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ABSTRACT

To satisfy cost constraints, application implementation in
embedded systems requires fixed-point arithmetic. Thus, ap-
plications defined in floating-point arithmetic must be con-
verted into a fixed-point specification. This conversion re-
quires accuracy evaluation to ensure algorithm integrity.In-
deed, fixed-point arithmetic generates quantization noises
due to some bits elimination during a cast operation. These
noises propagate through the system and modify computing
accuracy. In this paper, an accuracy evaluation model based
on an analytical approach is presented and valid for all sys-
tems including arithmetic operations. The LMS algorithm
example is developed and its validity is verified through ex-
perimentations.

1. INTRODUCTION

Digital signal processing applications are specified in
floating-point to prevent problems due to computing ac-
curacy. However, to satisfy cost constraints, application
implementation in embedded systems requires fixed-point
arithmetic. Thus, the application defined in floating-point
arithmetic must be converted into a fixed-point specifica-
tion. To reduce application time-to-market, tools to automate
floating-point to fixed-point conversion are needed. In these
tools, an important stage corresponds to accuracy evaluation
of fixed-point specification. Indeed, fixed-point arithmetic
generates quantization noises due to some bits elimination
during cast operations. These noises propagate through the
system and modify computing accuracy. Computing accu-
racy damages must be contained to ensure algorithm integrity
and application performances.

Application accuracy can be evaluated through different
manners. On one hand, accuracy can be evaluated with
fixed-point simulations [1, 5]. However, these methods
require high computing time since a new simulation is re-
quired as soon as a fixed-point format changes in the system.
So, these approaches lead to very significant optimisation
time inside the fixed-point conversion process. On the other
hand, a fixed-point specification accuracy can be evaluated
with analytical methods. These approaches determine a
mathematical expression for the accuracy metric. These
methods require very short computing time compared to
methods based on simulation. In this domain, existing
approaches are only valid for linear and time invariant (LTI)
systems [3] or non-LTI and non recursive systems [6] or
need restrictive hypothesis about noises [2]. Thus, the aim
of this paper is to propose a method which evaluates the
fixed-point accuracy of any system based on arithmetic
operations (additions, subtractions, multiplications and

divisions). Especially, non-LTI systems with a recursion as
adaptive filters are supported. The accuracy is determined
through the Signal to Quantization Noise Ratio (SQNR)
of the considered application for any quantization law
(rounding or truncation).

This paper is organized as follows. First, quantization
noises are introduced. The modelization of noise source
is presented and the noise propagation through the system
is summarized. A general model to determine analytically
noise propagation through arithmetic operation is deduced.
This model takes into account the different noise source types
: the noises can be scalar, vector or matrix. Then, the consid-
ered system is modelized. This system is general (LTI, non-
LTI, recursive or non-recursive) and is modelized through
an expression of its transfert function and impulse response.
Given that the system can be non-LTI, the transfert function
and its impulse response are time-varying. This expression
lets us compute the noise power at the system output with an
analytical relation based on noise source statistical param-
eters and the system time-varying impulse response. This
expression is unbiased and leads to infinite sums. Finally,
the method is applied to different systems such as the LMS
algorithm and its quality is evaluated by experimentations.
Model execution times have been measured on Matlab. The
approach reduces dramatically the noise power computing
time compared to approaches based on fixed-point simula-
tions. These results show the ability of our methodology to
reduce fixed-point system development time.

2. QUANTIZATION NOISES

2.1 Quantization noises model

A data quantization can be modelized by the sum of the data
and a uniformly distributed white noise [7]. This white noise
(or quantization noise) is uncorrelated with the signal and
other noise sources. According to the type of quantization,
the noise distribution will differ. Three quantization modes
can be considered. It corresponds to truncation, conventional
rounding and convergent rounding [3].

Let n be the number of bits for the fractional part after the
quantization process andk the number of bit eliminated dur-
ing the quantization. The quantization stepq after the quan-
tization is equalq = 2−n. The quantization noise mean and
variance are presented in Table 1 for the three quantization
modes.



Quantization Truncation Conventional Convergent
mode rounding rounding

Mean q
2 (1−2−k) q

2 (2−k) 0

Variance q2

12 (1−2−2k) q2

12 (1−2−2k) q2

12 (1+2−2k+1)

Table 1: Quantization noise first and second order moment
for the three quantization modes.

Operation Valeur de Valeur de
α1 α2

z= x±y 1 ± 1

z= x×y y x

z= x
y

1
y − x

y2

Table 2: Terms valuesα1 andα2 of equation (1) for different
operations{+,−,×,÷}

2.2 Quantization noises propagation

The aim of this part is to define the noise propagation mod-
els. The propagation of two scalar noisesbx andby associated
with two input operatorX andY generates an output noisebz
expressed as the sum of the two input noisesbx andby mul-
tiplied by signal terms as explained in [6]. The termsαi are
summarized in Table 2 for the different arithmetic operations.

bz = α1bx +α2by (1)

In the case of non-scalar noise sources (vectors or ma-
trix), the last model is not valid since terms commutativity
doesn’t exist. Indeed, each noise source on the operation in-
put can be multiplied by signal term on the left or on the
right. Thus, the general model for noise source propagation
is expressed by the multiplication of each input noise by two
signal terms (A etD)

bz = AxbxDx +AybyDy (2)

The termsA andD are defined by the different operations
crossed by the noise source.

3. SYSTEM MODELIZATION

In this section, the system crossed by the noise sources is
characterized. This characterization lets us compute the sys-
tem output noise power. LetNe be the number of noise
sources. In the expression (2), the crossed noise terms do
not appear. So, each noise sourcebi(n) at timen propagates
through the system and contributes to the generation of sys-
tem output noiseb′i(n). The system output noiseby(n) is the
sum of all contributions as expressed in equation (3) and pre-
sented in Figure 1.

by(n) =
Ne

∑
i=1

b′i(n) (3)
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Figure 1: System modelization

Each contributionb′i(n) comes from noise sourcebi(n)
propagation through the systemSi . Thus, to determine com-
pletely the output noiseby(n), each blockSi must be analyti-
cally characterized.

3.1 System characterization

The noise sourcebi(n) leads to a noise contributionb′i(n) on
the system output. This contribution depends onbi(n) but
also on the previous samplesbi(n− k) for k ∈ [1 : Qi ] be-
cause of delays inserted in the system. Moreover, the con-
tributionb′i(n) depends on its previous samplesb′i(n−m) for
m∈ [1 : Pi ] due to recursions in the system. Then,b′i(n) can
be analytically written by the following expression

b′i(n) =
Qi

∑
k=0

gi(n−k)bi(n−k)+
Pi

∑
m=1

fi(n−m)b′i(n−m) (4)

where gi(n − k) represents the contribution of noise
sourcebi at time(n−k) to system output noise andfi(n−m)
that of noiseb′i at time (n−m). These termsfi andgi are
time-varying and depend on system implementation. For LTI
systems, these terms correspond to filter coefficients. The ex-
pression (4) lets us introduce the time-varying transfert func-
tion Hi(z) defined as

Hi(z) =

Qi

∑
k=0

gi(n−k)z−k

1−
Pi

∑
m=1

fi(n−m)z−m

(5)

This equation modelizes the system crossed by the noise
sourcebi(n). Nevertheless, the aim is to express output noise
power using only input noises statistics and system charac-
teristics. Then, expression (4) must be developed to express
contributionb′i(n) with only input noises termsbi introducing
time-varying impulse response.

3.2 Time-varying impulse response

In this part, the time-varying impulse response of the system
is determined. Developing recurrence in equation (4), the
next expression is obtained

b′i(n) =
n

∑
k=0

hi(k)bi(k) (6)



In this relation, contributionb′i(n) is expressed by noise
sourcebi(n) and all its previous samples wherehi represents
the time-varying impulse response of the systemSi . This
impulse response is recursively obtained with the following
relation

hi(k) =
P

∑
j=1

fi( j)hi(k+ j)+gi(k) (7)

This time-varying impulse response represents system in-
fluence on noise sourcebi(n) and must be determined using
system characteristics. The system is composed by arith-
metic operations. In the section 2, the propagation of a noise
through a system including arithmetic operations has been
modelized by the multiplication of two signal termsA et D.
as shows equation (2). Thus, the time-varying impulse re-
sponse, modelizing input noisebi(n) propagation through the
system, is equivalent to the multiplication of the noise source
bi(k) by two termsAi(k) andDi(k).

hibi <=> AibiDi (8)

So, the contributionb′i(n) presented in equation (6) is
equal to

b′i(n) =
n

∑
k=0

Ai(k)bi(k)Di(k) (9)

The output noiseby(n) is the sum of all noise source con-
tributions

by(n) =
Ne

∑
i=1

n

∑
k=0

Ai(k)bi(k)Di(k) (10)

More generally, the considered system can be composed
by different serial/parallel blocks. In that case, the previous
expression is still valid. However, signal termsA andD are
more complex because they are made-up of different signal
terms.

4. OUTPUT NOISE POWER EXPRESSION

4.1 Noise power

The output noise powerPb is got using second order moment
of expression (10). The non correlation between signal terms
and noises allows to obtain the following expression for out-
put noise powerPb.

Pb = E[b2
y(n)]

=
Ne

∑
i=1

σ2
bi

Kai +
Ne

∑
i=1

Ne

∑
j=1

mbi mb jKmi j (11)

wherembi andσ2
bi

represent input noisesbi(n) mean and
variance. Moreover,Kai andKmi j are signal terms defined
by the following expression

Kai =
n→∞

∑
k=0

E
[

Tr
(

Di(k)D
t
i (k)

)

Tr
(

Ai(k)A
t
i (k)

)

]

(12)

Kmi j =
n→∞

∑
k=0

n→∞

∑
m=0

E
[

Tr
(

Ai(k)1NDi(k)D
t
j(m)1NAt

j(m)
)

]

(13)

Systems Average relative error Maximum relative error

IIR 8 0.8% 3.3%

MP3 coder/decoder 6.62% 20.57%

Volterra filter 1.79% 3.22%

Correlator 1.35% 5.78%

Table 3: Average and maximum relative error committed on dif-
ferent systems

with 1N the N-size matrix composed by 1. The ex-
pressions ofKa and Km are obtained by a floating-point
simulation. These terms are independent from noise sources
and lead to constants in the output noise power expression.
Noise statisticsm andσ2 depend on fixed-point formats and
are variables of output noise power expression.

The expression (11) is unbiased since no hypothesis has
been done about the system. The termsKa andKm are de-
fined by infinite sums. In practice, these sums are truncated
after a numberp representative of the infinite sums. This
numberp depends on signal correlation inside the termsKa
andKm. Nevertheless, according to the different carried out
experimentations, a numberp equal to 500 leads to very re-
alistic results. Moreover, this expression includes average
terms computing. These terms requireNt samples to get re-
alistic results. In practice, a numberNt equal to 100 leads to
satisfying modelizations.
Another approach has been developed to modelize the in-
finite sums and to reduce our approach complexity. This
model is based on linear prediction. Relation (7) between im-
pulse response terms is linearized with coefficients minimiz-
ing quadratic error between impulse response terms and es-
timated terms. This approach lets us modelize infinite sums
with prediction coefficients. The introduced bias has been
measured.

5. EXPERIMENTATIONS

In this section, experimentations are carried out to validate
our model. LTI and non LTI systems are studied to apply our
model in all cases.

5.1 Experimentation on LTI and non-LTI non recursive
systems

In this section, the proposed model is evaluated on
LTI systems (Infinite Impulse Response filter and MP3
coder/decoder) and non-LTI and non recursive systems
(Volterra system and correlator). Average and maximum rel-
ative error obtained between noise power estimated with our
model and real noise power got by simulations is presented
on Table 3.

For the 8-order IIR filter, relative error depends on cho-
sen structure (Direct or Transposed Form). Nevertheless, rel-
ative error is always less than 3.3%. The MP3 coder/decoder
is made-up of a polyphase filter and a Discrete Cosine Trans-
form (DCT). It leads to a maximum error equal to 20.57%.



This error represents a difference less than 2dBbetween the
real noise power and our model estimation. For the 2nd or-
der Volterra filter and the correlator, relative error is less than
5.78%. Thus, in all cases, relative error is low with an av-
erage value about 2.64% for these four systems. These re-
sults let us validate our model for LTI and non-LTI and non-
recursive systems. The estimation quality is definitely suffi-
cient for the fixed-point design process.

5.2 LMS Experimentations

5.2.1 Fixed-point LMS Algorithm

To illustrate previous results and experiment model on a non-
LTI system with recursion, the Least Mean Square (LMS) ex-
ample is under consideration. The LMS adaptive algorithm
addresses the problem of estimating a sequence of scalars
y(n) from a N length vectorX(n) = [x(n),x(n− 1)...x(n−
N+1)]t [4]. The linear estimate ofy(n) is Wt(n)X(n) where
W(n) is a N length vector which converges to the optimal
vectorWopt in the Mean-Square Error (MSE) sense accord-
ing to the following equation
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Figure 2: LMS algorithm

W(n+1) = W(n)+ µX(n)(y(n)−Wt(n)X(n)) (14)

whereµ is a positive constant representing the adaptation
step. In fixed-point implementation, four noise sources are
introduced (figure 2). The noisesα(n) andβ (n) are gener-
ated by input dataX(n) quantization and desired signaly(n)
quantization. The termγ(n) comes from product between
µX(n) and errore(n) equal toy(n)−Wt(n)X(n). The noise
η(n) is generated by the inner productWt(n)X(n). The terms
m andσ2 represent mean and variance of each noise source.

5.2.2 Accuracy model

The system crossed by each noise is determined. The noise
γ(n) is analyzed in details to illustrate our approach. The
noise termγ(n) propagation is shown on figure 3. The trans-
fer function of its propagation is given by the following ex-
pression

Hγ(z) = Xt(n)
z−1

1− (IN −µX(n−1)Xt(n−1))z−1 (15)

whereIN is theN size identity matrix. Its contribution
γ ′(n) is written using its time-varying impulse responsehγ as
follows

+ Z-1 .*

.*

(n)Xt

µX(n)-

)n(γ )n('γ

Figure 3: Noise sourceγ(n) propagation

γ ′(n) =
n−1

∑
k=0

hγ(k)γ(k) =
n−1

∑
k=0

Aγ(k)γ(k)

=
n−1

∑
k=0

Xt(n)F(n,k)γ(k) (16)

with

F(n,k) =
n−1

∏
m=k+1

(

IN −µX(m)Xt(m)
)

The time-varying impulse responsehγ is defined as the prod-
uct of two signal termsAγ on the left andDγ on the right.
The termDγ doesn’t appear in the expression since all mul-
tiplications are made on the left. The contributions of the
three other terms can be obtained with the same method. The
noisesη(n) and β (n) are scalar. Then, the termsA mod-
elizing their propagation through the system are also scalars
which lets us writeTr(AAt) = A2 for input noisesη(n) and
β (n). The output noise power is computed using expression
(11)

E[b2
y(n)] =

n

∑
k=0

σ2
αE

[

Tr
(

Aα(k)At
α(k)

)

]

+
n

∑
k=0

σ2
ηE[A2

η(k)]

+
n

∑
k=0

σ2
β E[A2

β (k)]+
n

∑
k=0

σ2
γ E

[

Tr
(

Aγ(k)A
t
γ(k)

)

]

+
n

∑
k=0

n

∑
l=0

E
[

Tr
(

M(k)Mt(l)
)

]

(17)

with

M(k) = Aα(k)mα +Aβ (k)mβ +Aη(k)mη +Aγ(k)mγ

Aα(k) = µXt(n)F(n,k)
(

e(k)−X(k)Wt(k)
)

+Wt(n)∆(n−k)

Aβ (k) = µXt(n)F(n,k)X(k)

Aη(k) = −µXt(n)F(n,k)X(k)+∆(n−k)

(18)

with ∆ the Kronecker symbol.

5.2.3 Estimation quality

To evaluate our model quality, experimentations have been
made. The relative error between the noise power estimated



with our model and its real value obtained by simulation
is evaluated. Figure 4 shows relative error committed by
our model on theN = 32 size LMS. The results are pre-
sented versus the numberp chosen to represent infinite sums
and the correlation of input signalx(n). The signal can be
white (δ = 0), fairly correlated (δ = 0.5) or very correlated
(δ = 0.95). As p increases, relative error decreases. In-
deed, higherp is, more terms are included in sums computing
which leads to a better result. Moreover, relative error con-
vergence speed depends on input data correlation. For non
correlated input data, relative error convergence is slower
than the one for very correlated input data. In fact, relative
error is less than 20% after 300 points for very correlated in-
put data, after 350 points for fairly correlated data and after
550 points for uncorrelated input data.

Thus, numberp determining points number in infinite
sums computing depends on input data correlation. Nev-
ertheless, with experimentation presented after 500 points,
relative error is less than 25% in all cases wich represents a
difference less than 1dBbetween noise power obtained with
our model and real noise power. For linear prediction model,
obtained relative error is equal to 21%. For the other size of
LMS algorithm, same results are obtained.
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Figure 4: Relative error for the 32 size LMS

5.3 Fixed-point specification optimization

The model has been compared in terms of execution time to
methods based on simulation for the fixed-point optimiza-
tion process. The experiments have been conducted on Mat-
lab and the results are given in figure 5. For our analytical
approach, first the analytical expression ofPb must be com-
puted and it represents the most time consuming part equal
to 46 seconds for method based on infinite sums and 4 sec-
onds for linear prediction model. Then, each iteration of this
optimization process corresponds to noise power expression
evaluation whose computing time is negligible. For the LMS
algorithm, our method leads to time gain after less than 100
iterations which represents an execution time equal to 46 sec-
onds. For an optimization process with about 30 variables,
between 10000 and 100000 iterations are required. With the
model based on linear prediction, our approach leads to time
gain after only 10 iterations compared to methods based on

simulations leading to an execution time equal to 4 seconds.
The interest of our model is demonstrated to reduce fixed-
point systems development time.
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Figure 5: Optimization time for our approach and method
based on simulations

6. CONCLUSION

In this paper, a model to determine analytically the accuracy
of a fixed-point system is presented. The model is developed
for all systems made-up of arithmetic operations and is valid
for all quantization laws. The method is unbiased and leads
to infinite sums to compute the output noise power. A method
based on linear prediction has been introduced to reduce our
method complexity. It has been applied to different systems
such as LMS algorithm to verify its validity. This method
allows to reduce conversion time of floating-point to fixed-
point systems.
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