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Abstract—Distributed space-time codes (DSTC) are often used
in cooperative relaying networks whose relays can support a
single antenna due to the limited physical size. In this paper, full
DSTC protocol in which there is a data exchange between relays
before forwarding signals to destination is proposed to improve
the performance of a cooperative relaying system. A lower bound
for the average symbol error probability (ASEP) of full DSTC
cooperative relaying system in a Rayleigh fading environment is
provided. In the case when the Signal to Noise Ratio (SNR) of
the relay-relay link is much greater than that of the source-relay
link, the upper bound on ASEP of this system is also derived.
From the simulations, we show that the average SNR gain of full
DSTC system over DSTC system is 3.8dB and the maximum SNR
gain is 5dB when the relay-relay distance is small and the relays
are in the middle of the source and the destination. The effect
of the distance between the relays shows that the performance
does not degrade so much as the distance between relays is lower
than a half of the source-destination distance. Moreover, we also
show that when the error synchronization range is lower than
0.5, the impact of the transmission synchronization error of the
relay-destination link on the performance is not considerable.

I. INTRODUCTION

Recently, relay transmission has been identified as one
of the core technologies that could enable robust and high-
reliable information transfer over challenging wireless environ-
ment. By positioning relays between source and destination,
the relaying networks attract significant interest in wireless
communication as it achieves the performance of Multi-Input
Multi-Output (MIMO) systems through multiple relays instead
of using multiple antennas at terminals. In [1], via the outage
probability analysis of distributed space-time codes (DSTC)
and repetition-based cooperative diversity protocol, the DSTC
is shown to have full spatial diversity. In [2], a DSTC multi-
hop system in which source and relay share their antennas
to create a virtual transmit array is considered in terms of
average Bit Error Rate (BER) and achievable rate. Beside, in
[3], the performance of DSTC systems with one and two non-
regenerative relays is given, while the performance of DSTC
systems with regenerative relays is done in [4]. The DSTC
protocol for wireless multi-hop networks is lately designed
and the performance for communication over more than two
hops is analyzed in [5].

In the present paper, a cooperative relaying system having
a source, a destination and two relays all equipped with
single antenna is considered. The full DSTC protocol for
cooperative relaying networks in which the relays exchange

data with each other and then forward the signals to destination
using non-regenerative DSTC is proposed to improve the
performance of the system in terms of BER. To the best
of our knowledge, this is the first time the data exchange
between relays in cooperative relaying networks is presented
and analyzed. The lower bound expression on average symbol
error probability (ASEP) of full DSTC cooperative relaying
system is derived. Beside, the upper bound expression on
ASEP is given in the case that the distance between relays,
drr is small enough in comparison with the source-destination
distance dsd to be able to neglect the transmission errors in
the data exchange of two relays. Simulation results will show
that this condition is satisfied when drr = 0.1dsd. In addition,
the effects of some practical problems, such as the relative
distance of relays, the distance between two relays and the
transmission synchronization errors of the relay-destination
link, are also considered and simulated in comparison with
DSTC cooperative relaying model in which there is no data
exchange between the relays.

The remainder of this paper is organized as follows. In Sec-
tion II, the protocol of full DSTC cooperative relaying system
is thoroughly described. Then the average error probability
analysis is considered in Section III. Section IV presents the
simulation results, while Section V proposes a discussion and
conclusion.

II. SYSTEM MODEL

The full distributed space-time coded cooperative relaying
network considered in this paper includes one source, one
destination and two relays which all have only one antenna.
After receiving the signals from the source, the two relays
exchange data with each other, then combine all the received
signals using Maximum Ratio Combining (MRC) technique
and finally forward them to destination using DSTC. We as-
sume that all communications are performed over flat Rayleigh
fading channel. The channel coefficients remain the same
for two consecutive time intervals. Statistically, we model
the channel coefficient hij with i ∈ {s, r1, r2}, j ∈ {r1, r2, d}
and i 6= j as zero mean, independent, complex Gaussian
random variables with variances Ωij . Similarly, we model
the AWGN noise zij [n] as zero mean mutually independent
complex Gaussian random variable with variance Nij . Without
loss of generality we assume that Nij = 1, ∀i, j.

IEEE WCNC 2011 - PHY

978-1-61284-254-7/11/$26.00 ©2011 IEEE 1529



Fig. 1. Full Distributed Space Time Code Cooperative Relaying Model

The transmission protocol of this model can be described
as below. Firstly, the source transmits signals to the relays
and the destination at the same time. The received signals at
relays and destination can be represented as ysr1, ysr2 and ysd
respectively

ysj(n) =
√
εshsjx[n] + zsj [n], j ∈ {r1, r2, d} (1)

where x[n] is the source transmitted signal and εs is the
transmitted source power.

Secondly, the two relays exchange their data with each other.
The received signals at relay R1 from relay R2 and vice versa,
respectively symbolized as yr2r1 and yr1r2 , are given by

yij(n) = hijGsiysi[n] + zij [n], i, j ∈ {r1, r2}, i 6= j (2)

where Gsi is the maximum gain [6] which satisfies the output
power constraint of relay i and can be chosen as

Gsi =

√
εi

εs|hsi|2 + 1
, i ∈ {r1, r2} (3)

with εi the transmitted power of relay i.
Thirdly, each relay uses a Maximum Ratio Combiner to

combine the signals received from source and from the other
relay

uj(n) = h∗sjysj [n] +
h∗ijG

∗
sih
∗
si

|hij |2|Gsi|2 + 1
yij [n] (4)

where i, j ∈ {r1, r2} and i 6= j.
Finally, the two relays use non-regenerative DSTC protocol

to transmit simultaneously the Alamouti re-encoded signals
UUU =

[
Gr1dur1 [2k] Gr2dur2 [2k + 1]

−G∗r1du
∗
r1

[2k + 1] G∗r2du
∗
r2

[2k]

]
to the destination.

The signals received from the relays at destination, yrdyrdyrd =[
yrd[2k] yrd[2k + 1]

]T , are

yrdyrdyrd = UUUhrdhrdhrd + zrdzrdzrd, (5)

where hrdhrdhrd =
[
hrd[2k] hrd[2k + 1]

]T is the Rayleigh channel
coefficient vector of the relay-destination link and zrdzrdzrd =[
zrd[2k] zrd[2k + 1]

]T is the AWGN noise vector of the relay-
destination link.

Similarly, to prevent the saturation, the maximum gain Gjd
at relay j is chosen as

Gjd =

√
εj

εs|aj |2 + aj
, j ∈ {r1, r2} (6)

where aj = |hsj |2 +
|hijGsihsi|2

|hijGsi|2+1
i, j ∈ {r1, r2}, i 6= j and εj is the

transmitted power of relay j.
At the destination, the Alamouti receiver is used to process

the signals received from R1 and R2. Then, the output of
the Alamouti receiver is combined with

[
ysd[2k] ysd[2k + 1]

]T
using Maximum Ratio Combining technique.

III. AVERAGE SYMBOL ERROR PROBABILITY ANALYSIS

With the fading realizations hij , i ∈ {s, r1, r2} , j ∈ {r1, r2, d}
and i 6= j, the Signal to Noise Ratio at terminal j after receiving
signals from terminal i is found as γij = εi|hij |2/Nij which has
exponential distribution with the mean γij =

εiΩij
Nij

. The density
probability function of γij is represented by

fγij (γ) =
1

γij
e
− γ
γij (7)

With the choice of Gsi, i ∈ {r1, r2} in (3), the post-detection
SNR at relay i can be referred as

γi = γsi +
γsjγji

γsj + γji + 1
i, j ∈ {r1, r2}, i 6= j (8)

Similarly, the post-detection SNR at destination is

γd = γsd + εs

∑
j∈{r1,r2} |hjdGjdaj |

2∑
j∈{r1,r2} |hjdGjd|

2aj + 1
(9)

Because the distribution of γd is not easy to find, we would
like to find and use the distribution of γL and γU to upper
bound and lower bound the ASEP of full DSTC cooperative
relaying system. We find that

γL < γd < γU (10)

where γL is the lower bound of γd only when γij � γsj , i, j ∈
{r1, r2}, i 6= j

γL = γsd +
γsr1γr1d

γsr1 + γr1d + 1
+

γsr2γr2d

γsr2 + γr2d + 1

= γsd + γLsr1d + γLsr2d

(11)

and γU is the upper bound of γd

γU = γsd +
(γsr1 + γsr2 )γr1d

γsr1 + γr1d + γsr2 + 1
+

(γsr2 + γsr1 )γr2d

γsr1 + γsr2 + γr2d + 1

= γsd + γUsr1d + γUsr2d

(12)

From (10), we find that the lower bound on ASEP of full
DSTC cooperative relaying system is PLγd = PγU and the upper
bound on ASEP of full DSTC cooperative relaying system is
PUγd = PγL . We have

PLγd = PγU < Pγd < PγL = PUγd (13)

In order to find the lower bound for the performance of
full DSTC cooperative relaying system, we first derive the
moment generating functions (MGFs) of γUsid, i ∈ {r1, r2}which
is proved in Appendix A.

MγU
sid

(s) =eαi/2
[ 2

pi
√
pi

(( pi
γid
− σi +

σi

2γid

) δJ0

δβ
+
( σi
γid

+ 2
) δ2J0

δαδβ

)
+

2

p2
i

((2pi

γid
+ σi

) δ2J0

δα2
+

pi

γid

δJ0

δα
−
σi

4
J0

)]
(14)

where t0 = γid, σ = σi = γid + γsi, p = pi = γidγsi, and αi =

(σi − pis)/pi. The formula of J0, δJ0
δα

, δJ0
δβ

, δ2J0
δα2 and δ2J0

δαδβ
can

be found in Appendix A. Note that with the assumption γsr =
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γsr1 = γsr2 , the random variable γsr = γsr1 + γsr2 will have the
probability density function fγsr (γ) = 1

γsr2
γe
− γ
γsr .

Then, the lower bound ASEP of full DSTC cooperative
relaying system, PLγd , for BPSK modulation can be derived
based on MGF-based approach of [7, Eq. 9.12]

PLγd =
1

π

∫ π/2

0

∏
i∈{r1,r2}MγU

sid
(− gBPSK

sin2θ
)

1 + gBPSKγsd
sin2θ

dθ (15)

where gBPSK = 1 [7] and Mγsd =
(
1 + gBPSKγsd

sin2θ

)−1 [7, Tab
9.1].

Similarly, the upper bound ASEP of full DSTC cooperative
relaying system, PUγd , can be written

PUγd =
1

π

∫ π/2

0

∏
i∈{r1,r2}MγL

sid
(− gBPSK

sin2θ
)

1 + gBPSKγsd
sin2θ

dθ (16)

Fortunately, the moment generating functions of γLsid, i ∈
{r1, r2} are already found in [8, Eq. 13]

MγL
sid

(s) =
2

pi
eαi/2

[
−2

δJ0

δα
−
σi

pi

δJ0

δβ

]
(17)

where σ = γid + γsi, p = γidγsi and αi = (σi − pis)/pi. The
formula of δJ0

δα
and δJ0

δβ
is given in Appendix A.

On the other hand, for DSTC cooperative relaying model,
where there is no data exchange between the two relays, the
post-detection SNR at destination is found as

γ
′
d = γsd + εs

∑
j∈{r1,r2} |hjdG

′
jda
′
j |2∑

j∈{r1,r2} |hjdG
′
jd|2 + 1

(18)

where a
′
j = hsj and G

′
jd =

h∗sj
|hsj |

√
εj

εs|hsj |2+1
.

We find that γ′d < γL so PUγd = PγL is also the lower bound
on ASEP of DSTC cooperative relaying system.

IV. SIMULATION RESULTS

For the convenience of the symbolization, we denote r

the relative distance of relays which is defined by the ratio
of the source-relay distance dsr and the source-destination
distance dsd and let rr be the relative inter-distance of relays
which is defined by the ratio of the relay-relay distance drr

and the source-destination distance dsd. Besides, the power
is equally allocated among transmitters, i.e. εij = ε, and the
BPSK modulation is selected.

A. Bounds for full DSTC cooperative relaying system

For the comparison between the analytic results and simu-
lation results, we first consider the special case of symmetric
network in which the fading variances are identical, e.g,
Ωij = 1 ∀i, j. In this simulation, the condition that γij � γsj ,
i, j ∈ {r1, r2}, i 6= j is made sure. We can see from Fig. 2
that the performance simulation of full DSTC cooperative
relaying system is exactly in the middle of the upper bound
on ASEP, PUγd and lower bound on ASEP, PLγd . Moreover, from
the simulation results, PUγd is shown to be the lower bound on
ASEP of DSTC cooperative relaying system.

B. Effect of the distance between two relays

For the following subsections, the effect of geometry is
taken into account. Using a common model for path-loss, we

Fig. 2. Upper bound and lower bound of full DSTC cooperative relaying
system

set Ωij ∝ d−αij where dij is the distance between terminal i and
terminal j, and α is the path-loss exponent. In our work, α = 2

is used. Fig. 3 shows the effects on BER of full cooperative
relaying system in the case that r = 0.5 versus the change of
rr. We see that when rr = 0.1, the performance of the system
is the same as the ideal case, rr = 0, where there is no errors
in the inter-transmission between two relays. In fact, this case
represents the most popular one in reality, for example: as
dsr = 100m, we can choose without difficulty two relays so that
drr = 10m because normally, the distance between two relays
is small. Moreover, the performance of the system is not much
degraded until rr = 0.5. Otherwise, when rr →∞, i.e. rr = 1000

in Fig. 3, the performance of full DSTC cooperative relaying
system logically goes to that of DSTC cooperative relaying
system. Because, if the SNR of the relay-relay link is much
worse than that of the source-relay link, the data exchange
between two relays does not bring any gain in comparison
with DSTC cooperative relaying system. So, the results here
can illustrate the accuracy of the simulations.

Fig. 3. Effect of the distance between two relays with the relative distance
of relay, r = 0.5

C. Effect of the relative distance of relays

In this subsection, we take the effect of the relative distance
of relay into account, as illustrated by Fig. 4, in the case
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Fig. 4. Effect of the relative distance of relays on the performance of full
DSTC and DSTC cooperative relaying system in the case of rr = 0.1

of rr = 0.1. When the relative distance of relay is small,
i.e. r = 0.1, the performance gain of full DSTC cooperative
relaying system over DSTC cooperative relaying system is
not considerable. However, when the relative distance of relay
increases, that performance gain is much more significant. Fig.
5 shows the SNR gain of full DSTC cooperative relaying
system over DSTC cooperative relaying system at BER = 10−5

and rr = 0.1 as a function of the relative distance of relay,
r. The reference performance is the performance of DSTC
system in the case that r = 0.9. The average SNR gain of full
DSTC cooperative relaying system over DSTC cooperative re-
laying system is 3.8dB. The maximum SNR gain of full DSTC
cooperative relaying system obtained is 5dB in comparison
with DSTC cooperative relaying system when r = 0.5.

Fig. 5. The SNR gain of full DSTC cooperative relaying system over DSTC
cooperative relaying system at BER = 10−5 and rr = 0.1 with respect to
the relative distance of relay, r.

D. Effect of transmission synchronization error

As we know, a cooperative system suffers a large impact
from the lack of synchronization between distributed nodes.
It is no exception for full DSTC cooperative relaying sys-
tem and DSTC cooperative relaying system. Here, we face
with the transmission synchronization errors of the relay-
destination link. Using the same synchronization error model

Fig. 6. Effect of transmission synchronization error on full DSTC cooperative
relaying system and DSTC cooperative relaying system at the case of r = 0.5
and rr = 0.1.

as [9] in which the interference inter-symbol (ISI) is just
created by the four nearest neighbor symbols, the effect of
transmission synchronization error on full DSTC cooperative
relaying system and DSTC cooperative relaying system at the
case of r = 0.5 and rr = 0.1 is considered in Fig. 6. In this
simulation, the synchronization error δk, [9], is considered to
have a uniform distribution in [−∆T/2,∆T/2] with ∆T the error
synchronization range. We see that the performance of two
models is not much degraded until ∆T = 0.5. For full DSTC
cooperative relaying model, the performance becomes satu-
rated at ∆T = 0.7 while the performance of DSTC cooperative
relaying model goes to saturation at ∆T = 0.8.

V. DISCUSSION AND CONCLUSION

In this paper, a full distributed space-time coded protocol
for cooperative relaying model is proposed. High SNR gain of
full DSTC cooperative relaying system over DSTC cooperative
relaying system, as we illustrated in the above section, comes
at a price of decreasing bandwidth efficiency because of the
data exchange between two relays. Full DSTC protocol is,
therefore, suitable for applications of wireless sensor networks
(WSNs) where the most important constraint is not spectral
efficiency, but energy efficiency. On the other hand, as com-
pared to DSTC cooperative relaying system, full DSTC one
requires more complicated signal processing. However, it is
easier to synchronize the DSTC transmission from relays to
destination in full DSTC cooperative relaying system than in
DSTC cooperative relaying system by taking advantage of the
data exchange between two relays. Due to the data exchange
between two relays, we can add some information on the
synchronization at the Medium Access Control (MAC) layer
to synchronize the data transfer of two relays to destination.

In conclusion, this paper presents the advantages of full
DSTC protocol in comparison with conventional DSTC proto-
col in terms of BER performance. The lower bound and upper
bound on ASEP of full DSTC cooperative relaying system is
also derived. We showed that the average SNR gain of full
DSTC cooperative relaying system over DSTC cooperative
relaying system is 3.8dB and the maximum SNR gain is 5dB
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when the relay-relay distance is small and the relays are in
the middle of the source and the destination. In addition,
the performance of full DSTC cooperative relaying system
is not degraded so much when the relative inter-distance of
relays, rr, is below 0.5. Finally, the impact of transmission
synchronization errors of the relay-destination link is shown
to be not considerable as the error synchronization range is
below 50% of the symbol duration.

APPENDIX A
PROOF OF (14)

To obtain the lower bound ASEP using MGF-based ap-
proach, we need to find the MGF of Γ(v, t) = vt

v+t+1
, where v

and t are two independent random variables with the proba-
bility density function (PDF)

fv(v) =
1

v2
0

ve
− v
v0 (19)

ft(t) =
1

t0
e
− t
t0 (20)

The cumulative distribution function (CDF) of Γ(v, t) is
found for γ > 0 based on [10]

FΓ(γ) = 1−
2
√
γ2 + γ
√
p

(
1 +

γ

t0

)
e
−σ
p
γ
K1

( 2
√
p

√
γ2 + γ

)
−

2

p
(γ2 + γ)e

−σ
p
γ
K0

( 2
√
p

√
γ2 + γ

) (21)

where σ = t0 + v0, p = t0v0, and Kl(.) denotes the modified
Bessel function of the second kind with order l.

The PDF of Γ(v, t) is found by taking the derivative of FΓ(γ)

with respect to γ and using [11, Eq. 9.6.26]

fΓ(γ) =
2

p
√
p

(
−
( p
t0
− σ − 1

)
+
( σ
t0

+ 2
)
γ
)
e
−σ
p
γ
K1

( 2
√
p

√
γ2 + γ

)
+

2

p2

((2p

t0
+ σ

)
γ2 +

( p
t0

+ σ
)
γ
)
e
−σ
p
γ
K0

( 2
√
p

√
γ2 + γ

)
(22)

The moment generating function (MGF) is derived by using
its definition and using the change of variable γ → γ1 − 1/2

MΓ(s) =eα/2
[ 2

p
√
p

(( p
t0
− σ +

σ

2t0

) δJ0

δβ
+
( σ
t0

+ 2
) δ2J0

δαδβ

)
+

2

p2

((2p

t0
+ σ

) δ2J0

δα2
+

p

t0

δJ0

δα
−
σ

4
J0

)] (23)

where α = (σ − ps)/p, β = 2/
√
p and

J0 =

∫ ∞
1/2

e−αγ1K0

(
β
√
γ2

1 − (1/2)2
)

=
1

2c

[
e−

c
2E1

(α− c
2

)
−e

c
2E1

(α+ c

2

)] (24)

with c =
√
α2 − β2, Re{s} < σ/p + 2/

√
(p) and E1(.) the

exponential integral function defined as [11, Eq. 5.1.1]. Note
that J0 is derived by using the integrand in [12, Eq. 646].

Taking the derivative of J0 with respect to α or/and β with
the respective order, we can get

δJ0

δα
=−

α

4c3
(2 + c)e−

c
2E1

(α− c
2

)
+
e
−α
2

c2

+
α

4c3
(2− c)e

c
2E1

(α+ c

2

) (25)

δJ0

δβ
=

β

4c3
(2 + c)e−

c
2E1

(α− c
2

)
−

α

βc2
e
−α
2

−
β

4c3
(2− c)e

c
2E1

(α+ c

2

) (26)

δ2J0

δα2
=
α2

c5
(1 +

c

2
+

β2

2α2
+
β2c

4α2
+
c2

8
)e−

c
2E1

(α− c
2

)
+
α2

c5
(−1 +

c

2
−

β2

2α2
+
β2c

4α2
−
c2

8
)e
c
2E1

(α+ c

2

)
+

1

c4
(−

c2

2
− 3α)e

−α
2

(27)

δ2J0

δαδβ
=

1

c5
(−

3

2
αβ −

3

4
αβc−

1

8
αβc2)e−

c
2E1

(α− c
2

)
+

1

c5
(
3

2
αβ −

3

4
αβc+

1

8
αβc2)e

c
2E1

(α+ c

2

)
+

1

c4
(
α2

β
+
αc2

2β
+ 2β)e

−α
2

(28)
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