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Abstract— This paper considers the possibility of implementing
low-cost hardware techniques which would allow to tolerate
temporary faults in the datapaths of coarse-grained reconfig-
urable architectures (CGRAs). Our goal was to use less hard-
ware overhead than commonly used duplication or triplication
methods. The proposed technique relies on concurrent error
detection by using residue code modulo 3 and re-execution of
the last operation, once an error is detected. We have chosen
the DART architecture as a vehicle to study the efficiency of
this approach to protect its datapaths. Simulation resultshave
confirmed hardware savings of the proposed approach over
duplication.

I. I NTRODUCTION

Recently, the increasing speed and performance require-
ments of multimedia processing and mobile telecommunica-
tion applications, coupled with the demands for flexibilityand
low non-recurring engineering costs, have made reconfigurable
hardware a very popular implementation technology. Today’s
reconfigurable architectures enable partial and dynamic run-
time self-reconfiguration. This feature allows the substitution
of parts of a hardware design implemented on this reconfig-
urable hardware, and therefore, a single device can be adapted
to implement various functionalities actually demanded, by
simply uploading a new configuration.

Reconfigurable architectures can be classified depending
on their granularity, e.g. the number of bits, which can be
explicitly manipulated by the programmer. The most fine-
grained architectures, whose the most widely used exam-
ple are Field Programmable Gate Arrays (FPGAs), allow a
bit level manipulation of data. Coarse-grained reconfigurable
architectures (CGRAs) provide operator level configurable
functional blocks, word level datapaths, and powerful and
very area-efficient datapath routing switches. Compared to
fine-grained architectures, CGRAs enjoy massive reduction
of configuration memory and configuration time, as well as
considerable reduction in routing and placement allocation.
All this also results in a potential reduction of the total
energy consumed per computation, though at the cost of a
loss in flexibility compared to bit-level operations. The most
recent surveys covering various design and implementation
aspects of reconfigurable architectures can be found in [1]–
[5]. Unfortunately, relatively few works deal with the CGRAs
like Morphosys [6], Raw [7], PACT XPP [8], DART [9], [10],

SmartCell [11], and a few others [5], [12], [13], [14] which
are of our interest here.

With the progress in the processing technology, the size
of the semiconductor devices is shrinking rapidly, which
offers many advantages like low power consumption, low
manufacturing costs, and ability to make hand held devices.
However, shrinking feature sizes and decreasing node capaci-
tance, the increase of the operating frequency, and the power
supply reduction affect the noise margins and susceptibility to
transient faults. In particular, the soft error rate induced by
cosmic neutron interactions in commercial electronic devices
at ground level has become an issue for a long time [15],
[16]. A particle can hit directly a memory element and flip its
logic state (which is called asingle event upset(SEU)) or hit
a combinational logic and trigger temporary perturbation re-
sulting from the collection of radiation-induced charge, called
single event transients(SETs). As the operating voltage of the
devices and the node capacitancies decrease, the probability
of a small transient current being interpreted as a signal also
increases. SETs, if propagated and latched into a memory
element as incorrect data, will also lead to a SEU. These faults
are commonly calledsoft errors because the circuit/device
itself is not permanently damaged—if new data are written
to the bit, the device will store it correctly. To note also
that electronic systems implemented with nanotechnologies
are expected to experience even higher fault rates [17], [18].

The use of reconfigurable hardware in critical applications
like aircrafts, space missions and transaction systems e.t.c.
is increasing rapidly. Soft errors caused by radiation may
result in fatal silent data corruption and unreproducible system
crashes. Because it is virtually impossible to build devices
which are free from faults, it is essential to embed some sort
of fault-tolerance in such devices, which will enable them
to work correctly even in the presence of faults. Since the
past decade, a lot of research has been done to develop fault-
tolerant reconfigurable systems on various granularity levels,
although most of them have dealt with the lowest level such
as offered by FPGAs [19]–[21]. In general, the capabilities
of such systems should include on-line error detection during
system operation, very fast fault location, quick recoveryfrom
temporary failures, and fast permanent-fault repair through
reconfiguration.



Only relatively few works can be found on fault-tolerance in
CGRAs [22]–[24]. In [22], the authors propose fault-tolerance
enhancements of the Raw architecture from [7]. They use a
combination of software techniques for fault detection and
tolerance, which include selective replication, selective du-
plication, checkpoint/restart, breakpoints, and temporal triple
modular redundancy (TMR) applied to input and output parts.
In [23], the fault-tolerant CGRA built using a specially
designed autonomous repair cell is proposed. However, the
authors concentrate on tolerating configuration upsets only
and do not consider transient faults of the cell proposed,
assuming that some “conventional techniques can be applied
to those parts”. The fault-tolerant CGRA schemes proposed in
[24] are based on duplication and triplication to offer flexible
reliability levels. Finally, in [25] a new reconfigurable cell
array, specifically designed for fault-tolerance, was proposed.
This work concentrates on automatic routing mechanisms
allowing for reconfiguration of the cell array in case of faults
of basic cells, without the aid of external software or hardware.
This is the only CGRA wherein the (permanent) faults of the
elementary cell are detected using less costly alternatives like
error-detecting codes (parity and Berger codes). Unfortunately,
only a few details on self-checking circuitry actually usedare
revealed, which do not allow for any quantitative complexity
evaluation. In summary, most published fault-tolerant CGRAs
require a massive amount of spare cells, because they are
based on duplication or triplication of resources. The lackof
experimental results on using low-cost techniques for design-
ing CGRAs fault-tolerant w.r.t. soft errors has motivated us
to study a sample CGRA with reliability enhancements. Our
choice of the DART CGRA from [9], [10] was motivated by
the advanced reconfigurability features of its datapath units and
access to its high-level implementation code and supporting
CAD. In this paper, we describe the implementation of fault-
tolerant features that address concurrent error detectionof
temporary faults and recovery through rollback of the last
operation.

This article is organized as follows. In Section II, more
details on soft errors and a survey of fault-tolerant techniques
used in existing CGRAs are presented. In Section III, some
basic concepts of the DART architecture and details of its
datapath units are presented. In Sections IV and V, we propose
a modification of the DART architecture with concurrent error
detection (CED) based on the combination of residue codes
modulo 3 and duplication and evaluate the redundancy im-
posed by the proposed methods. In Section VI, we summarize
our contributions and suggest directions for future research.

II. PRELIMINARIES

A. Reconfigurable Architectures in the Presence of Faults

Soft errors, if undetected, may result in data corruption
or system failure. They may affect reconfigurable systems in
two essentially different ways: (i) they may directly corrupt
computation results or (ii) they may induce changes to configu-
ration memory, that can cause changes in the functionality and
performance of the device [19]–[21]. Because in either case

the cause of the failure is actually transient, some time redun-
dancy approach could be adapted, provided that the system
is equipped with some means to detect errors. Computation
errors, once detected (e.g. by using error-detecting codes),
can be corrected by re-execution of the last operation. In
case of configuration errors, scrubbing can be used to restore
the original functionality. In case of permanent faults, after
the faulty elements are located—either computing or routing
resources—they must be excluded and replaced by previously
unused fault-free resources. However, handling permanent
faults is beyond the scope of this paper.

B. Fault-Tolerant Techniques for Reconfigurable Architectures

Most of reconfigurable architectures are built using a num-
ber of identical blocks. Therefore, it is not surprising that
some sort of hardware redundancy, that relies on replication
of a block to be protected from faults, has often been pre-
ferred choice. The most widely used hardware redundancy
methods for providing fault-tolerance are: (i) duplication with
comparison (DWC) for detecting faults and (ii) triple modular
redundancy (TMR) with voters for masking faults. In DWC,
the original module is replicated twice and the results produced
by the original and the replicated modules are compared to
detect faults. Once an error is detected, a few attempts are
made to repeat the last operation hoping that the error was
due to temporary fault and, in case of failure, a permanent
fault is declared. In TMR, the original module is replicated
thrice and a majority 2-out-of-3 voter decides the correct
output. In summary, DWC allows to tolerate only temporary
faults (provided that DWC is supported by re-execution)
whereas TMR allows to mask directly both temporary and
permanent faults. TMR has been the basic technique used
in FPGAs, because hardware parts protected by and voters
can be implemented using lookup tables in any part of the
device and as many as necessary [19]–[21]. DWC and TMR
are conceptually relatively simple and easy to implement.
Unfortunately, they are also very costly, because they involve
respectively over 100% and 200% hardware overhead, which
could be prohibitive e.g. in low-power applications. Therefore
some other less costly fault-tolerant techniques, applicable for
reconfigurable architectures, seem also worth of consideration.

A viable alternative to hardware redundancy is to use
some other means for CED, e.g. by using error detecting
codes (like parity codes, residue codes, Berger codes, etc.)
and implementing circuits as self-checking [26], supported by
some form of time redundancy. As far as we know, only cyclic
redundancy check (CRC) codes have been used explicitly in
reconfigurable architectures—to detect errors in configuration
data.

To note also that most of research on fault-tolerant CGRAs
has concentrated on tolerating faults in interconnectionsand
reconfiguration strategies in case of permanent faults. How-
ever, relatively little details have been revealed how these faults
are detected—the necessary step preceding any above men-
tioned action. Henceforth, we shall concentrate on temporary
faults in the datapaths of CGRAs only.
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III. DART A RCHITECTURE

DART is a dynamically reconfigurable coarse-grained archi-
tecture developed at IRISA [9], [10]. Here we shall use DART
as a vehicle to consider some alternative methods suitable to
provide CED in CGRAs, which would possibly involve less
hardware overhead than DWC and obviously TMR.

The overall architecture of DART is shown in Fig. 1.
Broadly, the architecture of DART can be divided into four
different parts: (i) configuration unit, (ii) data memory, (iii)
reconfigurable data paths, and (iv) interconnection network.
Because we are looking at the DART structure specifically
from the point of incorporating in it fault-tolerance, we will
present a detailed description of the reconfigurable data path
unit followed by a brief discussion of the other parts.
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Fig. 1. Architecture of DART [10].

Reconfigurable Data Paths:The DART architecture con-
tains six reconfigurable data path (RDP) units, in which the
main processing of data is done. As shown in Fig. 2, each
RDP unit contains four functional units (FU), four address
generators each associated to a data memory, two registers,and
a multi-bus network. Two different types of FUs are present
in an RDP: (i) multiplication/addition unit, and (ii) arithmetic
and logic unit (ALU). Each FU has the possibility to perform
subword parallelism (SWP) on the input data.
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Fig. 2. Architecture of a reconfigurable data path (RDP) [10].

Multiplication/Addition Unit: The multiplication/addition
(MA) unit designed to reduce energy consumption, shown
in Fig. 3, contains one 16-bit and two 8-bit multipliers and
adders. The input to the MA are two 16-bit words and the

output is one 32-bit word. After receiving two 16-bit input
words, the SWP signal decides whether the operation is to
be performed on 16- or 8-bit data. SWP=0 means that the
operations are to be performed on 16-bit data and the inputs
are forwarded to 16-bit multiplier/adder. SWP=1 means that
the operations are to be performed on 8-bit data and the
received inputs are actually four different operands. Then,
the 8 MSBs of the received input words are sent to one of
two 8-bit multiplier/adder units whereas the 8 LSBs of the
received inputs are sent to the other multiplier/adder unit. The
control signal M/A decides whether addition or multiplication
is to be performed. If M/A=0, multiplication is performed,
and if M/A=1, addition is performed. Table I shows how the
functionality of the multiplication unit is controlled by these
two signals.
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Fig. 3. Multiplication/addition unit (MA) of DART [10].

TABLE I

OPERATIONS PERFORMED BY THE MULTIPLICATION/ADDITION (MA)

UNIT

SWP M/A Functionality

0 0 multiplication of two 16-bit operands
0 1 addition of two 16-bit operands
1 0 separate multipl. of 8 LSBs and 8 MSBs of two op.
1 1 separate addition of 8 LSBs and 8 MSBs of two op.

Arithmetic and Logic Unit (ALU):The ALU, which is actu-
ally composed of a pair of separate arithmetic and logic units,
is shown in Fig. 4. The arithmetic unit receives two 32-bit
operands and the result is a 32-bit operand. For accumulation
operation, it can also operate on 40 bits. It is controlled bytwo
signals: (CDALU) and (CD SIMD ALU). Tables II and III
show how the functionality of the arithmetic unit is controlled
by these two signals, respectively. As for the logic unit, it
receives and outputs 32-bit data and (depending on the 2-bit
control signal CDOP, specified in parentheses) executes four
operations: AND (00), OR (01), XOR (10), and NOT (11).

The data can reach the reconfigurable data paths by two
methods: (i) from an I/O device using FIFO and (ii) from the
data memory, as shown in Fig. 1. Each word of data memory is
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Fig. 4. Arithmetic and logic unit of DART [10].

TABLE II

OPERATIONS OF ARITHMETIC UNIT CONTROLLED BYCD ALU/CD

CD ALU Functionality

000 Addition
001 Addition with saturation
010 Subtraction
011 Subtraction with saturation
100 Minimum operation
101 Maximum operation
110 Absolute
111 Logic operations

32-bit wide. If the data are to be provided to the multiplication
unit which requires 16-bit operands, its 16 LSBs are truncated.
The DART architecture contains a hierarchical network for
communication. The functional units within the reconfigurable
data paths communicate by using a multi-bus network, while
the communication between different reconfigurable data paths
and data memories is done by using a segmented network.
Some other details of these networks and other parts of the
DART architecture, which seem irrelevant for this research,
can be found in [9], [10].

IV. FAULT-TOLERANCE TECHNIQUES INCGRA DART

The main design goal of DART was to propose a power
efficient device with high processing capabilities without
taking into account fault-tolerance features, however. Having
available full details of its structure (including VHDL RTL
codes), it provided us with an excellent platform to verify the
efficiency of the redundancy imposed by the CED approach
proposed here (which fully takes into account the particular-
ities of DART) and to understand the complexity involved in
implementing these methods on CGRAs. To protect DART,

TABLE III

OPERATIONS OF ARITHMETIC UNIT CONTROLLED BYCD SIMD ALU

CD SIMD ALU Functionality

00 40-bit operation
01 32-bit operation
10 16-bit operation by adding 16-LSBs

of operands and 16-MSBs of the operands
11 16-bit operation by adding 16-LSBs

of each operand with its MSBs

our main goal was to achieve CED at the lowest possible cost,
which prompted us to keep the uniform CED method for the
entire structure, so that no conversion due to using different
coding schemes would be needed.

In the next section, we will present some results indicating
the area and time redundancy, as well as evaluation of extra
power consumption required for implementing DART with
CED.

1) Residue Modulo 3 Codes and Related Circuitry:As
already mentioned, DART contains two different types of
functional units: (i) multiplication/addition unit and (ii) ALU.
Simple DWC or TMR for the functional units would not only
have been too expensive in terms of area and time but also
would have left the data memory unprotected. To protect the
memory and the computation unit against temporary faults
at low cost and, using the same scheme, we had to use
some systematic error detection codes like parity checking
or arithmetic residue modulo (mod)A code, whereA ≥ 3
is odd. Although simple parity requires just one additional
bit, unfortunately, it is inefficient for arithmetic circuitry (in
particular for the multiplication unit), as it requires relatively
large area overhead to protect it against errors resulting from
all single bit faults. Taking into account the drawbacks of
using the parity code, we have opted to use the least costly
residue mod 3 code for protecting not only arithmetic units
(multiplication and addition units) but memory as well, to
avoid extra check bit generators, checkers, and converters. On
the other hand, we had to use DWC with comparison for the
logic unit, because no other scheme capable of detecting all
errors due to single stuck-at faults exists.

The residue mod 3 codes enjoy the following advantages
which have made them the codes of our choice:

• they provide protection against not only all single bit
arithmetic errors (the erroneous computation result differs
from the correct one by±2i), but also all multiple errors
which do not cumulate to a multiple of the check base
A = 3;

• they require only two additional check bits throughout
the data path;

• they are separable codes, i.e., the same operation (+, -, *)
is executed separately and in parallel on input operands
and their check parts mod 3; and

• the residue of an entire word equals the sum of the
residues of all parts of the word, arbitrarily partitioned
(which is crucial while taking into account the peculiar-
ities of the DART architecture).

Below, we will show all basic arithmetic hardware blocks
needed to include residue mod 3 checking in the DART
architecture for CED.

The check partC = (c1, c0) of the mod 3 residue code
is generated using a residue mod 3 generator. Assuming
that X = (xn−1, . . . , x1, x0) is an integer (an operand to
be protected against errors) , the residue mod 3 generator
calculatesC = (c1, c0) which is the remainder of the division
of X by 3. The most efficient residue generators mod 3 can be
designed according to the methods from [27] and [28], which
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both offer highly regular structures, using only one basic block.
In [27], an n-input residue generator mod 3 is built using
n− 2 full adders (FAs) with a total of⌈n/2⌉+ n− 3 signals
inverted. In [28], ann-input residue generator mod 3 is built
using⌈n/2⌉ − 1 4-input modules.

Recall that three word sizes used in DART imply the need
to generate suitable check parts by residue mod 3 generators
with 8, 16, and 32 inputs. Because the proposed structure is
scalable, we designed an 8-input residue mod 3 generator and
combined respectively 2 and 4 8-input generators to make 16-
and 32-input generators. To convey a reader with some details,
Fig. 5 shows the modular structure of the 16-input residue mod
3 generator built of 2 8-input circuits (each composed of 6 FAs
in 4 stages), followed by the 4-input residue mod 3 generator
(which is also nothing else but the mod 3 adder).
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4-input residue
generator mod 3
(adder mod 4)

Check part

Fig. 5. 16-bit residue mod 3 generator.

The structure of the residue mod 3 adder was already shown
in Fig. 5. To perform subtraction, the bits of the operand to
be subtracted are inverted and added mod 3 using the mod 3
adder.

2) Design of Self-Checking Functional Units:For protect-
ing the computations against undetected errors resulting from
temporary faults that could occur in functional units, we have
modified the architecture of all functional units, making them
self-checking. The self-checking functional units combined
with recomputation triggered by an error detection signal
provide DART with fault-tolerance for temporary faults.

In this subsection, we will present the modifications made
in the multiplication/addition unit and the arithmetic andlogic
unit to make them self-checking.

Multiplication/Addition Unit: The multiplication/addition
(M/A) unit is capable of performing multiplication and ad-
dition operations on both 16-bit and 8-bit operands. The
modified, self-checking multiplier is shown in Fig. 6. We will
explain the diagram from the top to the bottom considering
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Fig. 6. Self-checking M/A unit.

how the data flows in it. Initially two 18-bit words, each
containing 16 data bits and 2 check bits arrive at the input of
multiplication unit. At this stage, the data part and the check
part are separated.

If SWP=0, indicating that the operation is executed on 16-
bit operands, the data bits are sent to the 16-bit mult/add unit.
At the same time, the check bits are sent to the mult/add mod
3 unit, using Mux 1. At this stage, the signal M/A indicates
whether 16-bit addition or multiplication will be executed. If
the M/A=0, the data bits are multiplied using 16-bit mult/add
while the check bits are multiplied using mult/add mod 3 unit.
If M/A=1, the data bits are added in 16-bit mult/add unit while
check bits are added using mult/add mod 3. The 32-bit result
of the 16-bit multiplier is partitioned into two parts. The 16
MSBs are sent to Mux 2 and the 16 LSBs are sent to Mux
3, which are both controlled by SWP signal. The residues of
the MSBs and the LSBs are calculated separately and then
added mod 3. The result calculated from mult/add mod 3 is
compared with the newly calculated sum in Comparator 1. Any
disagreement indicates erroneous data and an error signal is
sent to the error detection unit.

On the other hand, SWP=1 means that two 16-bit operands
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actually represent four 8-bit operands and two separate mul-
tiplications/additions are to be performed. The 8 LSBs of
one operand are to be multiplied/added with the 8 LSBs
of the other operand and that the 8 MSBs of one operand
are to be multiplied/added with the 8 MSBs of the other
operand. Because in this case the unit handles four 8-bit
words, the check bits for each of the four words are needed.
The simplest solution could be using four separate residue
mod 3 generators, but they are too expensive both in terms
of area and time. Therefore, we decided to use two residue
mod 3 generators for generating the residues of the MSBs
of the operands. On that basis, the residues of the LSBs can
be calculated by subtracting the residue of MSBs from the
residue of the entire 16-bit operand. Once the residues of all
four operands are known, they are sent to two different 8-bit
mult/add units, where, depending on the value of M/A, they
are either multiplied or added and the results are sent to two
generators mod 3 where the new residues are calculated. At the
same time, the check bits are sent to two mult/add mod 3 units,
where they are either multiplied or added. Finally, they are
compared by the Comparators 2 and 3 with the corresponding
residues previously generated by generators mod 3. In case of
a disagreement, an error signal is sent to the error detection
unit.

Arithmetic and Logic Unit: As shown in Fig. 7, two
different methods are used for protecting the arithmetic and
logic unit: (i) for protecting the arithmetic unit, we have
residue mod 3 codes used almost exactly in the same way as
in the multiplication/addition unit and (ii) for protecting the
logic unit, we have employed duplication with comparison.

To reduce the overhead below duplication, unfortunately we
had to reduce the overall functionality of the arithmetic unit.
The self-checking version of the arithmetic unit is capableof
performing only 32-bit and 16-bit addition and subtraction.
In our design, we have allowed the unit to perform other
operations as well, but unprotected.

For protecting the logic unit, we have employed duplication
with comparison. All the logic functions are performed twice
and in case of an error, the error signal is generated.

3) Protecting Data Memory:For protecting the data mem-
ory, two additional residue mod 3 check bits are added to each
line of memory. The addition of check bits is done before
storing the data in data memory, as shown in Fig. 8. If an
error is received by the configuration controller, the entire data
memory is flushed and reconfiguration is carried out.

V. COMPLEXITY EVALUATION

We have synthesized the original and the self-checking
versions of DART functional units using STMicroelectronics
130 nm technology. The main constraint imposed was that the
architecture should work for the clock frequency of 200 MHz
for all versions. Table IV shows the results obtained. The self-
checking version using residue code mod 3 required very low
area overhead of approximately 18.6% which is significantly
less compared to its duplicated counterpart DWC. Both self-
checking versions require at least 80% time overhead. On
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the other hand, the area redundancy of the arithmetic unit
using residue code mod 3 was found to be approximately
98%, which is quite large, but still less than for its duplicated
counterpart DWC. The reason for such a large overhead is
the size of the output 32-bit generator mod 3, comparable
to the adder itself (the generator requires 30 FAs). The timing
overhead also was quite excessive mainly due to the use of the
32-bit residue mod 3 generator. Therefore, to protect efficiently
the arithmetic unit by using residue code mod 3, some attempts
must be made to reduce the overhead related to the residue
generator mod 3, perhaps by allowing to share it with some
other circuitry and using a pipelined architecture. Nevertheless,
we can conclude that using residue mod 3 code could result
in lesser area redundancy than duplication, in particular when
multiplication units are predominant. We have shown that this
code is a valuable alternative worth of consideration to ensure
fault-tolerance against the SEUs in functional units and the
memory at the same time.
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TABLE IV

AREA AND DELAY PARAMETERS OF VARIOUS VERSIONS OFDART

FUNCTIONAL UNITS

Circuit Area [µm2] Delay [ns]

Multiplication/Addition (M/A) Unit
Unprotected 58075 2.24
Self-checking, using residue code mod 3 68887 4.04
Self-checking, using DWC 118050 4.19

Arithmetic unit
Unprotected 16881 1.23
Self-checking, using residue code mod 3 33469 4.89
Self checking, using DWC 41314 2.13

VI. CONCLUSION

In this paper, we have presented fault-tolerance tech-
niques for making coarse-grained reconfigurable architectures
(CGRAs) fault-tolerant w.r.t. soft errors caused e.g. by radi-
ation. The reason for choosing CGRAs was that they have
a great potential for dominating the reconfigurable hardware
market in the future and overtaking their significantly more
widely used fine-grained counterparts, FPGAs. Some of their
major advantages are lesser reconfiguration time and better
suitability for computations involving larger word lengths.

Our next goal was to choose a CGRA which can be used as a
model to propose architectural modifications. While choosing
the CGRA for our case study, we have looked for the following
four characteristics:

1) its architecture should be general enough, so that the
architectural modifications proposed for it can be easily
migrated to other architectures;

2) it should be very practical, so that some other architec-
tures could follow the same design;

3) its architecture should be simple enough to support the
commonly used fault-tolerance methods in FPGAs; and

4) we should have available complete information about its
architecture, so that we could evaluate the redundancy
imposed by techniques suggested by us.

The first three characteristics were met by SmartCell [11]
but, unfortunately, we did not have the complete information
to test our proposed techniques on SmartCell.

Finally, we have implemented a few of the proposed meth-
ods on the DART architecture for protecting its data memory
and functional units. The obtained results suggested that even
after embedding out proposed methods, the device was still
able to meet the clock frequency requirement of 200 MHz.
The area overhead depends on the type of functional unit.
The multiplication/addition unit, and the arithmetic and logic
units had area overheads of about 18% and 98%, respectively,
which are still much better than simple duplication. The area
of implementing fault-tolerance techniques in CGRAs is still
new and a lot of work is needed to be done in this field. The
main contributions of this work were to present techniques,
having the potential to make most of the parts of a general
CGRA self-checking, investigation of redundancy (area, time)
imposed by them, and to test the feasibility of a few of the
proposed techniques.

Future research on fault-tolerance in DART will include
further hardware overhead reduction, implementation of error
recovery procedures, protection of reconfiguration data aswell
as inclusion of means for dynamic reconfiguration in case of
permanent faults.
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