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Abstract— In fixed-point conversion process, the implementa-
tion cost is optimized under accuracy constraint. The determina-
tion of this constraint is one of the main issue of the conversion
process. In this paper, a quantization noise model is proposed
to evaluate the fixed-point application performances and thus to
determine the computation accuracy constraint. The fixed-point
system is modelled with a infinite precision version of the system
and a unique noise source located at the system output. This noise
source model is detailed in this paper. To validate our model,
different Digital Signal Processing application benchmarks have
been tested and the adequacy between our model and real noises
has been measured.

I. I NTRODUCTION

Fixed-point arithmetic is widespread in embedded systems
to optimize power consumption and cost. Given that appli-
cations are developed with floating-point data types, a fixed-
point conversion is required. The finite precision arithmetic
leads to a quantization error which modifies the application
functionalities and degrades the desired performances.

To maintain application performances, minimal computation
accuracy must be guaranteed. In the fixed-point conversion
process, the fixed-point specification is optimized such as the
implementation cost is minimized as long as application per-
formances are fulfilled. Nevertheless, the performance degra-
dations are not analyzed directly in the conversion process.
An intermediate metric is used to measure the computation
accuracy. Indeed, the exploration of the fixed-point search
space is more complex if the application performances are
managed directly.

The global conversion method is decomposed into two main
steps. Firstly, a computation accuracy constraint is determined
according to the application performances, and secondly the
architecture cost is minimized under this accuracy constraint
during the fixed-point conversion process. This computation
accuracy metric can be the quantization error power or the
error bounds. The minimal value determination for the com-
putation accuracy metric is a difficult problem and cannot be
defined directly. This accuracy constraint has to be linked to
the quality evaluation and performances of the application.

In this paper, a quantization noise model is proposed to
evaluate the fixed-point application performances and thus
to determine the computation accuracy constraint. In our

approach, the metric used to evaluated the computation accu-
racy is the quantization noise power. The fixed-point system
behavior is modelled with an infinite precision version of
the system and a unique noise source located at the system
output. The accuracy constraint is determined as the maximal
value of the noise power which keeps the desired application
quality. To our knowledge, no output quantization noise model
is available, in the literature, to determine the computation
accuracy constraint.

The paper is organized as follows. The fixed-point conver-
sion process and the determination of the accuracy constraint
are presented in Section II. The noise model is detailed
and justified in Section III. This noise model is validated in
Section IV and the adequacy between our noise model and
real quantization noises is shown through examples.

II. A CCURACY CONSTRAINT

A. Fixed-point conversion process

A fixed-point data is composed of an integer part and a
fractional part. The fixed-point conversion aim is to determine
the number of bits for each part. Thus, as illustrated in figure 1,
this process can be divided in two main modules [1]. The first
module corresponds to the determination of the integer part
word-length. Thus, firstly the dynamic range is evaluated for
each data. Then, these results are used to determine, for each
data, the binary-point position which minimizes the integer
part word-length and which avoids overflow.

The second module corresponds to the determination of
the fractional part word-length. The number of bits for this
fractional part defines the computation accuracy. Thus, the
data word-lengths are optimized such as the implementation
cost is minimized under accuracy constraint. The fractional
part word-length determination corresponds to an optimization
problem where the implementation cost and the application
accuracy must be evaluated. In our approach, the computation
accuracy is evaluated through the quantization noise power.
The analytical approaches have been favoured to evaluate the
computation accuracy. Indeed, compared to the simulation-
based techniques, they allow to obtained reasonable optimiza-
tion time during the fixed-point space exploration. In the case
of simulation-based approaches, a new fixed-point simulation
is required when a fixed-point data format is modified.



The accuracy constraint corresponds to the maximal value
for the noise power which allows to respect the desired
application performances or quality. The approach used to
obtain this noise power maximal value is presented in the next
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Fig. 1. Fixed-point conversion process

B. Accuracy constraint determination

The accuracy constraint corresponding to the maximal value
of the quantization noise power (Pbmax) is defined according
to the system performance constraints. In our approach, the
fixed-point system is modelled by the system infinite precision
version and a unique noise sourceby located at the system out-
put. The accuracy constraint is determined from the maximal
value of the noise power which allows to keep the desired
application performances. The performances are measured by
simulation. The system floating-point version is used and the
noiseby is added to the output. The noise model used forby

is presented in Section III. The power ofby is increased as
long as the measured performances are acceptable. Most of the
time, the floating-point simulation has already been developed
during the application design step, and the application output
samples can be directly used. Therefore, the time required for
exploring the noise power values is significantly reduced, and
becomes negligible with regards to the global implementation
flow.

Figure 2 shows the global process of accuracy constraint
determination followed by the fixed-point design process.
After the accuracy constraint determination, fixed-point con-
version is achieved. The fixed-point specification is determined
in order to optimize the implementation and to fulfil the
accuracy constraint. This optimized fixed-point specification
is simulated to measure the real performance obtained with
this specification and to verify if the application performance
constraints are still achieved. In the opposite case, the minimal
value of the SQNR is adjusted and the fixed-point process is

repeated. With this approach, few fixed-point simulations are
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Fig. 2. Accuracy constraint determination and fixed-point design process

III. N OISE MODEL FOR FIXED-POINT SYSTEM

The use of fixed-point arithmetic introduces an unavoidable
quantization error when a signal is quantified. A common used
model for signal quantization has been proposed in [2] and in
[3]. The quantization of a signalx is modelled by an additive
noiseb. This noise is a uniformly distributed white noise that is
uncorrelated with the signalx, and independent from the other
quantization noises. In this study, the round-off method isused
rather than truncation. Quantization by rounding process leads
to an error with a zero mean.

The output quantization noise is the contribution of the
different noise sources. Each noise source is due to the
elimination of some bits during a cast operation which fol-
lows an arithmetic operation. These different noise sources
are independent of each other [3]. These noise sources are
propagated through the different operations. A propagation
model for each arithmetic operator is proposed in [4]. The
operator output noise is a weighted sum of the input noises
associated with each operation input. The weights of the sum
do not include noise term, because the product between the
noise terms can be neglected. Thus, it can be demonstrated
that the output quantization noise is a weighted sum of the
different noise sources. The contribution of each noise in terms
of statistical parameters depends on the fixed-point format
after quantization, and the gain between the output and the
noise source.

In this context, two extreme cases can be distinguished.
In the first case, a quantization noise source predominates
in terms of variance compared to the other noise sources. A
typical example is an extensive reduction of the number of bits
at the system output compared to the other fixed-point format.
In this case, the level of this output quantization noise exceeds
the other noise source level. Thus, the probability density
function of the output quantization noise is very closed to the
one of the predominant noise source and can be assimilated
to a uniform distribution. In the second case, an important
number of independent noise sources have similar statistical



parameters and no noise source predominates. All the noise
source are centered, uniformly distributed and independent of
each other. By using the central limit theorem, the sum of the
different noise sources can be modeled by a centered normally
distributed noise.

From these two extreme cases, an intuitive way to modelize
the output quantization noises of a complex systems is to use
a noiseb which is the weighted sum of a gaussian and an
uniform noise. Letfb be the probability density function of
the noiseb. Let bn be a normally distributed noise with a
mean and variance equal respectively to 0 and 1. Letbu be a
uniformly distributed noise in the interval [-1;1]. The noiseb
is defined with expression 1. Theβ weight is set in the interval
[0;1] and allows to represent the different intermediate cases
between the two extreme cases presented above. The weight
υ fixes the global noise variance.

b = υ(β×bu+(1−β)×bn) (1)

IV. VALIDATION OF THE PROPOSED MODEL

A. Validation methodology

The aim of this validation section is to analyze the adequacy
between our model and real quantization noises. Our model is
valid if a β weight can be found to model the noise probability
density function with equation 1. The adequacy between the
real noise and our model is analyzed with theχ2 goodness-of-
fit test. This test is a statistical tool which can be used to know
if an observed noiseby follows a chosen probability density
function fb [5]. The test is based on the distance between
the two probability density functions. Ifys is the observed
frequency for bins, Es is the expected frequency for sample
s andk the number of samples, the statistical test is:

χ2 =
k

∑
s=1

(bys −Es)
2

Es
(2)

This statistical test follows aχ2 distribution with k− 1
degrees of freedom. Therefore, if the distance is higher than a
certain value, then the hypothesisHX (by follows the probabil-
ity density functionfb) is rejected. The significance level of the
test is the probability to rejectHX when the hypothesis is true.
Choosing a certain value for this level will set the threshold
distance for the test. According to [6], the significance level
α should be in[0.001 0.05].

Concerning the observed noise, there is noa priori knowl-
edge of theβ weight. Thus theχ2 test has to be used
collectively with a searching algorithm. The idea is, for a given
observed noise, to find theβ weight for which thefb fits the
best to the noise. In the interval[0;1], different values ofβ are
tested, and, progressively, the search interval is reduced. When
the test succeeds, the balance coefficient is found otherwise the
noise can not be modelled with our approach. This procedure,
called theβ-searching algorithm, allows to check the validity
of the model on several examples.

B. FIR filter example

To illustrate the model, a 32-tap FIR filter example is under
consideration. The signal flow graph of one celli is presented
in Figure 3. The word-length of the input signal (wlx) and the
coefficient (wlh) are equal to 16 bits. At the filter output, the
data is stored in memory with a word-lengthwlo equal to 16
bits. The adder word-lengthwladd is varying between 16 and
32 bits.
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Fig. 3. PDF of the quantization noiseb

The probability density function of the filter output quan-
tization noise is presented in Figure 3 for different valuesof
wladd. The noise is uniform when one source is prevailing
(the adder is on 32 bits). As the influence of the sources at the
output of the multiplier is increasing (the length is decreasing),
the distribution of the output noise tends to become gaussian.
Theses simple visual observations can be confirmed using the
β-searching algorithm. Figure 4 depicts the evolution ofβ for
different adder word-lengths, varying from 16 to 32 bits. When
the output of the multiplier is on 16 or 17 bits,β = 0, the
sources are numerous. Their influence on the system output
is a gaussian noise. While the length of the multiplier is
increasing,β also grows and eventually tends to 1. Whenwladd

is greater than 26 bits, the variance of the noise sourcesbmi

located at each multiplier output is insignificant comparedto
the variance of the noise sourcebo located at the filter output.
Thus, this latter is prevailing. Its influence on the output signal
is an uniform white noise.

C. Benchmarks

To validate our noise model, different DSP application
benchmarks have been tested and the adequacy between our
model and real noises have been measured. The real noises are
obtained through simulations. The output quantization noise
is obtained from the difference between the system outputs
obtained with a fixed-point and a floating-point simulation.
The floating-point simulation which uses double-precision
types is considered to be the reference. Indeed, in this case, the
error due to the floating-point arithmetic is definitely weaker
than the error due to the fixed-point arithmetic. Thus, the
floating-point arithmetic errors can be neglected.
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Fig. 4. Weight β found for different adder word-lengths. This weight is
obtained with theβ-search algorithm presented in section IV-A

For each application, different output noises have been
obtained by evaluating several fixed-point specifications and
different application parameters. The number of output noises
analyzed for one application is defined through the termNt .
For these different applications based on arithmetic operations,
the input and the output word-length are fixed to 16 bits. The
different fixed-point specifications are obtained by modifying
the adder input and output word-length.

The results are presented in Table I for two significance level
α corresponding to the boundary values (0.05 and 0.001). For
each application, the numberNs of real noise which can be
modelled with our noise model are measured. The adequacy
between our model and real noises is measured with the
metric Γ defined as the ratio betweenNs andNt . This metric
corresponds to the ratio of output noises for which aβ weight
can be found to model the noise probability density function
with equation 1.

The results show that our noise model can be applied to
most of the real noises obtained for different applications.
For some applications, like FFT, FIR, WCDMA receiver and
Volterra filter, aβ weight can be found. These four applications
are non-recursive and the three first applications are linear
time-invariant systems.

For the eight-order infinite impulse filter, almost all the
noises (97%-100%) can be modelled with our approach. For
these filters, 90% of the output quantization noise are modelled
with a β weight equal to 0. Thus, the output noise is a purely
normally distributed noise. In linear time-invariant systems,
the output noiseb′g due to the noisebg corresponds to the
convolution of the noiseb′g with hg. This termhg is the impulse
response of the transfer function between the noise source and
the output. Thus, the output noise is the weighted sum of the
delayed version of the noisebg. The noisebg is a uniformly
distributed white noise, thus the delayed versions of the noise
bg are uncorrelated (the samples are not independent and thus
the central limit theorem can not be applied directly). Evenif
only one noise source is located in the filter, the output noise

Applications Test Significance level
NumberNt α = 0.05 α = 0.001

FFT 16 100 % 100 %
IIR 8 Direct form I 192 98 % 99 %
IIR 8 Direct form II 192 100 % 100 %
IIR 8 Transposed form 192 97 % 99 %
Adaptive APA filter 8 87 % 100 %
Volterra filter 8 100 % 100 %
WCDMA receiver 16 100 % 100 %
MP3 28800 78 % 87 %

TABLE I

ADEQUACY BETWEEN OUR MODEL AND REAL NOISES

is a sum of non-correlated noises and this output noise tends
to have a gaussian distribution.

For the MP3 coder, when the level is 0.001 the test is
successful about 87% of the time (78% whenα is 0.05). The
fairly high percentages tend to show that it is relevant to use
this model. The second observation is that none of the found
β values is higher than 0.5. The noises are mostly gaussian,
and no source is prevailing.

V. CONCLUSION

The accuracy constraint determination is one of the main
issue in the floating-point to fixed-point conversion process.
In this paper, a noise model has been proposed to model
complex application fixed-point behavior. A system output
noise is modelled from a gaussian noise and a uniform noise.
The different experiments show that this model is adequate in
most of the case for different DSP applications. Now, different
experiments will be conducted to show the efficiency of our
approach to determine the computation accuracy constraint
and the adequacy between the desired performances and the
real performances measured after the fixed-point conversion.
Moreover, the case of quantization by truncation must be
studied to find a noise model valid for this quantization law.
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