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Abstract—Trading off accuracy to the system costs is popu-
larly addressed as the word-length optimization (WLO) problem.
Owing to its NP-hard nature, this problem is solved using
combinatorial heuristics. In this paper, a novel approach is
taken by relaxing the integer constraints on the optimization
variables and obtain an alternate noise-budgeting problem. This
approach uses the quantization noise power introduced into the
system due to fixed-point word-lengths as optimization variables
instead of using the actual integer valued fixed-point word-
lengths. The noise-budgeting problem is proved to be convex
in the rounding mode quantization case and can therefore be
solved using analytical convex optimization solvers. An algorithm
with linear time complexity is provided in order to realize the
actual fixed-point word-lengths from the noise budgets obtained
by solving the convex noise-budgeting problem.

I. INTRODUCTION

Fixed-point representations of numbers are used ubiqui-
tously in modern electronic gadgets. Efficient design of fixed-
point operations have profound impact on the quality of
design. A well designed system in fixed-point arithmetic is
characterized by minimal cost of implementation while not
compromising on the quality of computation beyond certain
acceptable limits. This trade-off between accuracy and cost
has been played in order to achieve multiple design objectives
such as minimizing energy dissipation, reducing total area or
improving throughput of the system.

In spite of good understanding of the quantization effects,
designers often spend about 25% to 50% [1] of the design time
in striking a good compromise between the implementation
cost and the degradation of performance of the system. Ad
hoc optimization strategies are considered the main reason for
such delays. Moreover, the fixed-point refinement process is
an iterative optimization problem which is combinatorial in
nature and is considered NP hard [2].

As the focus of fixed-point refinement shifts from mere
utilization of available fixed-point platforms to the use of fixed-
point formats for improving system costs, several attempts to
solve the word-length optimization (WLO) problem have been
attempted. Solutions proposed in order to solve them have
been predominantly based on heuristics. With growing capacity
to crunch more transistors per unit area, the complexity of
systems being realised on silicon and embedded systems
continues to increase. The WLO of such systems requires that
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each of the variables (of which there may be thousands) be
assigned the right word-lengths. Indeed, existing algorithms
do not scale up to the challenge. The best known fast Min
+1 bit WLO algorithm [3] does not scale up with growing
problem size [4] and are in general regardless of achieving the
most optimal solution. Relevant background work and their
limitations are discussed in Section II.

In this paper, an attempt to address both scalability and op-
timality of the solution to a WLO problem is made and a near-
optimal solution to the word-length optimization (WLO) prob-
lem is obtained. The original WLO problem is transformed
to an alternative formulation: the noise-budgeting problem by
relaxing the integer constraint on the number of bits assigned
to fixed-point numbers. In Section III, conditions for convexity
of this problem are defined. The convex problem thus obtained
is solved using a convex solver to obtain noise budgets to each
of the optimization variables. In Section IV, the result obtained
from solving the noise-budgeting problem is used to realise the
fixed-point word-lengths that generates just as much quantiza-
tion noise as budgeted. In Section V, the proposed technique
is applied on several examples and the results obtained are
compared against the classical greedy algorithm: Min +1 bit
algorithm and concludes with a summary in Section VI.

II. BACKGROUND AND PREVIOUS WORK

Solving the word-length optimization problem requires
estimation of degradation in the accuracy of the system and the
total cost of the system measured by functions �(w) and C(w)

respectively. A system with m fixed-point operations has a
word-length vector w of length m whose values correspond to
the fixed-point word-lengths of each of the operations. There-
fore, the cost and performance estimation functions essentially
map the m-dimensional vector to a positive real number, that
is �(w), C(w) : Nm ! R+. The word-length optimization
problem of a fixed-point system targeting minimization of the
total cost of implementation is formally stated as

min (C (w)) subject to � (w)  �
obj

, (1)

where, �
obj

is the objective accuracy, i.e. maximum quantiza-
tion noise power above which the performance of the system
under consideration is not acceptable. To be precise, the WLO
problem described in Eq. 1 is the cost minimization problem
under specified performance constraint. It is equivalently pos-
sible to describe a performance maximization problem under
a given cost constraint. In this paper, the cost minimization
problem is chosen to emphasise the importance of meeting
certain performance criteria.
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The WLO problem defined in Eq. 1 presents a vast combi-
natorial optimization space (O(Nm

)) that needs to be explored
before arriving at optimal word-lengths. It may be noted here
that the solution space increases exponentially with increasing
size of the problem. The NP-hard nature [2] of the WLO
problem makes it difficult to guarantee optimality unless the
entire search space is explored.

The use of heuristics has been the primary technique for
solving the word-length optimization problem thus far. These
heuristics include greedy approaches [3] such as the popular
Min +1 bit and Max �1 bit techniques. Genetic algorithms
and simulated annealing approaches [5], [6] have also been
experimented with. One of the main problems with greedy
heuristics is that they are susceptible to be stuck in local
minimas. In [13], a mix and match of greedy heuristics are
explored to address this problem. The optimization algorithm
is based on simulated annealing procedure. This algorithm has
a good average case performance in terms of quality of the
solution but could be very time consuming in comparison with
classical greedy approaches.

In case of all such heuristic-driven algorithms including
the simulated annealing approach, increase in the number of
variables is known to cause an increase in the time taken for
solving the optimization problem. Also, it gets more difficult
to comment about the optimality with growing problem size.
Therefore, this problem is more visible when complex systems
with a large number of variables participate in the word-length
optimization problem.

In [7], an approximate but an analytical framework for
optimizing word-lengths are presented. The approach here is
to trace a Pareto-optimal trade-off curve and hence be able to
specify bounds on the achievable minimum system cost. In [8],
an analysis of the gradient-based greedy approaches is made by
applying the popular Lagrange Multipliers and the Marginal
Analysis technique is proposed for word-length optimization.
This technique is similar to the classical Min +1 bit algorithm
except that the precision bits are incremented starting from
0 bits instead of minimum number of bits. In [9], the same
problem is solved using Geometric Programming in order to
avoid negative bit assignments to word-lengths.

A common trait in the above said analytical techniques is
the assumption made to derive their performance and cost esti-
mation models. By relaxing the integer value constraint on the
word-length optimization variables, the classical word-length
optimization problem is transformed to a convex optimization
problem. The cost minimization problem is then written as

min

 
MX

i=1

c
i

w
i

!
subject to

1

3

X
p
i

2

�2wi  �
obj

, (2)

where w
i

is the number of bits corresponding to the ith signal,
p
i

is the path gain from the ith signal to the output and c
i

is the
cost of using w

i

bits for the ith signal. Clearly, the performance
function measures the mean square error with the zero mean
assumption and the cost function is proportional to the number
of bits assigned to every fixed-point operation.

Another common trait in the analytical approaches is that
the integer constraint on the number of bits w

i

assigned to the
ith signal is relaxed and are allowed to take on real values.

Due to this relaxation, the cost estimation function (objective
function) of the minimization problem in Eq. 2 is convex
when the weights are kept constant throughout the optimization
process. Also, due the monotonicity and the convexity of the
exponential function (2�wi ), the constraint function is also
convex.

It is important to consider the conditions under which the
objective and constraints of the problem described in Eq. 2 are
indeed convex.

A. The Objective Function

The proportionality to the number of fixed-point bits of
the cost function is based on the premise that each signal
emanates from a fixed-point operation and that each of them
is assigned one fixed-point format. This is a fairly simplistic
approach and the actual cost function is not so simple always.
In a more practical scenario, it is not possible to express the
cost function by scalar multiplication of weights as expressed
in the minimization problem in Eq. 2.

Even if this was to be possible, the cost weights (!
i

) need
not be the same for all possible word-length assignments. To
illustrate this, consider the cost of a binary operator such as a
two input adder. One way of implementing such a fixed-point
adder is to perform addition by using a full adder circuit with
as many bits as the maximum bits assigned to either inputs and
then discard the resulting bits either by truncation or rounding.
Suppose the average energy dissipated as a function of number
of bits is used as the cost metric. The total cost C

a

of using
such an adder circuit depends on the number bits assigned to
each of the inputs signals and it is written as

C
a

/ max(w1, w2), (3)

where / represents proportionality and w1, w2 are the word-
lengths assigned to the inputs of the adder. The objective
function is the sum of max() or in other words a convex
function of a convex function. So, although the cost function
in Eq. 2 is convex, it does not represent a realistic cost function.

B. The Constraint Function

There can be more than one quantization noise source along
a given path to the output. The noise contribution by each
fixed-point quantization noise source is not just a function of
that particular fixed-point word-length. Consider the data path
shown in Figure 1, the quantization noise power added by two
quantizers is shown in the statistically equivalent additive PQN
model.

q2
1

12

+ +

yQ2Q1

y

�q

x

x

Fig. 1. Quantization noise sources along a data-path

The amount of quantization noise added by the second
quantization in quantizer Q2: �

q

, does not depend on the
number of bits assigned at the output of Q2 alone. It is in
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deed a function of both quantization step sizes q1, q2 and is
given as

�
q

(q1, q2) =

⇢
q

2
2

12 � q

2
1

12 q2 > q1
0 otherwise.

(4)

Only when q1 << q2, the value of �
q

approaches the value
of q

2
2

12 .

Clearly, it is only under such conditions that the constraint
function in the minimization problem formulation in Eq. 2
can be approximated to be convex by ignoring the noise
contribution by the quantizer Q1. In practice, this can happen
in scenarios where the difference between two quantizers is
very large such as a data-path where a multiplier is followed
by an adder. In cases where the difference between the two
step-size is as small as 1 bit, ignoring the quantization noise
contribution by the first quantizer introduces an error of nearly
25% in the estimation.

In summary, the problem formulation as given in Eq. 2
would only work well if the quantization step sizes between
successive quantization are relatively large and the cost func-
tion was as simple as a bit-count. It fails to capture all the
nuances of the quantization dynamics with respect to both the
cost objective and the performance constraint functions.

III. THE NOISE BUDGETING PROBLEM

Each fixed-point operation can potentially be a source of
noise in the system. The word-length optimization problem can
be thought of as an attempt to budget the total quantization
noise power to each fixed-point operation. Using the noise-
power q

i

introduced into the system at the ith fixed-point
operation as the optimization variable, the noise budgeting
problem for minimizing the cost of implementation can be
written as

min(C(q)) subject to �(q)  �
obj

, (5)

where q = [q1, q2 . . . qM ] corresponds to the noise-power
injected into the system by M different operations used to
implement the fixed-point design.

The total cost is a simple sum of all the individual fixed-
point operator costs. Since the cost of each operation is
obtained as a function of the injected quantization noise power,
it becomes necessary to study the trade-off behavior cost and
noise-power of all types of operations in the sub-system for
various choices of fixed-point configurations. As the cost of
every fixed-point operation is non-negative, minimum cost of
the total system is obtained when the cost of each operation
is also minimized.
A. Operator-Level Trade-Off

In order to choose the Pareto-optimal cost, it is required
to profile both the given operation under consideration for all
possible fixed-point configurations. All basic operations used
in the design and implementation practices of signal processing
applications are simple with few inputs and outputs. Therefore,
an exhaustive exploration of basic operations is not costly.
Moreover, this exercise of characterizing operators needs to
be done only once for a given library (such as a standard cell
library) of fixed-point operations.

Energy dissipation cost of a fixed-point operator is obtained
by looking up from its hardware library. The total energy
dissipation cost of the given implementation E is obtained as

E =

DX

i=1

E

i

op

·ni

op

, (6)

where D is the number of different types of operations
qualified by their fixed-point word-lengths and E

i

op

is the
corresponding energy dissipation obtained by looking up the
library and ni

op

is the number of the ith type of fixed-point
operation.

The energy dissipation of binary adders and multipliers
with various fixed-point configurations is build on the targeting
the ASIC platform of 130nm. The energy consumption esti-
mates are obtained by using Prime Time from Synopsys [10]
and the estimates obtained are in Joules. A large, random input
test vector set which is uniformly distributed and which spans
the entire range of the assigned binary fixed-point range is
used. Therefore, the energy dissipation values corresponds to
the average energy dissipated.

10−14 10−12 10−10 10−8 10−6 10−4 10−2
0

0.2

0.4

0.6

0.8

1

x 10−11

Quantization Noise Power

Dy
na
mi
c 
En
er
gy
 D
is
si
pa
ti
on
 (
in
 J
ou
le
s)

 

 

Convex Hull
Exhaustive Search Points
Pareto Front

P3

P1

P4

P2

Fig. 2. Binary adder: cost vs. accuracy trade-off in the semilog scale

In Figure 2, all the points considered during an exhaustive
search of a binary adder are shown. The y-axis shows the
energy dissipation cost and the x-axis shows the quantization
noise introduced by the operation for each of the points
considered. An exhaustive search for all possible fixed-point
operations are performed in the range of 2 to 24 bits assigned
to the inputs and outputs of the adder.
B. Identifying Pareto front

The convex-hull is a convex polygon encompassing all the
points considered during the exhaustive search. This polygon
is drawn around the points plotted on a graph with linear scale
on either axes. In Figure 2, the logarithmic scale for x-axis is
chosen for the purpose of illustration and for clear visibility
of all points.

The choice of points that form the Pareto front should be
chosen such that they do not make sub-optimal choices. For
example, consider four points P1, P2, P3 and P4 as shown
in Figure 2. Although points P1 and P2 have the same noise
power, P2 is a Pareto point due to its lower cost. Similarly,
between P3 and P4 that have the same cost, P4 is the Pareto
point due to lower quantization noise-power. Hence, those
points that are closer to the origin are the ones representing the
minimum cost for a given quantization noise-power. The line
joining all such points mark the Pareto-front of the operation
under consideration.
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C. Relaxation for convexity

The Pareto-front boundary marked in Figure 2 is a contin-
uous line defined by �(q) as a function of quantization noise
power q. It is obtained by connecting successive points along
the convex-hull with straight lines. These lines also happen
to be the edges of the convex polygon. By definition of the
convex hull, the function �(q) which traces a piece-wise linear
curve is convex.

The value of quantization noise is discrete as the word-
lengths can only be assigned integer values in practice. The
idea here is to relax this constraint on q such that it can be
assigned any real value on the Pareto-front. Then, if  is the
minimum cost of the operator for any given q. The value of 
can be obtained by looking up the Pareto-curve and is given
as

 = �(q) (7)

The cost function in the minimization problem in Eq. 8 is
essentially the sum of individual operator costs. This cost
metric is applicable to the energy dissipation cost of hardware
designs in general. Given that the word-length optimization
exercise is performed at a very high level, it is impossible
to capture the impact of decisions such as scheduling and
resource binding that are taken very late in the design cycle
during high-level synthesis. The focus here is to use a first-cut
estimate of the general trends to arrive at optimal word-lengths.

D. Convexity of the noise budgeting problem

In order to use convex optimization techniques to solve the
minimization problem in Eq. 5, it is important to check if the
problem considered is indeed a convex optimization problem.
In the light of the previous section, minimization problem of
ith sub-system with N quantization noise sources can now be
written as

minimize

0

@
NX

j=1

�

i

(q
i

)

1

A
subject to �(q)  �

obj

, (8)

where �(q) is the total quantization noise at the output of the
system, obtained from Eq. 10 and �

obj

is the target accuracy
objective. The minimization problem is a convex optimization
problem if both objective and constraint functions are convex.

From first principles, a function f(x) is convex if the
domain dom(f) is a convex set and for all m,n 2 dom(f)
and ⌘ 2 (0, 1) the following relation holds [11]

⌘· f(m) + (1 � ⌘)· f(n) � f(⌘·m+ (1 � ⌘)·n) (9)

1) Performance Evaluation Function: Using the linear
noise propagation model described in [12], the total noise
power at the output of the system is the sum of all quantization
noise powers scaled by their respective path gains. The total
noise at the output of the system as a function of the noise
power vector q is given as

�(q) =

NX

i=1

�
i

�2
i

| {z }
�

2

+

 
NX

i=1

↵
i

µ
k

!2

| {z }
µ

2

, (10)

where �
i

and µ
i

are the variance and the mean of the
quantization noise power q

i

generated by the ith operation. �
i

and ↵
i

are constants derived from the path function between
ith operation and the system output. The function �(q) is a
function of all the noise-power generated within the system.

Let q�
i

be the standard deviation of the quantization errors
and qµ

i

=

p
µ
i

of the ith operation. The noise source q
i

consists of contribution from the respective variance and mean
components as

q
i

= q�
i

+ qµ
i

= �2
i

+ µ2
i

(11)

The total quantization noise power function �(q) at the output
of the system can also be split into two and expressed
as the sum of two functions ��

(q�

) and �µ

(qµ

), where
q�

= [q�1 , q
�

2 . . . q�
N

] is a vector of the noise source components
corresponding to contribution by noise variance component
and qµ

= [qµ1 , q
µ

2 . . . qµ
N

] is a vector of noise contribution by
the mean component. The total noise-power as a function of
the mean and variance components of the fixed-point operation
noise-sources is written as

�(q) = ��

(q�

) + �µ

(qµ

)

=

NX

i=1

�
i

q�
i

+

 
NX

i=1

↵
i

q
qµ
i

!2

=

NX

i=1

�
i

q�
i

+

NX

i=1

NX

k=1

↵
i

↵
k

q
qµ
i

qµ
i

(12)

If the function �(q) is convex, it has to satisfy the condition
for convexity in Eq. 9. The expression corresponding to the
right-hand-side (RHS) of the convexity condition is written as

�(⌘m+ (1 � ⌘)n) =

NX

i=1

�
i

(⌘·m�

i

+ (1 � ⌘)·n�

i

) +

NX

i=1

↵
i

q
(⌘·mµ

i

+ (1 � ⌘)·nµ

i

)·

NX

k=1

↵
k

q
(⌘·mµ

k

+ (1 � ⌘)·nµ

k

),

(13)

where m = [m1,m2, . . . ,mN

] and n = [n1, n2, . . . , nN

]

are two combinations of the quantization noise power source
vector q such that it is an optimal solution to the noise
budgeting problem for two corresponding accuracy constraints
�m

obj

and �n

obj

respectively. The gain �
i

= E[h2
i

] is the
expectation of the impulse response of the path function
from the ith source to the output. Therefore, �

i

cannot be
negative. The square-root operation for the mean part makes
the noise estimation function non-convex. Therefore, in general
the constraint function is not convex. In the case of convergent
rounding mode, the mean of the quantization noise is exactly
zero. It is very close to zero even if it is the case of simple
rounding mode. That is, the noise contribution due to the mean
is either zero or is negligibly small in the rounding. In such a
scenario, continuing with evaluation of the expression in Eq. 13
it can be written as

�(⌘m+ (1 � ⌘)n) = ⌘

 
NX

i=1

�
i

m�

i

+

!
+ (1 � ⌘)

 
NX

i=1

�
i

n�

i

!

= ⌘·�(m) + (1 � ⌘)·�(n) (14)
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Therefore, it can be concluded that the accuracy evaluation
function in the rounding case is not only convex but is also
affine. Considering the result in Eq. 14, the technique described
henceforth is strictly applicable only to quantization carried out
in the convergent rounding mode. However, as the magnitude
of rounding is very small in the simple rounding case, this
result approximately holds true even for simple rounding
mode. In the truncation mode, the noise power contribution by
the mean component is comparable to the variance component.
Therefore, this proposal is not applicable for truncation mode
quantization.

2) Cost Function: In this section, the cost function defined
in Eq. 8 will be proved to be a convex function. The function
�(x) is obtained by an exhaustive profiling of the operator
and considering the Pareto-front obtained by constructing a
convex polygon around the points thus obtained on the cost
vs. accuracy axes. Therefore, it is convex by definition. The
convexity of the function 

i

= �

i

(q
i

) for every operation i
implies that

�

i

(⌘· qm
i

+ (1 � ⌘)· qn
i

)  ⌘·�
i

(qm
i

) + (1 � ⌘)·�
i

(qn
i

)

(15)

Now, consider evaluating the right-hand-side of Equation 9
with respect to the cost estimation function C(q).

C(⌘m+ (1 � ⌘)n) =

NX

i=1
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i

(⌘qm
i

+ (1 � ⌘)qn
i

)


NX

i=1

⌘�
i

(qm
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) + (1 � ⌘)�
i
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)

= ⌘

NX

i=1
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(qm
i

) + (1 � ⌘)

NX

i=1

�

i

(qn
i

)

= ⌘C(m) + (1 � ⌘)C(n) (16)

Therefore, the cost function at the sub-system level is convex.
Summarizing results obtained in Eq.13 and Eq.16, it can be
concluded that when rounding mode quantization is used, the
noise-budgeting problem defined in Eq.8 is convex.

IV. WORD-LENGTH OPTIMIZATION ALGORITHM

Using the relaxation technique discussed in the previous
section, the problem of cost minimization subject to accuracy
constraint of a fixed-point system is relaxed to obtain a
convex optimization problem. In this section, a word-length
optimization algorithm described in Algorithm 1 that captures
the various steps of the relaxation process in order to use
standard convex optimization solvers and apply the result thus
obtained to determine the actual word-lengths is presented.

The first step in solving the word-length optimization
problem is to obtain the data flow graph S(V,E) consisting
of V nodes and E edges by calling the function GetSys-
temGraph(). The graph S is a directed graph with one node
corresponding to every operation, the edges connect them and
point in the direction of the data-flow in the algorithm. The
various types of operation are enumerated for studying the cost
and accuracy trade-off behavior. The function ExtractOpera-
torPoints() conducts an exhaustive search of the operator and
returns all the feasible operating points to be stored in the op-
erator database DB. As described in Section III-C, the convex

Algorithm 1 : Word-length Optimization
1: S

i

(V,E) = GetSystemGraph()
2: N

t

= GetOperatorTypes(S
i

(V,E))
3: for all n

i

Operator types n
i

2 N
t

= [n1, n2, . . . , nt

] do
4: DB

j

= ExtractOperatorPoints(n
i

, Wd
Min

, Wd
Max

)
5: �

j

= GetConvexParetoFront(DB
j

)
6: end for
7: C

i

= GetCostExpression(S(V,E)) \⇤ Sum of operator costs
⇤\

8: �
i

= GetNoisePowerExpression(S(V,E))
9: P = ConstructNoiseBudgetingProblem(DB,�

obj

,C
i

, �
i

)
10: q̄

opt

= Solve(P)
11: ¯Wd

opt

= GetFinitePrecisionWordlengths( ¯Wd
in

, q̄
opt

, q̄
opt

,
P
obj

,DB)

Pareto-front �
i

of every type of operation is deduced from the
trade-off points by the function GetConvexParetoFront().

Analytical expressions for the sub-system cost and noise
power are determined by calls to functions GetCostExpres-
sion() and GetNoisePowerExpression() respectively. Noise-
budgeting problem P is expressed using the standard optimiza-
tion modeling language such as “CVX”. The procedure Solve()
uses a standard solvers such as “SeDumi” or “SDPT3” (used
in this paper) to solve the minimization problem P. Solving
the convex optimization problem, the minimum cost of imple-
mentation is obtained such that the performance constraint is
satisfied. The values of noise powers of each operation which
gives the minimum cost are obtained in the vector q̄

opt

. The
individual operation cost can be deduced by performing an
inverse of the operator level Pareto curve (i.e. �

i

(q
i

) for the
ith operation). In the final step, the procedure GetFinitePreci-
sionWordlengths() realises the budgeted optimal noise-power
using fixed-point operations.

A. Realising Noise-power Using Fixed-Point Operators

The value of q
i

obtained as a solution to P lies on the
pareto-front of each operation. If the optimal noise-power
suggested by the convex optimization solver coincides with
one of the feasible points in the operator data-base, the operator
precision at its output is precisely found. If that is not the case,
the nearest feasible point is chosen such that it does not affect
the sub-system output accuracy constraint greatly.

The process of resolving the solution lying on the Pareto-
optimal curve to obtain the actual word-length in case of an
adder is shown in Figure 3.

Consider a particular case of the adder where the quan-
tization noise assigned by the convex optimization process
is 3 ⇥ 10

�4. The minimum cost as attained by the convex
optimization algorithm is obtained by calculating the inverse of
the convex-Pareto curve as C

cvx

= �(3⇥ 10

�4
). Clearly, this

is not a feasible point. Further, suppose the input constraints
to this operation is (7, 7) (i.e. both inputs are quantized by
7 bits). With the input constraints applied, it is clear that
the trade-off point must lie on the vertical line corresponding
to the input constraints (7, 7). After translation, the cost of
the operation is C

constraint

. The point is still non-feasible as
fractional word-length assignment is not possible. Therefore,
the nearest feasible point satisfying the noise-power constraint
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Fig. 3. Finding feasible operating points

is chosen. Two points (7, 7, 4) and (7, 7, 5) exist in the vicinity
corresponding to this quantization noise-power.

Here, the cost C
cvx

< C774 < C
constraint

< C775. Clearly,
C

cvx

is not a feasible choice. The choice of the point C775

satisfies the budgeted quantization noise power but the cost
incurred in the process is higher. On the other hand, the choice
of point C774 does not satisfy the quantization noise-power
constraint.

Among the two options, it is safe to take a conservative
approach keeping in mind the accuracy satisfiability condition.
An algorithm which always makes the conservative choice for
word-length determination is presented in Procedure 1a.

Procedure 1a : GetFinitePrecisionWordlengths()
1: T (V ) = TopologicalSort(S

i

(V,E))
2: for all v

i

2 T (V ) do
3: DB

i

= GetOperatorDB(v
i

)
4: [Wd

i

] = LookupDB(DB
i

, qi
opt

, ¯Wd
i

in

)
5: end for

In order to satisfy the input constraints and the propagation
of bit-widths across operators, it is important that all operations
in the sub-system graph is topologically sorted such that
the operation whose input constraints are already known are
considered first. Resolving the output fixed-point bit-widths of
these operations in turn generates the input constraints for the
successive operations.

The function GetOperatorDB() returns the database cor-
responding to the given operator type. The conservative choice
of word-lengths is made using the function LookupDB().
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Fig. 4. Propagating bits across noisy operators

In the light of Procedure 1a, consider determining the
word-lengths of the operators in the graph shown in Figure 4.

The input constraints to the sub-system are user defined. Thus,
the bits b1, b2, b3, b4 in the Figure 4 are user given. The
values of the noise contribution q1, q2, q3 of three operations
are obtained by solving the convex optimization problem.
In order to realise the noise-power q1, two feasible points
q
b1,b2,b

l
a1

and q
b1,b2,b

h
a1

around the value of q1 represents
the greater and smaller fixed-point word-length assignments
possible respectively. The actual choices made is marked along
the tree shown in Figure 5. In this figure, the word-length
option chosen are indicated by taking the left edge at any
node. On the contrary, if the right edge were to be chosen
consistently, the right most node would have been the choices.
It is clear that the optimum choice for fixed-point word-lengths
lies somewhere between choosing the left edge or the right
edge.
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Fig. 5. Choosing the left-edge always

B. Complexity Analysis

In the classical min +1 bit WLO algorithm, the fixed-
point operation is free to take on any of the N fixed-point
word-lengths. So, the combinatorial search space defined by
m variables consists of as many as Nm different unique
combinations. In the proposed noise budgeting problem, the
relaxed cost vs. performance curve for every fixed-point oper-
ation is used to determine the optimal noise-budgets such that
the cost of the system on the whole is minimum. Therefore,
the search space of the noise-budgeting problem is reduced
to an m-dimensional real space: Rm. The convex solver uses
one of several algorithms with polynomial time complexity
such as [14] for solving the convex optimization problem.
The solution thus obtained provides a technique to propagate
the word-lengths from input to the output of the system
while satisfying the budgeted noise. In Algorithm 1, every
operation node, there are two choices available dictated by
the input constraints and the noise-budget assigned. Thus,
while performing the near-optimal word-length optimization
procedure, the complexity of the search space is reduced to
O(2

m

).

This reduction is by a factor of N

2

m.When both N and m
are large, the reduction in search space is of several orders in
magnitude. The choice of a conservative word-length at every
stage corresponds to the left-edge traversal of the graph. The
complexity of the word-length assignment needs to count the
time required for a topological sort and a one time traversal on
such a sorted list. Therefore, the proposed word-length opti-
mization algorithm has a complexity of O(m). This complexity
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is lesser than the non-linear complexity [14] of the convex
solvers. Therefore, it can be concluded that the proposed
technique for WLO has a polynomial time complexity.

C. Comparison with previous work

In the proposed approach, the Pareto-front of the fixed-
point operation is relaxed instead of relaxing the variables of
the original problem to construct the convex noise-budgeting
problem. As a consequence, the actual noise introduced into
the system is decoupled with the actual generation of such
errors. It is therefore possible to genuinely work with a
noise model abstraction without making approximations to the
performance estimation function. The performance function
in the case of rounding quantization is shown to be linear
(and hence convex). The inclusion of non-zero mean errors
makes the problem non-convex. This limitation is also present
in previous works discussed in Section II and is reflected in
the way the performance function is constructed in those.

The Pareto-front is convex by definition as it is obtained
by constructing a convex hull around all feasible trade-off
points for a given fixed-point operation. The cost function
is also convex by the way it is defined ( as a sum of
individual operator costs). Therefore, as long as the actual
noise introduced into the system is zero mean, and it is not
expensive to invest in a one time effort for deriving the Pareto-
front of fixed-point operations, the generality of the proposed
technique is not compromised.

V. RESULTS

In order to illustrate the efficacy of the proposed word-
length optimization method, it is imperative to showcase its
scalability and usability in different scenarios. In this paper,
the radix-2 FFT algorithm is chosen to illustrate the scalability
of the algorithm and the QR decomposition of a given matrix
using CORDIC rotations is considered to illustrate the usability
of the algorithm. It may be noted that these signal processing
blocks are used in a number of popular communication al-
gorithms such as MIMO/ OFDM based systems. The time
taken and the quality of results obtained by application of
the proposed convex optimization and the Min +1 bit greedy
heuristic are compared.

A. Characterizing Operations

In order to apply the proposed convex optimization tech-
nique, different fixed-point operations need to be exhaustively
characterized and the Pareto-front of each of these operations
are to be obtained. The binary adder and the binary multiplier
are most commonly used in the design of signal processing
systems. In case of LTI (linear, time-invariant) systems, a
number of constant multipliers are encountered. So, it is
important to characterize each constant multiplier for different
input and output fixed-point formats. The range of fractional
bits assigned to the adder and multipliers is chosen to be
between 2 and 24 bits for these experiments.

The QR decomposition consists of several CORDIC op-
erations in vector and rotation modes [15]. The CORDIC
operation consists of several additions and scaling operations
and is also followed by decision in both modes. The presence
of decision operation makes it difficult to arrive at an analytical
formula for the error due to quantization at the output of
one CORDIC operation. However, the simulation of CORDIC

operations in both vector and rotation modes is not complex.
Therefore, CORDIC operations are considered to be one
among basic operations such as adders and multipliers in this
work.

B. Optimization with CVX

The main task here is to write the routines for evaluating
performance and cost evaluation as a function of the vector
q in each case. It has to be written such that an analytical
expression can be constructed by the CVX environment as it
parses the convex optimization problem. A detailed guide for
this coding style is given by the authors of CVX in [16].

Once the optimal noise power distribution is available, the
assigned quantization noise is realised using the procedure
described in Section IV. The total quantization noise and the
cost is evaluated after all the operations have been assigned
a fixed-point format. These experiments were realised using
MATLAB. While the Min +1bit algorithm takes of the order
tens of minutes time, the proposed approach finishes in less
than a minute even in the case of FFT-64 (with 576 variables).
The results corresponding to FFT and QR decomposition
algorithms are presented below.
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Fig. 6. Comparisons: cost of implementation
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Fig. 7. Comparisons: performance achieved

The relative cost of fixed-point system obtained using the
Min +1 bit algorithm and by application of the proposed noise-
budgeting framework are depicted in Figure 6. Clearly, the
proposed approach out-performs the Min +1 bit algorithm.
The cost improves with the system size in case of the FFT
algorithm. The QR algorithm is executed on a 4⇥4 matrix (typ-
ically representing 4 ⇥ 4 MIMO channel coefficients) and the
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optimization is performed using Pareto-fronts of the CORDIC
operator. Therefore, the number of optimization variables in
the QR algorithm is reduced to 18 which is very small and
hence the minimum cost achieved is comparable with that of
the Min +1 bit algorithm.

The actual quantization noise achieved by both the pro-
cesses is shown in Figure 7. The desired quantization noise
power generated by the fixed-point design is set to 100%. The
actual quantization noise power is achieved and it is usually
lower than the desired noise power. In all the cases shown in
Figure 7, the quantization noise power target is nearly reached
by the convex optimization framework. Whereas, the classical
approach tends to over-optimize. This is due to the fact that
the classical approach moves from one fixed-point format to
the next and thereby accruing sub-optimality in every iteration.

The use of Pareto-front for optimization and then searching
for the fixed-point solution in the locality of the solution plays
a key role in achieving the improvement in cost. The greedy
heuristic latches onto a feasible point in every iteration. Some
choices made during early iterations can cause a cascading
effect and the choice of word-lengths could become grossly
sub-optimal. It is impossible to determine whether a subopti-
mal choice during one of the iterations would help approach
a better choice closer to optimality. On the other hand, in the
convex optimization approach, the Pareto-front is used and
the actual fixed-point determination is carried out as a final
step. By then the actual quantization noise power from each
of the sources is well established. It has to be noted here
that if fractional word-length assignments were to be possible,
then the solution obtained by the convex optimization problem
solver is truly optimal. The sub-optimality factor creeps into
the proposed convex optimization framework when the noise
power is realised as fixed-point operators. In this paper, a
conservative approach is chosen to determine the word-lengths
as suggested in Section IV.

VI. CONCLUSION

In this paper, a convex optimization based approach is
proposed for solving the word-length optimization (WLO)
problem. An alternate problem fomulation: the noise-budgeting
problem corresponding to the given WLO problem is obtained
by relaxing the integer constraint on word-length assignments.
By using an exhaustive search of the basic operations in-
volved, a convex Pareto-front is obtained for each of the basic
operations used in the system. The noise-budgeting problem
is expressed using the CVX [16] tool. A general purpose
convex solver such as “SeDumi” or “SDPT3” is used to arrive
at optimal noise budgets for each fixed-point operation. An
algorithm whose complexity is as low as O(n) is proposed
for realising the assigned quantization noise budgets for cor-
responding fixed-point operations. The proposed approach for
solving the WLO problem derives advantage from fast convex
solvers which are way faster than iterative combinatorial
solvers. Therefore, the proposed technique scales well with
growing optimization problem size. Realising the noise bud-
gets obtained by solving the noise-budgeting problem requires
to explore a search space of O(2

m

). This is a huge reduction in
comparison to the search space of the original WLO problem
which is O(Nm

). The shrinkage in search space is several
orders of magnitude in practical cases. Therefore, this approach
tends to perform better in comparison to greedy heuristics

with growing system sizes (large m). Indeed, a branch-and-
bound algorithm instead of the conservative approach could
potentially lead to a better choice which could be much closer
to optimality. In this paper, the proposed technique for WLO is
applied on two algorithms: FFT and QR decomposition used
commonly in wireless communication and signal processing
applications. The results obtained suggest improvement in
the cost achieved measured in terms of the systems energy
efficiency. The time spent on optimization is also reduced due
to the use of analytical convex solvers and the low complexity
algorithm for translating the noise budgets to fixed-point word-
lengths.
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