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of a Wireless Sensor Network Node

Abstract— Research in micro-electro-mechanical systems
(MEMS) technology, wireless communications, and digital elec-
tronics has enabled the future emergence of Wireless Sensor
Networks (WSN). These systems consist of low-cost and low-
power sensor nodes that communicate efficiently over short
distances. It has been shown that power consumption is the
biggest design constraint for such systems. WSN nodes are being
designed using low-power micro-controllers such as the MSP430.
However, their power dissipation is still orders of magnitude
too high. In this paper, we propose an approach to hardware
specialization that uses the power-gated distributed hardware
tasks. We target the control-oriented tasks running on WSN
nodes and present, as a case study, a temperature monitoring
application. Our approach is validated experimentally and shows
prominent power gains over software implementation on a low-
power micro-controllers such as the MSP430.

I. INTRODUCTION

Recent advancements in micro-electro-mechanical-systems
(MEMS) technology, wireless communications, and digital
electronics have facilitated the development of low-cost, low-
power, multi-functional sensor nodes that are small in size
and communicate efficiently over short distances. Systems of
1000s or even 10,000s of such nodes are anticipated and can
revolutionize the way we live and work. A Wireless Sensor
Network (WSN) is composed of a large number of sensor
nodes, that are densely deployed either inside a region of
interest or very close to it. Each node consists of processing
capability (one or more micro-controllers and/or DSP chips)
and may contain different types of memory (RAM, ROM or
flash). A node also has an RF transceiver and a power source
(e.g. batteries or solar cells), and can accommodate various
sensors and actuators.

Power consumption has been realized as the biggest con-
straint in the design of a WSN node. It is not possible to attach
a huge source of energy with the WSN nodes due to the fact
that the nodes must be low-cost and relatively smaller in size
as compared to the traditional sensor nodes [1]. To make the
situation worse, WSN nodes may have to work unattended for
long durations due to difficult access to them or a huge number
of nodes. As a result, they must survive with self-harvested
or non-replenishing sources of energy. All these restrictions
toward the energy retrieval make the power consumption the
most important design parameter.

In the recent years, WSN nodes have been designed using
low-power micro-controllers such as the MSP430 [2] from
Texas Instrument or CoolRISC [3] from EM Microelectronic.
These programmable processors share common characteristics
such as a reasonable processing power with low power con-
sumption at a very low cost. However, the power dissipation of

these devices is still orders of magnitude too high for applica-
tion domains such as WSN, since these systems expect sensor
nodes to operate with extremely limited energy resources for
very long time periods (months if not years). Worse, because
these nodes remain idle during most of their lifetime, their
static power consumption plays a major role in their actual
energy budget.

In such situations, the only way to further improve the
energy efficiency of such a system is to customize its design
to the application at hand. An approach to specialization has
been proposed recently which consists in implementing each
task of a control-oriented application graph on a specialized
hardware architecture [4]. This architecture is in the form of
a minimalistic datapath controlled by a custom FSM and is
being automatically generated from a task specification in C,
by using an ASIP-like retargeted design environment.

In this paper, we are investigating the application of this
hardware specialization approach from WSN perspective. We
propose, as a case study, a temperature-monitoring WSN in
which the monitoring nodes sense the temperature of different
regions of interest and convey the results toward the base-
station where this information is processed to make sure that
the environmental conditions are normal in the regions. Such
type of WSN can be used for wild fire monitoring system.

The main contribution of this article lies in further in-
vestigating the power benefits of the power-gated hardware
tasks based specialization approach. A simple yet realistic
case study of a WSN example also serves as an experimental
validation that the approach is conceivable for real-life WSN
applications.

Our experiments show that dynamic power savings of two
orders of magnitude can be obtained for different control-
oriented tasks of our application (w.r.t. a low-power MCU such
as the MSP430). Moreover, since the tasks are power-gated,
their static power consumption will be virtually zero when the
WSN nodes will be in sleep mode.

This rest of this paper is organized as follows. We start
by presenting the related works in Section II and describe
thoroughly our proposed case study in Section III. In Section
IV, we present experimental results which confirm the valid-
ity of the approach. Finally, conclusion and future research
directions are drawn in Section V.

II. RELATED WORKS

In the last decade, a wide range of applications for sensor
network have been developed. Some of the application areas
are environment, military, health, and security. WSN may



consist of many different types of sensors such as seismic,
low sampling rate magnetic, thermal, visual, infrared, acoustic
and radar. These sensors are able to monitor a wide variety of
ambient conditions such as temperature, humidity, lightning,
pressure, and vehicular movements etc [5]. This section details
the literature study of some of such WSN applications. Later
in the section, we highlight some application benchmarks that
have been proposed for WSN. Finally, we present some power
optimization efforts done at micro-architectural and operating
system level in context of the WSN.

A. Important WSN applications

Environmental monitoring is an important application of
WSN. A lot of research work has been done on the different
environmental aspects. In reference [6], a habitat monitoring
system is discussed which includes the habitats of birds,
animals and insects. Similarly, forest fire detection and preven-
tion [7], strength monitoring of the civil infrastructures [8], and
detection of volcanic eruptions [9] are some other examples
of environment-monitoring WSN systems.

WSN can also be used as an integral part of military
command, control, communication, computing, intelligence,
surveillance, reconnaissance and targeting (C4ISRT) sys-
tems [10]. The rapid deployment, self-organization and fault
tolerance are some characteristics that make WSN a very
promising sensing technique for military C4ISRT systems.
Similarly, VigilNet is also a good example of an integrated
wireless sensor node for military surveillance application [11].
VigilNet acquires and verifies information about enemy capa-
bilities and positions of hostile targets.

In addition, the benefits of WSN have also been proved
in other domains of human life such as health and home
applications ([12], [13]).

B. WSN application benchmarks

We have seen in this section that WSN applications consist
of a heterogeneous nature as they are pretty different in their
overall goals to be achieved. However, the basic micro-tasks
performed in a WSN node are quite similar. These tasks are:
sensing a certain phenomenon, gathering its relevant data and
forwarding it to a base-station in a pre/post-processed state.
Several attempts have been conceived to profile the workload
of a generic WSN node. Two of the recent application bench-
marks for WSN are SenseBench [14] and WiSeNBench [15].
Both of them have tried very well to cover the general
applications and algorithms that can be run on a typical WSN
node.

C. Low-power MCUs and operating systems

As far as power optimization of WSN domain is concerned,
many research efforts have been made. These works cover
all the design aspects of a WSN from application layer of
the communication stack to the physical layer (e.g. efficient
routing algorithms, low-power medium access control (MAC)
protocols etc.). However, since the focus of our research
work is the micro-architectural level, we try to summarize

the characteristics of low-power micro-controllers (such as
the MSP430 and the CoolRisc) that have been developed for
low-power applications and the light-weight operating systems
running on them. The common characteristics of such MCUs
are: a simple datapath (8/16-bit wide), a reduced number of
instructions (only 27 instructions for the MSP430), and several
power saving modes that allow the system to select the best
compromise between power saving and reactivity (i.e. wake-up
time).

Most of such MCU packages comprise a limited amount of
RAM (only a few hundred to a few kilo bytes) and non-volatile
flash memory. This limited amount of storage resources poses
great challenges to the software designers since both the user
application and operating system must work with this very
small amount of memory.

As a consequence, there have been several attempts to
reduce the complexity of the operating system (OS) on these
devices. In particular, many approaches have been proposed
to reduce the overhead caused by dynamic scheduling of
the threads by using alternative concurrency computational
models. For example, the TinyOS [16] is built upon an event-
driven approach, without explicit thread management , and
Contiki [17] proposes a simplified thread execution model
(named protothread), in which preemption can only occur at
specific points in the task control flow.

III. PROPOSED CASE STUDY

In this work, we target control-oriented WSN application
tasks that can be represented as a control task graph. In this
type of graph, a task execution is generally triggered either by
another task or by a combination of external events. We restrict
ourselves to such multitasking system in which preemption can
only occur at certain specific steps of the program, as in the
case of protothread construct available in the Contiki’s ultra
light-weight OS.
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Fig. 1. System-level application mapping of a generic WSN node

This section details the important tasks of our temperature
monitoring WSN system. We highlight the important algo-
rithms that are run on the temperature-sensing, intermediate



and the base-station nodes. These nodes will be denoted as
source, relay and sink nodes respectively in future discussion.
Fig. 1 shows the system-level block diagram of a generic WSN
node in our proposed system.

In reference [4], the author has also mentioned the notion
of a system-level controlling FSM, called Monitor. Monitor is
responsible for the activation and deactivation of the individual
hardware tasks. For the sake of completeness, we will also
outline the control signal interaction between the individual
hardware tasks and Monitor. But we will not go into the details
of its working as it is out of scope for this paper.

A. Application tasks running on a source node

Here are the basic control tasks running on a working WSN
source node of our case study:

• Temperature sensing: The principle function of a source
node in this WSN example is to monitor the temperature
of a particular region of interest. So, in order to simulate
this sensing task, we have written a C function, called
genTemperature(), that randomly generates a tem-
perature value.

• Neighbor calculation: After sensing, the next task is to
convey the monitored temperature value to the base-
station. Since the transmission (TX) power increases
exponentially with the distance between source and des-
tination nodes, a multi-hop strategy increases over all
power efficiency of the system by reducing the long
range communications. We use a simplified version of
geographical routing used by another WSN system,
PowWow [18]. This protocol is chosen because it is
very simple and does not need extra-communications
to route a message. The algorithm is implemented in
calcNeighbor() function, that calculates the nearest
neighbor in the direction of the base-station by calculating
its linear distance from the source node.

• Waking up the neighbor: After selecting the neigh-
bor, the source node sends it a wake-up beacon using
sendBeacon(). After receiving the acknowledgment
from the neighbor in due time, we proceed to the next
task. In case of a time-out, we repeat the procedure of
sending beacon.

• Sending data to the neighbor: The next task is data
transmission that is described in sendData() func-
tion. This function basically calls its sub-functions that
are responsible for sending data to the physical inter-
face of the radio transceiver. These sub-functions are
controllerWrite() and sendData2SPI() that
basically write data to the serial peripheral interface (SPI)
bus of the radio transceiver. In our example, we are using
CC2420 radio chip from Texas Instrument [19] as RF
transceiver.

• Shutting down the source node: After successful data
transmission, the source node will go to sleep mode
until the next temperature sensing and forwarding task
is scheduled.

Fig. 2 shows the task flow graph of the application running
on a source node.

B. Application tasks running on a sink node

The basic control tasks running on a WSN sink node of our
case study are as follows:

• Receiving a wake-up beacon: The sink node will be in
sleep mode until it receives a wake-up beacon from a
source or relay node. This application task is described
in receiveBeacon() function.

• Analyzing the beacon: After receiving the beacon, the
sink node analyzes that whether the beacon is destined
for it or not (done by analyzeBeacon() function).
In former case, it moves toward the next task to be
performed while in latter case, it again goes to idle mode
by calling shutDown() function.

• Sending acknowledgment: If the beacon is destined for
the sink node, it generates an acknowledgment for the
originating (source or relay) node by calling sendAck()
function. Then it remains ready for the data reception
from the originating node.

• Receiving data: The next task is data reception
that is described in receiveFrame() function
and calls its sub-functions controllerRead() and
receiveFrameFromSPI(). These functions are used
to read data from the SPI bus of the radio transceiver.

• Analyzing the data: After successful data reception, the
sink node will analyze the temperature data sent to it
by calling the analyzeData() function. The data
processing can be of different nature depending on the
application at hand. In our case, a temperature value
greater than 50 degree Celsius will be registered as an
alarming event in the base-station database.

• Shutting down the sink node: After data analysis, the sink
node will go to sleep mode until the next wake-up beacon
is received from a source or relay node.

Fig. 3 shows the task flow graph of the application running
on a sink node.

C. Application tasks running on a relay node

The task flow graph of a relay node is a hybrid of both the
generic source and sink nodes. A relay node has to perform as
a source node while interacting with base-station (sink) node.
Whereas, it will perform certain functions of a sink node when
it interacts with a temperature-sensing (source) node. Fig. 4
shows the task flow graph of a relay node application.

D. Control interface between Monitor and hardware tasks

Fig. 5, shows the control signals interchanged between
Monitor and the hardware tasks. The unidirectional control
line from Monitor to each hardware task consists of 1-
bit which is the start signal for the hardware task. Upon
reception of a valid value on this line, the hardware task is
activated performing the micro-coded task at hand. Similarly,
unidirectional control line from a hardware task to Monitor
consists of 2-bits. One bit is used to signal out the termination



of the hardware task; whereas the other bit it used to signal out
an event declaring which hardware task is to be activated next.
Only, single bit is sufficient for this purpose since there are
at most two potential application tasks to be activated at the
termination of a task presented in our case study application
graph (fig. 2, 3 and 4).
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Fig. 2. System-level task flow graph of a source node
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Fig. 3. System-level task flow graph of a base-station node

IV. EXPERIMENTAL RESULTS

Our compilation flow (fig. 6) is based on the GECOS
compiler infrastructure [20], a retargetable C compiler frame-
work, from which we use the BURG instruction selector
that is retargeted to our simplified datapath model. This low-
level program representation is then used to generate VHDL
descriptions of (i) a custom datapath which implements the
minimum required set of operations for the task at hand,
and (ii) an FSM that will control the execution units of our
datapath.

The hardware task VHDL designs have been synthesized for
130 nm CMOS technology using Synopsys’s Design Compiler.
We used these synthesis results to extract gate-level static
and dynamic power estimations assuming a 100 MHz clock
frequency. For the sake of comparison, with a software imple-
mentation, we used as baseline the MSP430F21x1 dissipation
of 44 mW normalized at 100 MHz (the data sheet indicates a
dissipation of 440 µW at 1 MHz).

The results are given in table I where it can be observed that,
for the hardware tasks of a temperature monitoring example,
power benefits of two orders of magnitude can be gained.
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The last column of the table I summarizes the surface areas
consumed by the hardware tasks. We have also synthesized
an MSP430-like MCU core and the early experiments give us
a surface area of around 55,000 µm2. So, several hardware
tasks can be placed in the same area as is consumed by an
MSP430-like MCU.

We have also managed to synthesize the early versions of
Monitor for the source, sink and relay nodes that consume
17.2 µW, 17.9 µW and 20.04 µW respectively. Since Moni-
tor is the only active part of our WSN node in standby
mode, we compare its power consumption with that of the
MSP430F21x1 in standby mode that is 110 µW (the datasheet
indicates a dissipation of 1.1 µW at 1 MHz). So, we gain at
least a power saving of one order of magnitude as compared
to the MSP430 in standby mode.
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TABLE I
DYNAMIC POWER CONSUMPTION FOR VARIOUS CONTROL TASKS AND

DATA MEMORY BLOCK.

Hardware Task
Name No. States Power Gain Area

in FSM (µW) (x) (µm2)
sendData 43 209 210 4782

sendBeacon 43 209 210 4782
receiveFrame 27 211 209 4714

receiveFrameFromSPI 598 328.40 134 19034
genTemperature 69 208 210 4633
controllerWrite 83 230.77 190 6105
controllerRead 175 254 173.2 8700
calcNeighbor 376 264.26 166.5 9565

Data memory
Size Power Area

(Bytes) (µW) (mm2)
512 480 0.040

For the sake of completeness, second part of table I shows
the size and power estimation obtained for a memory block
used to store the global and local variables involved in our case
study. The memory has been synthesized for 130 nm CMOS
technology by using Faraday’s Memory Compiler.

V. CONCLUSION

In this paper, we have proposed an original approach
for the ultra low-power implementation of control-oriented
application tasks of a WSN application. Our approach is based
on power-gated hardware tasks that are implemented as spe-
cialized hardware blocks. We presented as a case study a WSN
system implementing a temperature monitoring application.

The synthesis results for the hardware tasks of the case
study application graph show that, compared with the MSP430
micro-controller and under a very conservative assumption,
power reductions by two orders of magnitude are possible.

We envision two directions for our future work. We first aim
at studying and developing a system-level model a WSN node
based on hardware tasks. We would also like to evaluate the
feasibility of our approach on control-oriented reconfigurable

structures, which would provide support for small grain power-
gating techniques [21].
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