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Abstract. Image processing applications need embedded devices that
can integrate evolutionary standards or various standards, that is to say
devices have to be flexible to implement different algorithms at differ-
ent times. In other respects these devices are constrained with stringent
power requirements as well as high performance. Reconfigurable pro-
cessor can address these points. However, previous reconfigurable archi-
tectures suffer from their interconnect cost and do not meet low power
constraints. In this paper preliminary work about the design of a re-
configurable processor based on a coarse-grain granularity tailored for
multimedia applications is presented. The architecture is flexible and
scalable. Coarse-grain operators can be optimized in term of the func-
tion they implement, the data word-length and the parallelism speed-up.
The processor is designed to limit interconnection overhead.

1 Introduction

In multimedia applications, image processing is one of the major challenges em-
bedded systems have to face. Image processing at pixel level, like image filtering,
edge detection, pixel correlation or at block level such as motion estimation have
to be considered. Such applications are typically computationally intensive with
control statements and designers have to cope with power and performance strin-
gent requirements when embedded system integration is investigated.

Focusing on the applicative domain permits some simplifications on the ar-
chitecture, for instance on the choice of operators, the sizing of memories and
the interconnect patterns. Moreover, the multimedia domain allows the use of
subword parallelism SWP operators and fixed point arithmetic.

For that goal, we propose to develop a reconfigurable processor able to adapt
its computing structure to image processing applications. The processor is built
around a pipeline of coarse-grain reconfigurable operators exhibiting efficient
power and performance features. On the contrary of previous attempts to design
reconfigurable processors which have focused on the definition of complex inter-
connection networks between operators, we propose a pipeline-based of evolved
coarse-grain reconfigurable operators to avoid traditional overhead, in reconfig-
urable devices, related to the interconnection network.
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The reconfigurable processor presented hereafter is associated with a software
framework currently on progress [1]. Roughly, from the high-level applicative spec-
ification, frequently executed code fragments, such as kernel loops, are extracted.
A dependency graph-based internal representation is used to perform this pattern
extraction. Pattern code transformation is then performed to exhibit features that
the reconfigurable processor can efficiently implement [2]. A compilation step then
generates the control code as well as the configurations of the operators.

The paper is organized as follow. Section 2 presents related work around
reconfigurable processors. The organization of our reconfigurable processor is
presented in section 3. Subword-based multimedia operator design is presented in
section 4 as well as first implementation results. Finally conclusions are presented
in section 5.

2 Related Work

The model of an ASIP processor with instruction-set extensions dedicated to a
given application domain, such as Tensilica[3] or [4] can be pushed further with
reconfigurable functional units inside the processor pipeline. In this design space,
different trade-offs were explored such as DREAM[5] with a multi-context fine
grain extension, or the Stretch processors [6] with a coarse-grain reconfigurable
extension. These two solutions try to take advantage of the flexibility of the
reconfigurable area to speed-up kernel loops throughout the application. Their
drawbacks are mainly due to the sequentiality of the execution model based on
the Von Neumann paradigm.

To decrease the constraints of the previous execution model on the intrinsic
parallelism of the multimedia applications, processors based on coarse-grain ar-
rays have been intensively explored, with roughly two approaches based on the
data access. On the one hand, each processing element (PE) has a local reg-
ister file, filled from external caches or data banks, global for the whole array.
CRISP (Coarse-grained Reconfigurable Instruction-Set Processor)[7] clusterizes
PEs into slices; ADRES [8] has a hybrid structure with either VLIW mode or
an acceleration mode on the array; ASERP[9] is a recent proposal of such array
with mixed SIMD/MIMD modes. The memory access and the size of the regis-
ter file inside the PEs become a limitation when the application requires a high
computational load combined with a high data bandwith.

On the other hand, several reconfigurable processors are based on comput-
ing patterns mapped on the array, that receive data from memory banks with
address generators or fifos to cross over the previous memory access limitation.
Thus this kind of processing is more oriented towards data streaming. The XPP,
from PACT[10], is a standalone platform, that integrates a coarse grain stream-
ing matrix with RAMs and small VLIW processors. The matrix by itself is a
coprocessor, just as other proposals, as [11] which has a hierarchical structure,
or [12] with complex address generators.

A last model derives from the processing-in-memory (PIM) concept: in this
case, the reconfigurable PE’s are associated with small memory cuts, as in the
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MORA (Multimedia Oriented Reconfigurable Array)[13]. Each PE has its own
micro-code; although similar to the ADRES array mode, the processing is here
applied on larger data sets and the control is distributed. This solution takes
advantage of the data locality of the application but pays it by a none negligible
cost on the communication network.

Besides, as technology scales, gate delays become negligible in comparison
with signal propagation in wires. Thus, lot of the previously defined reconfig-
urable architectures face the problem of keeping under control the communica-
tion delays in reconfigurable devices designed in advance technologies. Finally,
together with algorithmic and technological evolutions, reconfigurable architec-
tures have to face another challenge related to their energy efficiency. If reconfig-
uration paradigm has been intensively explored to demonstrate its interest on a
performance or silicon density, very few projects have considered the optimiza-
tion of dynamic and even more static power.

Power saving, as well as performance enhancement, can be addressed tak-
ing special care about the operators used to implement the computations. For
example, power consumption is linked to data-word-length [14]. Thus, each op-
eration word-length has to be adapted according to its contribution in the global
system accuracy. Fixed architectures can not address this kind of optimizations
when various applications or accuracy constraints are concerned. On the con-
trary, reconfigurable architectures can be specifically configured depending on
the particular piece of code fragment to be implemented which leads to interest-
ing power consumption gains.

3 Processor Design

3.1 Processor Design Flow

The processor described hereafter is a framework to define applicative-domain
specific reconfigurable processors, targeting computing efficiency (expressed in
GOPS/W) and flexibility inside the domain, expressed subjectively by the cov-
erage of the application domain.

The design flow consists first in selecting the applicative domain, and defining
the kind of computations that are typically found into the loop kernels and fre-
quently executed code fragments. At this point, creating a bench representative
of the targeted application domain can greatly facilitate the design space explo-
ration by further refinements of the architecture. Selecting operations at a too
low level, such as sum of absolute differences in image and video processing, or
selecting an insufficient number of functions for the bench will lead to optimize
only the peak performance of the architecture, but this will prove to be not rep-
resentative enough of a real applicative behavior, in particular because control
statements have a great impact on the overall performance.

After the complexity analysis of the algorithms, the operators can be extracted
and optimized separately (cf. section 4). The operator is constrained only by the
operator interfaces, and must be left complete freedom for the internal design,
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provided that the operator behavior is respected. At this level the latency of
the operators is not constrained, as it is considered as a performance issue, but
is not mandatory for synchronization; moreover, data dependent processing will
lead to unpredictable execution time inside the operators.

The usual chaining between the operators is also identified and the union of
these patterns serves to create the operator interconnect scheme, simplified from
the costly full crossbar, in order to mitigate the area cost.

A parameterizable number M of memories feed the operators; this number
and their size are also decided according to applicative requirements, taking into
account data dependencies, for example image lines or blocks.

Setting all these parameters defines an implementation of the processor that
can be synthesized in order to conduct performance evaluation. The application
is ported to the structure with the help of a toolchain that compiles the control
code and prepares the configuration bitstreams for the operators. For further
details on the toolchain, one can refer to [2].

3.2 Processor Description

A more detailed view of the processor template is depicted in figure 1. The high-
level control and the datapath are separated. To face the increasing amount of
control statements multimedia processing exhibits, data dependent processing
for example, they are tightly coupled, so that an intermediate result from any
operator can raise an interrupt at any time to the control sequence. A configura-
tion interface allows the controller to feed the operators with configuration data.
As the design of the processor started with the goal to avoid the classical area
overhead due to reconfigurable interconnects in reconfigurable processors, with
the flexibility reported inside the operator design, the interconnect is separated
in two parts: one is the interconnect towards the memories, and the other is a
low latency interconnect used for chaining the operators together.

The operator interconnect maps the high-level patterns that chain the oper-
ators; possibly all patterns are implementable at design time: some examples
are SIMD patterns, where all operators do the same processing on independent
data flows, up to the pipeline that chains all operators and that processes only
one data stream, and all possible variants, with various Y-shaped patterns, with
multiple inputs and one output.

The operators are configured by a bus interface: the configuration interface
is memory mapped, but broadcast modes are provided to accelerate the loading
of the operator configuration. In order to avoid reconfiguration overhead at run
time, the size of the reconfiguration data is kept low, typically under a hundred
bytes. It can consist of operator configuration and/or selection, internal sim-
ple routing data, constant parameters, functional look-up-tables, adaptive filter
coefficients, or even a short microcode for a programmable finite state machine.

Address generators are used to create the streams from all memories, in order
to relieve the control processor with the task of fetching data; the generators
should provide at least the following access modes: base address and horizontal
or vertical scan with a step, in both directions.
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Fig. 1. Reconfigurable processor template architecture

3.3 Execution Model

The control code contains explicit operator reconfiguration commands, that are
dynamically loaded before a function can start executing. Every function mapped
on the processor follows the same steps: first the context has to be loaded; it
is comprised of operator’s configuration data, interconnect patterns, selection of
involved memories, and program for address generators.

The execution of the function can then start with a control signal on the
execution control interface with data that come from the external DMA or are
already stored into memories from previous computations. To save time, unused
operators or data memories can possibly be loaded during this step in prepa-
ration for the next computation. The processing step is finished as soon as the
write-back address generator has completed its program. The status of the dif-
ferent operators can be checked, else the processor can step forward.

4 Reconfigurable Operators

The processor is made of reconfigurable operators operating concurrently. Com-
puting efficiency and flexibility inside the multimedia domain drove the operator
design. Both parallelism rate and efficiency can be increased if data-level par-
allelism is also implemented. Subword parallelism SWP [15] particularly suits
image processing. With SWP each operand is partitioned into multiple lower
precision operands, called subwords. Such as with SIMD, a single SWP instruc-
tion performs the same operation on multiple sets of subwords in parallel using
SWP enabled operators. As a result, same datapath and operator can be used to
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perform more than one computation on a composite word in parallel. In image
and video applications, input data are mainly pixels thus are either 8 or 10 or
12-bits or sometimes 16-bits.

In order to handle this set of data sizes with a good efficiency/complexity
trade-off, a 40-bit reconfigurable operator has been designed. When selected sub-
word size is 8-bits then each input is considered as five 8-bit subwords packed
in a 40-bit word. Hence on each 8-bit configuration, the SWP operator performs
five same 8-bit basic operations in parallel. Basic operations are addition, sub-
traction, absolute value and multiplication (see section 4.1). For subword size
of 10-bits, the SWP operator performs four 10-bit operations in parallel, and
three 12-bit operations or two 16-bit operations for subword sizes of 12-bits or
16-bits respectively. In other words, the operator can be configured for both the
computation it executes and the size of data.

4.1 Reconfigurable Operator Design

The architecture of the SWP reconfigurable operator is shown in figure 2. Mainly
the SWP operator consists of SWP basic arithmetic units, SWP subwords adders
units and accumulator unit. These units are connected in such a way that a vari-
ety of multimedia oriented basic and complex SWP operations can be performed,
such as sum of absolute differences SAD for motion estimation algorithm, sum of
products for discrete cosine transform DCT algorithm. . .Multiplexers are used
to provide appropriate data to arithmetic units. Control signals for the mul-
tiplexers and enable signals for registers (not shown in figure 2) are provided
externally by the controller based upon the selected operation. The subword
size is selected by control bits which are communicated to all SWP units (not
shown in figure 2). To reduce the switching activity, all operators are guarded,
so that unused units can be disabled.

Basic SWP arithmetic units are used to perform basic arithmetic operations
on the selected subword size data. These operations include SWP (a± b) signed,
SWP (abs) signed, SWP (a×b) signed/unsigned, SWP |a−b| unsigned, SWP (a
+ b) unsigned. SWP (a±b) operator is used to perform addition or subtraction of
signed subwords data. Its architecture is based upon the breaking of carry chain
at subwords boundaries. SWP (abs) signed unit is used to perform the absolute
operation on signed subwords data. Operator abs takes the two’s complement of
subwords depending upon the value of most significant bit.

SWP (a × b) signed/unsigned unit is used to perform SWP multiplication of
signed as well as unsigned data. Because multiplication hardware implementation
is area and delay costly, particular care was taken for the design of the multiplier.
Its implementation is based upon an extension of the SWP multiplier proposed
in [16] which supports only classical subword sizes (8, 16 and 32-bit). Here the
multimedia oriented subword sizes of 8, 10, 12 and 16-bits are considered which
do not have any uniform arithmetic relation with the word size (40-bit) of the
SWP operator. Partial product bits are generated in such a way that they remain
valid for all subwords size multiplications. Hence no suppression and detection
of carries is required at subword boundaries.
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Fig. 2. Reconfigurable Multimedia SWP Operator

SWP |a− b| unsigned unit is used to perform absolute difference of unsigned
subwords. This unit is required because usually the pixels are stored as unsigned
data. To avoid the absolute operation, this unit either calculates a − b (when
a > b) or b − a (when b > a).

Like the inputs, the output data of all the basic SWP units consist of 40-
bits except for the SWP multiplier whose output consists of 80-bits. The basic
arithmetic units produce outputs in the form of resultant subwords packed in
a register. As per the requirement, these packed subwords can be obtained at
the output of the reconfigurable operator through the use of appropriate control
bits. As a single multiplication is not usually required in multimedia applications,
and also because the output of the SWP operator is 40-bits wide, the multiplier
unit output is not directly routed to the output of the reconfigurable operator.
However the accumulation of products can be obtained at the output of the
operator through the SWP subword adder.

For certain multimedia applications more complex operations are required.
For instance (

∑ |a−b|) operation is required in the calculation of sum of absolute



46 D. Menard et al.

differences (SAD). Similarly
∑

a × b signed/unsigned operation is required for
the multiplication-accumulation operation used in the DCT algorithm. Rather
than subwords which provide loss of bit, these operations produce single 40-bit
accumulated values at the output. To perform these complex operations SWP
subword adder units and accumulator unit are used in addition to basic SWP
arithmetic units. The inputs to SWP subword adder unit are resultant subwords
from different basic SWP arithmetic units. Based upon the selected subword
size, the SWP subword adder unit separates the N subwords xi packed in the
input register and then performs the addition of these subwords to generate a
single 40-bit sum value. The expression of the SWP subword adder output zsa

is equal to

zsa =
N−1∑

i=0

xi (1)

Before the addition, SWP subword adder unit performs either sign extension
(for signed subwords) or zero padding (for unsigned subwords) depending upon
the selected data format. The output of SWP subword adder unit can then be
accumulated recursively using the accumulator to obtained the required opera-
tion output. As an example, in order to perform the signed operation

∑
a × b

with subword size of 8-bit, SWP (a × b) unit produces a 80-bit product value.
This product value is used as input to a SWP subword adder. This adder con-
siders this 80-bit input as five 16-bit subword products (without loss of bit) and
adds them to generate a 40-bit value. Then at each clock cycle the accumula-
tor is used to accumulate this 40-bit value with the previous values to generate∑

a × b term at the output of the reconfigurable operator. As the inputs to
accumulator are single values instead of packed subwords, therefore SWP ca-
pability is not required for the accumulator unit implementation. Likewise the
accumulator generates the single output without loss of bit.

The other complex SWP operations which can be performed using this SWP
operator are

∑
a±b signed,

∑ |a±b| signed,
∑ |a−b| unsigned,

∑
a+b unsigned.

Based upon the requirements, any combination of these operations can also be
obtained such as

∑
a × b +

∑ |a ± b| signed etc. For the complex operations
which involve the accumulation of results generated by basic units, the output
word-length depends upon the number of values need to be accumulated. In the
worst case when performing

∑
a × b operation on 16-bit subwords, the output

of the SWP (a × b) unit consists of two 32-bit subwords. As the accumulator is
40-bits wide, the extra eight bits are used as guard bits to avoid any overflow.
Therefore this operator can perform at least 256 (28) accumulations of worst
data length product terms. For other smaller subword data sizes, the numbers
of guard bits are greater and thus the number of accumulations which can be
performed increases further without any overflow.

4.2 Synthesis Results

To analyze the area, speed and power consumption, overall reconfigurable
operator design is synthesized to ASIC standard cell HCMOS9GP 130nm
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Table 1. Synthesis results on ASIC technologies

Technology NAND Critical Gates Dynamic Leakage
Gates Path (ns) × CP Power (mW ) Power (µW )

90nm CMOS 24063 7.7 185285 2.5 534

130nm CMOS 25379 7.6 192880 4.1 48

(CORE9GPLL 4.1 low leakage standard cell library from ST Microelectronics)
and 90nm (fsd0t a standard performance low voltage threshold cell library from
UMC) technology using Synopsys Design Vision and to FPGA (Xilinx Virtex
II) using Mentor Graphics Precision RTL tool. The area, critical path (CP) and
power consumption have been measured. Table 1 shows the results obtained for
the two ASIC technologies. To analyze the overall efficiency, product of gates
and critical path (CP) is also computed. Smaller value of this product term in-
dicates higher efficiency. On ASIC technologies, implementations are made for a
clock period of 8ns. When clock frequency is decreased, the area reduces accord-
ingly but the overall efficiency reduces because the throughput of SWP operator
reduces with the decrease in clock frequency. On the FPGA Virtex II platform,
2793 CLBs are required and the critical path is equal to 17.2 ns. Actually area
and CP overheads for implementing SWP capability are less on ASIC technology
compared to FPGA technology. The reason is that in FPGA implementation re-
sources are CLBs rather than gates as in ASIC. Therefore ASIC resources better
suits the SWP designs.

4.3 Results Analysis

The unit which consumes maximum design resources is the SWP multiplier.
Although the multiplier architecture is based on [16] which is known to be for
far more efficient for SWP implementation than conventional multiplier archi-
tectures, it consumes almost 60% of total SWP operator area. The other blocks
like signed arithmetic units, unsigned arithmetic units, subwords adder units and
register units consumes respectively 8%, 9%, 14% and 6% of total area. Similarly
power consumption of the SWP multiplier is also more compared to other units.
SWP multiplier unit consumes almost 50% of total power. The other blocks like
signed arithmetic units, unsigned arithmetic units and subwords adder units
consumes respectively 9%, 19% and 15% of total power.

At present time, reconfigurable operators have been synthesized, and first
performance assessment can be given at the operator level. The sum of absolute
difference kernel used in motion estimation algorithms is a good candidate at
this granularity level. For comparison, state-of-the-art Texas Instruments (TI)
TMS320C64x DSP architecture is used. The processing unit of the TI DSP is
made-up of two clusters. Each cluster consists of four functional units among
with one multiplier and two arithmetic and logic units. This architecture pro-
vides SWP capabilities based on 8, 16 and 32 bit data word-lengths. For a fair
comparison, one reconfigurable operator is considered for our processor and one
cluster is considered for the TI DSP. For 16-bit pixels, the number of cycles
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Ncycles required to compute the SAD applied to 16 by 16 image blocks is 128
for both implementations. Ncycles is 60 and 64 for our operator and TI DSP
based solution respectively when 8-bit pixels are considered. For 10 and 12 bit
pixels, the granularity in term of data size of our operator allows the number of
cycles to be reduced. Ncycles is reduced by 50% and 25% for 10 and 12 bit pixels
respectively. In practice, processing is spread on two clusters with TI DSP so
Ncycles is divided by two.

5 Conclusion

In this paper the design of a reconfigurable processor tailored for multimedia
processing is introduced. The architecture is designed to provide a good trade-
off between performance and power consumption targeting embedded devices.
The processor is based on pipelined coarse-grain reconfigurable operators that
have flexibility and scalability properties.

Future work will consist in porting real applicative cases with the help of
the software framework on a FPGA-based demonstrator for validation purpose.
The scalability of the processor template allows to explore the design space in
order to extract performance and power consumption metrics. For instance, each
operator can be configured to complete a SAD on a particular image block, and
performance assessment of the motion estimation part of a video codec will be
performed with various number of operators.
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