper that the
computations associated to the realization (1) are ordered
from top to bottom, associated in a one to one manner to
the following algorithm:
(i) intermediate variable computation: J is lower triangular,

so T0(k + 1) is first calculated, and then T1(k + 1) using



T0(k+1) and so on (the computation of J−1 is not neces-
sary):
J.T (k +1)←M.X(k)+N.U(k)

(ii) state-vector update:
X(k +1)← K.T (k +1)+P.X(k)+Q.U(k)

(iii) outputs computation:
Y (k)← L.T (k +1)+R.X(k)+S.U(k)

Steps (ii) and (iii) can be swapped: the computational delay
could be reduced by evaluating Y (k) first.
Equation (1) is equivalent in infinite precision to the classical
state-space form:

(T (k +1)
X(k +1)

Y (k)

)
=

 0 J−1M J−1N
0 AZ BZ
0 CZ DZ

(T (k)
X(k)
U(k)

)
(2)

with AZ ∈Rn×n, BZ ∈Rn×m, CZ ∈Rp×n and DZ ∈Rp×m and
where

AZ = KJ−1M +P BZ = KJ−1N +Q
CZ = LJ−1M +R DZ = LJ−1N +S

(3)

However, equation (2) corresponds to a different parame-
trization than the one in eq. (1).
The equivalent transfer function considered is then given by

H : z 7→CZ(zIn−AZ)−1BZ +DZ (4)

In the following, a realization R will be defined in the
implicit form by its parameters used for the internal descrip-
tion

R , (J,K,L,M,N,P,Q,R,S) (5)

It could also be equivalently written in a compact form R =
(Z, l,m,n, p) with

Z ,

(−J M N
K P Q
L R S

)
(6)

The usual realizations (Direct Forms, state-space, δ -
realizations, cascade, parallel, mixed realization, etc.) can
be easily expressed in the Implicit State-Space Framework.
For example, a δ -state-space realization{

δ [X(k)] = Aδ X(k)+BδU(k)
Y (k) = Cδ X(k)+DδU(k) (7)

where δ = q−1
∆

(∆ is strictly positive constant, q is the shift-
operator), can be expressed as:( In 0 0
−∆In In 0

0 0 I

)(T (k +1)
X(k +1)

Y (k)

)
=

(0 Aδ Bδ

0 In 0
0 Cδ Dδ

)(T (k)
X(k)
U(k)

)
(8)

This form is well known [1, 12] to be numerically superior
to the usual shift-operator, because it generally results in less
sensitive implementation with less roundoff noise. Other ex-
amples can be found in [2].

3. OUTPUT NOISE POWER

3.1 Preliminaries
Let G be a MIMO1 l×m system and U a noise to be propa-
gated in (U(k) ∈ Rl).
In that paper, the first (µ) and second (σ ,Ψ) order moments
of a noise b (it may be a vector of noises) are defined by

µb , E {b(k)} (9)

Ψb , E
{

b(k)b>(k)
}

(10)

σ
2
b , E

{
b>(k)b(k)

}
= tr (Ψb) (11)

where E{.} is the mean operator and tr(.) the trace operator.

Definition 1 (L2-norm, gramians) The L2-norm of G is de-
fined by

‖G‖2
2 ,

1
2π

∫ 2π

0
tr
(
G
(
e jω)GH (e jω)) dω (12)

where ·H the transpose conjugate operator. Let (A,B,C,D)
be a state-space representation of G. So

G : z 7→C(zIn−A)−1B+D (13)

and it can be shown that

‖G‖2
2 = tr

(
DD>+CWcC>

)
= tr

(
D>D+B>WoB

)
(14)

where Wc and Wo are respectively the controllability and ob-
servability gramians of the realization (A,B,C,D). They are
solutions of the Lyapunov equations:

Wc = AWcA>+BB>, Wo = A>WoA+C>C (15)

The following proposition is necessary to recall the prop-
erties of noises through a transfer function.

Proposition 1 Let suppose the noise U(k) to satisfy

E
{

U(k)U>(k− l)
}

= δ0,lΨU (16)

where δi, j is the Kronecker symbol.
Let Y denote the resulting noise of U through G. If
(A,B,C,D) is a state-space representation of G, the first and
second order moments of Y are given by:

µY = G(0)µU (17)

σ
2
Y = tr

(
ΨU (D>D+B>WoB)

)
(18)

where Wo is the observability Gramian of G.
Proof:

The proof for the mean can be found in [14].
The power spectrum densities ΦU and ΦY satisfy ([14])

ΦY (z) = G(z)ΦU (z)GH(z) ∀z ∈ C (19)
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The Fourier Transform (FT ) gives FT (δ0,l) = 1 and
FT (Φ) = Ψ, so

σ
2
Y = tr

(
1

2π

∫ 2π

0
ΦY
(
e jω) dω

)
=

1
2π

∫ 2π

0
tr
(
(GϕU )

(
e jω)(GϕU )H (e jω)) dω

= ‖Gϕ‖2
2 (20)

where ϕU is such that ΨU = ϕU ϕ>U (ΨU is a symetric positive
definite matrix, so a Cholesky decomposition is available).
As GϕU and G share the same observability gramian Wo, it
comes, with eq. (14):

σ
2
Y = tr

(
ϕ
>
U D>DϕU +ϕ

>
U B>WoBϕU

)
= tr

(
ϕU ϕ

>
U (D>D+B>WoB)

)
(21)

Remark 1 G(0) is the static gain of G. In the SISO2 case
(l = m = 1), one can find the classical results [14]:

µY = G(0)µU , σ
2
Y = ‖G‖2

2 σ
2
U (22)

3.2 Roundoff Noise Analysis
Let us consider a realization R described with the implicit
form (1), with transfer function H. When implemented, the
steps (i) to (iii) are modified by the add of noises BT , BX and
BY :

J.T ∗(k +1) ← M.X∗(k)+N.U(k)+BT (k)
X∗(k +1) ← K.T ∗(k +1)+P.X∗(k)+Q.U(k)+BX (k)

Y ∗(k) ← L.T ∗(k +1)+R.X∗(k)+S.U(k)+BY (k)
(23)

(the noise J−1BT is added on T ).
These noises added depend on:
• the way the computations are organized (the order of the

sums) and done,
• the fixed-point representation of the inputs,
• the fixed-point representation of the outputs,
• the fixed-point representation chosen for the states and

the intermediate variables.
These noises are independent white noises.

It is possible to express the implemented system as the
initial system (H) with a noise B added on the ouputs: the
implemented system (23) is then equivalent to the system
described in figure 1, where the transfer functions HT , HX
and HY are respectively the transfer functions from the noises
added on the intermediate variables (on J.T ), the states and
the outputs to the outputs:

HT : z 7→ CZ(zIn−AZ)−1KJ−1 +LJ−1 (24)

HX : z 7→ CZ(zIn−AZ)−1 (25)
HY : z 7→ Ip (26)

These transfer function have values in Cl×p, Cn×p and Cp×p

respectively.
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Figure 1: Equivalent system, with noises extracted

Then, the expression of the output noise power is given
by

P , σ
2
B = E

{
B>(k)B(k)

}
(27)

with B the sum of the filtered noises B′T , B′X and B′Y (see
figure 1):

B(k) = B′T (k)+B′X (k)+B′Y (k) (28)

From eq. (27), it comes

P = σ
2
B′T

+σ
2
B′X

+σ
2
B′Y

+ µ
>
B′T

(
µB′X

+ µB′Y

)
+µ
>
B′X

(
µB′T

+ µB′Y

)
+ µ

>
B′Y

(
µB′T

+ µB′X

)
(29)

Proposition 2 Finally, the output noise power is given by

P = tr
(

ΨBT J−>
(

L>L+K>WoK
)

J−1
)

+tr(ΨBX Wo)+ tr (ΨBY )

+µ
>
BT

H>T (0)
(
HX (0)µBX + µBY

)
+µ
>
BX

H>X (0)
(
HT (0)µBT + µBY

)
+µ
>
BY

(
HT (0)µBT +HX (0)µBX

)
(30)

Proof: The transfer functions H, HT and HX share the same
observability gramian Wo, and the proposition 1 links the mo-
ments σB′T

, σB′X
, σB′Y

, µB′T
, µB′X

and µB′Y
to the noises’ mo-

ments ΨBT , ΨBX , ΨBY , µBT , µBX and µBY .

Remark 2 Equation (30) is a good illustration of the rela-
tionship between the works done in the hardware/software
community and the one done in the control community: the
first ones are based on the accurate evaluation of the noises
for particular H/S fixed-point implementation on various tar-
gets (DSP, FPGA) whereas the second ones are based on the
search of good realizations with particular well-conditioned
structures. In the first case, only the classical direct form is
studied, whereas the real HW/SW impact is neglected in the
second case.
The moments ΨBT , ΨBX , ΨBY , µBT , µBX and µBY only de-
pend on the H/W implementation, whereas the other terms
(Wo, J−>

(
L>L+K>WoK

)
J−1, HT (0) and HX (0)) only de-

pend on the algorithm used.



3.3 Roundoff Noise Gain
The Roundoff Noise Gain is the output noise power in a spe-
cific computational scheme: the noises are supposed to ap-
pear only after each multiplication (Roundoff After Multi-
plication scheme) and are modeled by centered white noise
statically independent. Each noise hase the same power σ2

0
(determined by the wordlength chosen for all the variables
and coefficients).

Definition 2 The Roundoff Noise Gain is defined by

G ,
P

σ2
0

(31)

This measure was studied by [13, 4, 1] and has been estab-
lished for state-space realizations and some other particular
realizations (the ρDFIIt, see [10, 18] ). This particular com-
putational scheme fixes the moments of BT , BX and BY : they
only depend here on the number of non-trivial parameters in
the realization.
Let introduce the matrices dJ to dS. They are diagonal matri-
ces defined by

(dX )i,i , number of non-trivial parameters in the ith row of X
(32)

The trivial parameters considered are 0, 1 and −1 because
they do not imply a multiplication.

The first step of the algorithm (1) is

J.T (k +1)←M.X(k)+N.U(k) (33)

and is realized as follows (1 6 i 6 l):

Ti(k +1)←
n

∑
j=1

Mi jX j(k)+
m

∑
j=1

Ni jU j(k)−∑
j<i

Ji jTj(k +1)

(34)
Each multiplication by a non-trivial parameter implies a
quantization noise. Since they are independent centered
white noise, ΨBT is given by:

ΨBT = E
{

BT (k)B>T (k)
}

(35)

= (dM +dN +dJ)σ
2
0 (36)

(J is a diagonal matrix with 1 on the diagonal, so the number
of non-trivial parameters of each row in the sub-diagonal part
of J is equal to the number of non-trivial parameter of each
of its row).
For the same reasons,

ΨBY = (dL +dR +dS)σ
2
0 (37)

ΨBX = (dK +dP +dQ)σ
2
0 (38)

Proposition 3 Then, the RNG is given by

G = tr
(

(dM +dN +dJ)J−>
(

L>L+K>WoK
)

J−1
)

+tr
(
(dK +dP +dQ)Wo

)
+ tr (dL +dR +dS) (39)

Remark 3 In the state-space case, eq. (39) leads fortunately
to the classical result enonced by Mullis & Roberts [13, 1]

G = tr
(
(dA +dB)Wo

)
+ tr (dC +dD) (40)

Remark 4 Recently, a new sparse structure have been pro-
posed, the ρDFIIt [18, 10] and the RNG developped for it.
It is obvious to describe this structure in the Implicit State-
Space Framework and find again, with the general equation
(39), the RNG in that case.

4. OPTIMAL DESIGN

Since the Roundoff Noise power depends on the realization
chosen to numerically realize the filter, it is of interest to
find, among the equivalent realizations set, those with lower
roundoff noise.

In order to exploit the potential offered by the specialized
implicit form in improving implementations, it is necessary
to describe sets of equivalent system realizations. The In-
clusion Principle introduced by Šiljak and Ikeda [5] in the
context of decentralized control, could be extended to the
Specialized Implicit Form in order to characterize equivalent
classes of realizations [2]. Although this extension gives the
formal description of equivalent classes, it is of practical in-
terest to consider only realizations with the same dimensions,
where transformation from one realization to another is only
a similarity transformation.

Proposition 4 Consider a realization R0 = (Z0, l,m,n, p).
All realizations R1 = (Z1, l,m,n, p) such that

Z1 =

Y
U −1

Ip

Z0

(
W

U
Im

)
(41)

are equivalent (with U ∈ Rn×n, Y ∈ Rl×l and W ∈ Rl×l

non-singular matrices).

For particular structured realizations, the transformation
matrices U , Y and W may be linked (for δ -state-space,
Y = U −1 and W = U , see (8) ; and for classical state-
space, Y = W = Il).

The optimal design problem consists in finding the best
realization, among the equivalent realizations set, according
to a FWL criteria, here the Roundoff Noise Gain.
Due to the size of equivalent realizations set, this problem
cannot be solved practically: the search is done among equiv-
alent realizations with particular structure (δ -state-space,
cascade decomposition, etc.).

Let consider a realization R0 =
(J0,K0,L0,M0,N0,P0,Q0,R0,S0) and a realization R1
deduced from eq. (41).
Assuming that the transformation doesn’t change the trivial
parameters (this is the case when the search is done among
equivalent realizations with particular structure), then the
moments ΨBT , ΨBX , ΨBY , µBT , µBX and µBY are independent
of the transformation. It is obvious to remark that the
roundoff noise P is now a function of U and Y , because:

Wo
∣∣
Z1

= U > Wo
∣∣
Z0

U(
J−>

(
L>L+K>WoK

)
J−1
)∣∣∣

Z1
= Y −>

(
J−>

(
L>L+K>WoK

)
J−1
)∣∣∣

Z0
Y −1

HT
∣∣>
Z1

(0) = HT
∣∣>
Z0

(0)Y −1

HX
∣∣
Z1

(0) = HX
∣∣
Z0

(0)U (42)



5. EXAMPLES

To illustrate the RNG measure and the optimal design prob-
lem, we consider the following filter

H(z) =
0.01594(z+1)3

z3−1.9749z2 +1.5562z−0.4538
(43)

It is a low pass filter (see [1, 4]) and has a triple zero at z =
−1, so the zero positions are very sensitive to the roundoff
noise when realize directly.
The following realizations are considered:

Z1: direct form I with shift-operator,
Z2: RNG-optimal state-space realization,
Z3: RNG-optimal implicit state-space realization: we con-

sider all the equivalent realizations described by{
EX(k +1) = AX(k)+BU(k),

Y (k) = CX(k)+DU(k). (44)

where E is a lower triangular matrix. This can be de-
scribed in the implicit state-space framework by

Z0 =

−E A B
In 0 0
0 C D

 (45)

and equivalent realizations can be searched with proposi-
tion 4, with W = U ,

Z4: RNG-optimal δ -realization (described by eq. (7)), with
∆ = 2−5.
The RNG-optimal realizations Z2, Z3 and Z4 are obtained

by solving the optimal design problem for the RNG measure
(the RNG depends on U and Y , with eq. (42)). The Adap-
tive Simulated Annealing (ASA) method [6] has been cho-
sen.
To satisfy the RNG computational scheme (same fixed-point
representation for every states and intermediate variables),
a norm dynamic-range scaling constraint (L2-scaling, see
[3, 13, 15]) is added on the optimal problem.

Table 1: RNG measure and computational cost
realization RNG Nb. operations

Z1 27.53dB 6+ 7×
Z2 16.40dB 12+ 16×
Z3 12.05dB 15+ 19×
Z4 13.35dB 15+ 19×

The results given in table 1 are coherent with existing
results on RNG. First, it is possible to find the optimal reali-
zation among equivalent ones with same structure. Secondly,
even if it is not the main goal of this paper, it is possible to
compare realizations: those realization with lower RNG re-
quires more operations. Last point: in that particular exam-
ple, the realization RNG-optimal implicit state-space realiza-
tion Z3 presents better RNG than RNG-optimal δ -realization
Z4 for the same number of operations, but the result is case-
depedent: it is possible to find examples where Z4 could be
better than Z3.

6. CONCLUSION

The Implicit State-Space Form provides a general framework
for the analysis and design of digital filter implementation
with minimum output noise power. The general output noise
power measure and the optimal design problem have been ex-
hibited. The Roundoff Noise Gain corresponds to this mea-
sure for a particular and quite simple computational scheme.
Due to its limitations (the L2-scaling changes the parame-
ters and can lead to a higher transfer function sensitivity),
our present work focuses on output noise power for gen-
eral computational scheme (DSP, FPGA, etc.) and a global
methodology to search the optimal realizations with criteria
like power consumption, area (FPGA), output noise power,
transfer function sensitivity, pole sensitivity, etc.
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