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Abstract— This paper considers the possibility of implementing SmartCell [11], and a few others [5], [12], [13], [14] which
low-cost hardware techniques which would allow to tolerate are of our interest here.
temporary faults in the datapaths of coarse-grained reconfi- With the progress in the processing technology, the size

urable architectures (CGRASs). Our goal was to use less hard- f th : ductor devi . hrinki il hich
ware overhead than commonly used duplication or triplicaton ©' tN€ Semiconauctor devices IS shrinking rapidly, whic

methods. The proposed technique relies on concurrent error Offers many advantages like low power consumption, low
detection by using residue code modulo 3 and re-execution of manufacturing costs, and ability to make hand held devices.
the last operation, once an error is detected. We have chosenHowever, shrinking feature sizes and decreasing node apac
the DART architecture as a vehicle to study the efficiency of e the increase of the operating frequency, and the powe
this approach to protect its datapaths. Simulation resultshave . - . -
confirmed hardware savings of the proposed approach over supp!y reduction affect t_he noise margins and Sus?ewbd'
duplication. transient faults. In particular, the soft error rate indiidey
cosmic neutron interactions in commercial electronic dewi
. INTRODUCTION at ground level has become an issue for a long time [15],
Recently, the increasing speed and performance requifgg]. A particle can hit directly a memory element and flip its
ments of multimedia processing and mobile telecommunidagic state (which is called aingle event upsd¢SEU)) or hit
tion applications, coupled with the demands for flexibityd a combinational logic and trigger temporary perturbatien r
low non-recurring engineering costs, have made reconfideirasulting from the collection of radiation-induced chargellexd
hardware a very popular implementation technology. Taglaysingle event transien{SETS). As the operating voltage of the
reconfigurable architectures enable partial and dynanme rudevices and the node capacitancies decrease, the propabili
time self-reconfiguration. This feature allows the subftih of a small transient current being interpreted as a sigrsal al
of parts of a hardware design implemented on this reconfigicreases. SETS, if propagated and latched into a memory
urable hardware, and therefore, a single device can beedlamlement as incorrect data, will also lead to a SEU. Thesésfaul
to implement various functionalities actually demandey, tare commonly calledsoft errors because the circuit/device
simply uploading a new configuration. itself is not permanently damaged—if new data are written
Reconfigurable architectures can be classified dependingthe bit, the device will store it correctly. To note also
on their granularity, e.g. the number of bits, which can behat electronic systems implemented with nanotechnotogie
explicity manipulated by the programmer. The most fineare expected to experience even higher fault rates [17], [18
grained architectures, whose the most widely used exam-The use of reconfigurable hardware in critical applications
ple are Field Programmable Gate Arrays (FPGAs), allow l&e aircrafts, space missions and transaction systeme. e.t
bit level manipulation of data. Coarse-grained reconfiglera is increasing rapidly. Soft errors caused by radiation may
architectures (CGRAs) provide operator level configurabtesult in fatal silent data corruption and unreproducilyam
functional blocks, word level datapaths, and powerful amttashes. Because it is virtually impossible to build device
very area-efficient datapath routing switches. Compared wdich are free from faults, it is essential to embed some sort
fine-grained architectures, CGRAs enjoy massive reductioh fault-tolerance in such devices, which will enable them
of configuration memory and configuration time, as well a® work correctly even in the presence of faults. Since the
considerable reduction in routing and placement allooatiopast decade, a lot of research has been done to develop fault-
All this also results in a potential reduction of the totalolerant reconfigurable systems on various granularitgligv
energy consumed per computation, though at the cost oflthough most of them have dealt with the lowest level such
loss in flexibility compared to bit-level operations. The sho as offered by FPGAs [19]-[21]. In general, the capabilities
recent surveys covering various design and implementatiohsuch systems should include on-line error detectionnduri
aspects of reconfigurable architectures can be found in [Hystem operation, very fast fault location, quick recovieoyn
[5]. Unfortunately, relatively few works deal with the CGRA temporary failures, and fast permanent-fault repair thhou
like Morphosys [6], Raw [7], PACT XPP [8], DART [9], [10], reconfiguration.



Only relatively few works can be found on fault-tolerance ithe cause of the failure is actually transient, some timemed
CGRAs [22]-[24]. In [22], the authors propose fault-toleza dancy approach could be adapted, provided that the system
enhancements of the Raw architecture from [7]. They useisaequipped with some means to detect errors. Computation
combination of software techniques for fault detection arefrors, once detected (e.g. by using error-detecting ¢pdes
tolerance, which include selective replication, selectdu- can be corrected by re-execution of the last operation. In
plication, checkpoint/restart, breakpoints, and temptiple case of configuration errors, scrubbing can be used to eestor
modular redundancy (TMR) applied to input and output partthe original functionality. In case of permanent faultsteaf
In [23], the fault-tolerant CGRA built using a speciallythe faulty elements are located—either computing or rautin
designed autonomous repair cell is proposed. However, ttesources—they must be excluded and replaced by previously
authors concentrate on tolerating configuration upsety onminused fault-free resources. However, handling permanent
and do not consider transient faults of the cell proposef@wults is beyond the scope of this paper.
assuming that some “conventional techniques can be applied _ _ _
to those parts”. The fault-tolerant CGRA schemes propasedE?' Fault-Tolerant Techniques for Reconfigurable Architezs
[24] are based on duplication and triplication to offer flawgi Most of reconfigurable architectures are built using a num-
reliability levels. Finally, in [25] a new reconfigurable lce ber of identical blocks. Therefore, it is not surprising ttha
array, specifically designed for fault-tolerance, was psgal. some sort of hardware redundancy, that relies on replicatio
This work concentrates on automatic routing mechanismé a block to be protected from faults, has often been pre-
allowing for reconfiguration of the cell array in case of faul ferred choice. The most widely used hardware redundancy
of basic cells, without the aid of external software or hamdsv methods for providing fault-tolerance are: (i) duplicatiwith
This is the only CGRA wherein the (permanent) faults of theomparison (DWC) for detecting faults and (ii) triple moalul
elementary cell are detected using less costly alterrmtike redundancy (TMR) with voters for masking faults. In DWC,
error-detecting codes (parity and Berger codes). Unfattiely, the original module is replicated twice and the results poad
only a few details on self-checking circuitry actually useé by the original and the replicated modules are compared to
revealed, which do not allow for any quantitative complgxitdetect faults. Once an error is detected, a few attempts are
evaluation. In summary, most published fault-tolerant @SR made to repeat the last operation hoping that the error was
require a massive amount of spare cells, because they dwe to temporary fault and, in case of failure, a permanent
based on duplication or triplication of resources. The latk fault is declared. In TMR, the original module is replicated
experimental results on using low-cost techniques forgiesi thrice and a majority 2-out-of-3 voter decides the correct
ing CGRAs fault-tolerant w.r.t. soft errors has motivatesl wutput. In summary, DWC allows to tolerate only temporary
to study a sample CGRA with reliability enhancements. Odiaults (provided that DWC is supported by re-execution)
choice of the DART CGRA from [9], [10] was motivated bywhereas TMR allows to mask directly both temporary and
the advanced reconfigurability features of its datapattswamid permanent faults. TMR has been the basic technique used
access to its high-level implementation code and suppprtim FPGAs, because hardware parts protected by and voters
CAD. In this paper, we describe the implementation of faulcan be implemented using lookup tables in any part of the
tolerant features that address concurrent error detectfondevice and as many as necessary [19]-[21]. DWC and TMR
temporary faults and recovery through rollback of the lastre conceptually relatively simple and easy to implement.
operation. Unfortunately, they are also very costly, because theyhevo

This article is organized as follows. In Section IlI, moreespectively over 100% and 200% hardware overhead, which
details on soft errors and a survey of fault-tolerant teghes could be prohibitive e.g. in low-power applications. THere
used in existing CGRAs are presented. In Section Ill, sonseme other less costly fault-tolerant techniques, apipléctor
basic concepts of the DART architecture and details of iteconfigurable architectures, seem also worth of condidera
datapath units are presented. In Sections IV and V, we peoposA viable alternative to hardware redundancy is to use
a modification of the DART architecture with concurrent errosome other means for CED, e.g. by using error detecting
detection (CED) based on the combination of residue codasdes (like parity codes, residue codes, Berger codeg, etc.
modulo 3 and duplication and evaluate the redundancy imnd implementing circuits as self-checking [26], suppobtig
posed by the proposed methods. In Section VI, we summargzme form of time redundancy. As far as we know, only cyclic
our contributions and suggest directions for future redear redundancy check (CRC) codes have been used explicitly in
reconfigurable architectures—to detect errors in confiipma
data.

A. Reconfigurable Architectures in the Presence of Faults 1 note also that most of research on fault-tolerant CGRAS

Soft errors, if undetected, may result in data corruptidmas concentrated on tolerating faults in interconnectamc
or system failure. They may affect reconfigurable systems rieaconfiguration strategies in case of permanent faults. -How
two essentially different ways: (i) they may directly cqgstu ever, relatively little details have been revealed howeifaslts
computation results or (ii) they may induce changes to canfigare detected—the necessary step preceding any above men-
ration memory, that can cause changes in the functionalitly ationed action. Henceforth, we shall concentrate on tenrgora
performance of the device [19]-[21]. Because in either cafaults in the datapaths of CGRAs only.

Il. PRELIMINARIES



I1l. DART A RCHITECTURE output is one 32-bit word. After receiving two 16-bit input

DART is a dynamically reconfigurable coarse-grained arctf{ords, the SWP signal decides whether the operation is to
tecture developed at IRISA [9], [10]. Here we shall use DARP€ performed on 16- or 8-bit data. SWP=0 means that the
as a vehicle to consider some alternative methods suitable®Perations are to be performed on 16-bit data and the inputs
provide CED in CGRAs, which would possibly involve leséi'® forwarded to 16-bit multiplier/adder. SWP=1 means that
hardware overhead than DWC and obviously TMR. the operations are to be performed on 8-bit data and the

The overall architecture of DART is shown in Fig. 1 received inputs are actually four different operands. Then
Broadly, the architecture of DART can be divided into fouf® 8 MSBs of the received input words are sent to one of
different parts: (i) configuration unit, (i) data memoryij)( WO _8-b|t.mult|pller/adder units Whereas.th.e 8 LSBs Qf the
reconfigurable data paths, and (iv) interconnection ndtwof€Ceived inputs are sent to the other multiplier/adder. rrie
Because we are looking at the DART structure specificalfPntrol signal M/A decides whether addition or multiplicat
from the point of incorporating in it fault-tolerance, wellwi 1S 10 _be performed. If M/A=0, multiplication is performed,
present a detailed description of the reconfigurable datta p&nd if M/A=1, addition is performed. Table | shows how the

unit followed by a brief discussion of the other parts. functionality of the multiplication unit is controlled byrése
two signals.
Memory
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Fig. 1. Architecture of DART [10].
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Reconfigurable Data PathsThe DART architecture con-
tains six reconfigurable data path (RDP) units, in which the Fig. 3. Multiplication/addition unit (MA) of DART [10].
main processing of data is done. As shown in Fig. 2, each
RDP unit contains four functional units (FU), four address
generators each associated to a data memory, two regaters,

a multi-bus network. Two different types of FUs are present

TABLE |
OPERATIONS PERFORMED BY THE MULTIPLICATIOMADDITION (MA)

. . . . . . .. . . UNIT
in an RDP: (i) multiplication/addition unit, and (ii) aritietic WP WA T Fircional
and logic unit (ALU). Each FU has the possibility to perform | — | mumplicaﬁg‘ oTtwo ToDT operands |
subword parallelism (SWP) on the input data. 0T addition of two 16-bt operands
10 separate multipl. of 8 LSBs and 8 MSBs of two op.
Address Address Address Address 11 separate addition of 8 LSBs and 8 MSBs of two dp.
generator generator generator generator
! ! ! !
Data Data Data Data . . . . . .
memory memory memory memory Arithmetic and Logic Unit (ALU):The ALU, which is actu-
] ] ] | ally composed of a pair of separate arithmetic and logicsyinit

Multi-bus network is shown in Fig. 4. The arithmetic unit receives two 32-bit

| | l ] i I operands and the result is a 32-bit operand. For accumnlatio
J Fr J operation, it can also operate on 40 bits. It is controlledixy

b Reg °9 s P = P signals: (CDALU) and (CD.SIMD_ALU). Tables Il and Il
p Reg || b Reg Jjp Reg ] p Reg show how the functionality of the arithmetic unit is conteal
by these two signals, respectively. As for the logic unit, it
Fig. 2. Architecture of a reconfigurable data path (RDP) [10] receives and outputs 32-bit data and (depending on the 2-bit
control signal CDOP, specified in parentheses) executes four
Multiplication/Addition Unit: The multiplication/addition operations: AND (00), OR (01), XOR (10), and NOT (11).
(MA) unit designed to reduce energy consumption, shownThe data can reach the reconfigurable data paths by two
in Fig. 3, contains one 16-bit and two 8-bit multipliers andnethods: (i) from an I/O device using FIFO and (ii) from the
adders. The input to the MA are two 16-bit words and théata memory, as shown in Fig. 1. Each word of data memory is




32 our main goal was to achieve CED at the lowest possible cost,
% [h [Lj - which prompted us to keep the uniform CED method for the
” . 2 %L ent|_re structure, so that no conversion due to using diftere
Co AL % coding schemes v_vould be r_1eeded. o
_SIMD_, Arthmeti t Logic L coor In the next section, we will present some results indicating
il unit unit . the area and time redundancy, as well as evaluation of extra

power consumption required for implementing DART with
CED.

1) Residue Modulo 3 Codes and Related Circuitrs
already mentioned, DART contains two different types of
“ functional units: (i) multiplication/addition unit andiiALU.
Simple DWC or TMR for the functional units would not only
have been too expensive in terms of area and time but also
would have left the data memory unprotected. To protect the
memory and the computation unit against temporary faults
at low cost and, using the same scheme, we had to use
some systematic error detection codes like parity checking

Fig. 4. Arithmetic and logic unit of DART [10].

TABLE I
OPERATIONS OF ARITHMETIC UNIT CONTROLLED BYCD_ALU/CD
[ CD-ALU [ Functionality |

000 Additi . i i
001 Add:t:gz With saturation or arithmetic residue modulo (mod) code, whered > 3
010 Subtraction is odd. Although simple parity requires just one additional
011 Subtraction with saturation bit, unfortunately, it is inefficient for arithmetic cirdmy (in
100 Minimum operation ; s limati ; ; ; ;

. : particular for the multiplication unit), as it requires agvely
101 Maximum operation . . .
110 Absolute large area overhead to protect it against errors resultiom f
111 Logic operations all single bit faults. Taking into account the drawbacks of

using the parity code, we have opted to use the least costly
residue mod 3 code for protecting not only arithmetic units

32-bit wide. If the data are to be provided to the multiplicat (mu_ltiplication and _addition units) but memory as well, to
unit which requires 16-bit operands, its 16 LSBs are trugdat avoid extra check bit generators, check_ers, and cqnve@ers
The DART architecture contains a hierarchical network f&Pe_ othe_r hand, we had to use DWC with comparison fqr the
communication. The functional units within the reconfialea logic unit, becquse no other scheme.capable of detecting all
data paths communicate by using a multi-bus network, whff'ér_;_)rzs due_(;o smglz Ztuck(;at faul_ts etﬂsts;. lowi dvant

the communication between different reconfigurable datiaspa . . r?r:eSI ue (rjno h coh es ednjoy f €lo ﬁW'”? advantages
and data memories is done by using a segmented netwd’}’!g.'C ave m"_i e them t.e co e,s ot our choice. i )
Some other details of these networks and other parts of the they provide protection against not only all single bit

DART architecture, which seem irrelevant for this research ~ a'ithmetic errors (the erroneous computation result diiffe
can be found in [9], [10]. from the correct one by-2*), but also all multiple errors

which do not cumulate to a multiple of the check base
A=3;

they require only two additional check bits throughout
the data path;

IV. FAULT-TOLERANCE TECHNIQUES INCGRA DART

The main design goal of DART was to propose a power e
efficient device with high processing capabilities without

taking into account fault-tolerance features, howeverihta .
available full details of its structure (including VHDL RTL
codes), it provided us with an excellent platform to verifig t
efficiency of the redundancy imposed by the CED approache

they are separable codes, i.e., the same operation (+, -, *)
is executed separately and in parallel on input operands
and their check parts mod 3; and

the residue of an entire word equals the sum of the

proposed here (which fully takes into account the particeula  residues of all parts of the word, arbitrarily partitioned
ities of DART) and to understand the complexity involved in  (which is crucial while taking into account the peculiar-
implementing these methods on CGRAs. To protect DART, ities of the DART architecture).

Below, we will show all basic arithmetic hardware blocks

needed to include residue mod 3 checking in the DART

TABLE IlI )
OPERATIONS OF ARITHMETIC UNIT CONTROLLED BYCD_SIMD_ALU ar?rr;:teCt#reljor CED' f th dq3 id d
[ CD.SIMD_ALU | Functionality | ~ The check parlC’ = (c1,¢o) of the mod 3 residue code
50 20-bT oporation is generated using a residue mod 3 generator. Assuming
01 32-bit operation that X = (:z:n,l,._..,:zzl,:z:o) is an integer (an operand to
10 16-bit operation by adding 16-LSBs be protected against errors) , the residue mod 3 generator
of operands and 16-MSBs of the operanfls  ca|cylates” = (cy, ¢p) Which is the remainder of the division
11 16-bit operation by adding 16-LSBs f X bv 3. Th ffici id d3 b
of each operand with its MSBs o] y 3. The most efficient residue generators mod 3 can be

designed according to the methods from [27] and [28], which



both offer highly regular structures, using only one basick. b ’ I . I

In [27], an n-input residue generator mod 3 is built usingswp / Demux \

n — 2 full adders (FAs) with a total ofn/2] + n — 3 signals lj lj

inverted. In [28], am-input residue generator mod 3 is built 2 o Ko = *

using [n/2] — 1 4-input modules. : ’ e
Recall that three word sizes used in DART imply the need o I

to generate suitable check parts by residue mod 3 generators T T

with 8, 16, and 32 inputs. Because the proposed structure is
scalable, we designed an 8-input residue mod 3 generator and
combined respectively 2 and 4 8-input generators to make 16-
and 32-input generators. To convey a reader with some detail
Fig. 5 shows the modular structure of the 16-input residud mo

3 generator built of 2 8-input circuits (each composed of 8 FA

in 4 stages), followed by the 4-input residue mod 3 generator
(which is also nothing else but the mod 3 adder).
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Fig. 6. Self-checking M/A unit.

Check part

how the data flows in it. Initially two 18-bit words, each
containing 16 data bits and 2 check bits arrive at the input of
multiplication unit. At this stage, the data part and theathe
The structure of the residue mod 3 adder was already shopart are separated.
in Fig. 5. To perform subtraction, the bits of the operand to If SWP=0, indicating that the operation is executed on 16-
be subtracted are inverted and added mod 3 using the motit3operands, the data bits are sent to the 16-bit mult/adtd un
adder. At the same time, the check bits are sent to the mult/add mod
2) Design of Self-Checking Functional UnitEor protect- 3 unit, using Mux 1. At this stage, the signal M/A indicates
ing the computations against undetected errors resultomg f whether 16-bit addition or multiplication will be executddl
temporary faults that could occur in functional units, weéa the M/A=0, the data bits are multiplied using 16-bit multlad
modified the architecture of all functional units, makingith while the check bits are multiplied using mult/add mod 3 unit
self-checking. The self-checking functional units conggin If M/A=1, the data bits are added in 16-bit mult/add unit vehil
with recomputation triggered by an error detection signaheck bits are added using mult/add mod 3. The 32-bit result
provide DART with fault-tolerance for temporary faults. of the 16-bit multiplier is partitioned into two parts. Thé 1
In this subsection, we will present the modifications maddSBs are sent to Mux 2 and the 16 LSBs are sent to Mux
in the multiplication/addition unit and the arithmetic alodic 3, which are both controlled by SWP signal. The residues of
unit to make them self-checking. the MSBs and the LSBs are calculated separately and then
Multiplication/Addition Unit: The multiplication/addition added mod 3. The result calculated from mult/add mod 3 is
(M/A) unit is capable of performing multiplication and ad-compared with the newly calculated sum in Comparator 1. Any
dition operations on both 16-bit and 8-bit operands. Thi#isagreement indicates erroneous data and an error sgnal i
modified, self-checking multiplier is shown in Fig. 6. We il sent to the error detection unit.
explain the diagram from the top to the bottom considering On the other hand, SWP=1 means that two 16-bit operands

Fig. 5. 16-bit residue mod 3 generator.



actually represent four 8-bit operands and two separate mul 3 I I
tiplications/additions are to be performed. The 8 LSBs of i [EI [EI

one operand are to be multiplied/added with the 8 LSBs e T 2 2 2
of the other operand and that the 8 MSBs of one operand, ., * £, | 2 \

cb_or
—

are to be multiplied/added with the 8 MSBs of the othe?DZS'MD—ALq Add. subt JAzgzgelecbzr;iwu Logic uni u L:gicumt
operand. Because in this case the unit handles four 8-bit A - » -
words, the check bits for each of the four words are needed. )L| !—)I—| 1
The simplest solution could be using four separate residue Comparatfﬂ
mod 3 generators, but they are too expensive both in terms
of area and time. Therefore, we decided to use two residue
mod 3 generators for generating the residues of the MSBs
of the operands. On that basis, the residues of the LSBs can
be calculated by subtracting the residue of MSBs from the
residue of the entire 16-bit operand. Once the residuesl of al
four operands are known, they are sent to two different 8-bit
mult/add units, where, depending on the value of M/A, they
are either multiplied or added and the results are sent to two
generators mod 3 where the new residues are calculatede At th
same time, the check bits are sent to two mult/add mod 3 units, * Ertor
where they are either multiplied or added. Finally, they are
compared by the Comparators 2 and 3 with the corresponding Fig. 7. Self-checking ALU.
residues previously generated by generators mod 3. In dase o
a disagreement, an error signal is sent to the error detectio 2 . | }
unit. '—J[—{ sy || omamenany o
Arithmetic and Logic Unit: As shown in Fig. 7, two
different methods are used for protecting the arithmetid an
logic unit: (i) for protecting the arithmetic unit, we have F1O| Sortguration
residue mod 3 codes used almost exactly in the same way as
in the multiplication/addition unit and (ii) for protectinthe
logic unit, we have employed duplication with comparison.
To reduce the overhead below duplication, unfortunately we
had to reduce the overall functionality of the arithmetigtun
The self-checking version of the arithmetic unit is capadfle
performing only 32-bit and 16-bit addition and subtraction
In our design, we have allowed the unit to perform other
operations as well, but unprotected. Fig. 8. Self-checking DART unit.
For protecting the logic unit, we have employed duplication
with comparison. All the logic functions are performed tevic
and in case of an error, the error signal is generated. the other hand, the area redundancy of the arithmetic unit
3) Protecting Data Memoryfor protecting the data mem-using residue code mod 3 was found to be approximately
ory, two additional residue mod 3 check bits are added to ed@8%, which is quite large, but still less than for its duplezh
line of memory. The addition of check bits is done beforeounterpart DWC. The reason for such a large overhead is
storing the data in data memory, as shown in Fig. 8. If ghe size of the output 32-bit generator mod 3, comparable
error is received by the configuration controller, the entiata to the adder itself (the generator requires 30 FASs). Thentymi
memory is flushed and reconfiguration is carried out. overhead also was quite excessive mainly due to the use of the
32-bit residue mod 3 generator. Therefore, to protect effity
the arithmetic unit by using residue code mod 3, some atempt
We have synthesized the original and the self-checkimgust be made to reduce the overhead related to the residue
versions of DART functional units using STMicroelectradicgenerator mod 3, perhaps by allowing to share it with some
130 nm technology. The main constraint imposed was that tb#her circuitry and using a pipelined architecture. Neveldss,
architecture should work for the clock frequency of 200 MHwe can conclude that using residue mod 3 code could result
for all versions. Table IV shows the results obtained. THE sein lesser area redundancy than duplication, in particulzerw
checking version using residue code mod 3 required very lonultiplication units are predominant. We have shown thit th
area overhead of approximately 18.6% which is significantode is a valuable alternative worth of consideration taens
less compared to its duplicated counterpart DWC. Both sefkult-tolerance against the SEUs in functional units ang th
checking versions require at least 80% time overhead. @remory at the same time.
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TABLE IV

Future research on fault-tolerance in DART will include

AREA AND DELAY PARAMETERS OF VARIOUS VERSIONS OBDART
FUNCTIONAL UNITS

[ Circuit | Area [um?] | Delay [ns] |

Multiplication/Addition (M/A) Unit

Unprotected 58075 2.24

Self-checking, using residue code mod|3 68887 4.04

Self-checking, using DWC 118050 4.19

Arithmetic unit

Unprotected 16881 1.23 (1]

Self-checking, using residue code mod|3 33469 4.89

Self checking, using DWC 41314 2.13 2]
VI. CONCLUSION [3]

In this paper, we have presented fault-tolerance tech-
nigues for making coarse-grained reconfigurable architest
(CGRAS) fault-tolerant w.r.t. soft errors caused e.g. bgi+ta [4]
ation. The reason for choosing CGRAs was that they have
a great potential for dominating the reconfigurable haréwar g
market in the future and overtaking their significantly more
widely used fine-grained counterparts, FPGAs. Some of thei
major advantages are lesser reconfiguration time and bett
suitability for computations involving larger word length

Our next goal was to choose a CGRA which can be used as ]
model to propose architectural modifications. While chogsi
the CGRA for our case study, we have looked for the following [g]
four characteristics:

1) its architecture should be general enough, so that they;
architectural modifications proposed for it can be easily
migrated to other architectures;
it should be very practical, so that some other architeqyq;
tures could follow the same design;
its architecture should be simple enough to support the
commonly used fault-tolerance methods in FPGAs; ang 1
we should have available complete information about its
architecture, so that we could evaluate the redundancy
imposed by techniques suggested by us. [12]
The first three characteristics were met by SmartCell [11]
but, unfortunately, we did not have the complete infornratio
to test our proposed technigues on SmartCell. [13]
Finally, we have implemented a few of the proposed meth-
ods on the DART architecture for protecting its data memory
and functional units. The obtained results suggested tret e [14]
after embedding out proposed methods, the device was still
able to meet the clock frequency requirement of 200 MHz.
The area overhead depends on the type of functional units)
The multiplication/addition unit, and the arithmetic arodjic
units had area overheads of about 18% and 98%, respective[%]
which are still much better than simple duplication. Theaare
of implementing fault-tolerance techniques in CGRAs ifl sti
new and a lot of work is needed to be done in this field. The
main contributions of this work were to present techniquesg; 7,
having the potential to make most of the parts of a general
CGRA self-checking, investigation of redundancy (areagdi
imposed by them, and to test the feasibility of a few of thé181
proposed techniques.

&l

2)
3)

4)

further hardware overhead reduction, implementation adrer
recovery procedures, protection of reconfiguration dataeds

as inclusion of means for dynamic reconfiguration in case of
permanent faults.
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