
Communication-Based Power Modelling for
Heterogeneous Multiprocessor Architectures

Baptiste Roux∗, Matthieu Gautier†, Olivier Sentieys∗, Steven Derrien†
∗Inria, Irisa, University of Rennes 1, France
†University of Rennes 1, Irisa, Inria, France

Email: baptiste.roux@inria.fr

Abstract—Programming heterogeneous multiprocessor archi-
tectures is a real challenge dealing with a huge design space.
Computer-aided design and development tools try to circumvent
this issue by simplifying instantiation mechanisms. However,
energy consumption is not well supported in most of these
tools due to the difficulty to obtain fast and accurate power
estimation. To this aim, this paper proposes and validates a
power model for such platforms. The methodology is based
on micro-benchmarking to estimate the model parameters. The
energy model mainly relies on the energy overheads induced
by communications between processors in a parallel application.
Power modelling and micro-benchmarks are validated using a
Zynq-based heterogeneous architecture showing the accuracy of
the model for several tested synthetic applications.

I. INTRODUCTION

The design of embedded systems is facing two conflict-

ing challenges. Applications (e.g., telecommunications, mul-

timedia) require increasingly computation power to follow

consumer requirements, while the same have, by definition,

limited power budget and their autonomy is a commercial

stake. In recent years, the advent of Multiprocessor System-on-

Chip (MpSoC) architectures allowed for a gain at both levels.

The simplification of processor cores brought improvement

in power consumption per operation, while the multiplication

of cores brought improvement in performance. Furthermore,

advances in silicon technologies came with an increase of inte-

gration densities, while the advent of the dark silicon issue [1]

led to the integration of specialized hardware accelerators,

such as Field-Programmable Gate Array (FPGA), and to the

rise of Heterogeneous MpSoC (HMPSoC).

HMPSoCs are a new class of architecture which intro-

duces complex and hard-to-solve issues on software/hardware

partitioning and task mapping, therefore leading to a huge

design space. Consequently, when energy consumption is a

key requirement of the application, this solution space must

be explored, early in the design phase, with a fast and accurate

power estimation tool.

Power modelling is not a new topic. The need for power

estimation tools for complex processor architecture design

led to the development of Wattch [2] and its successor

McPAT [3]. These tools are modelling frameworks, which

take micro-architectural and technology information into ac-

count to build an architecture power model. Timing and

power consumption parameters can be extracted and used

as inputs of architecture simulators, such as [4][5][6]. This

combination of tools requires the cycle accurate simulation

of application execution to compute their power consumption.

In [7] Schürmans et al. propose an electronic system level

power modeling approach that raises the required simulation

accuracy to transaction level modeling. The time spent for

those power estimations is directly linked to the application

size, and remain prohibitively high. Other power modelling

tools were introduced with the aim of raising the abstraction

level to lower the computational complexity of the estimation.

In this perspective, [8] and [9] proposed to model architectures

at instruction-level or at functional-level respectively. These

approaches reduce the computation time with a low penalty

on accuracy. However they can not be directly applied to

multiprocessor architectures. Kahng et al. [10] introduce a

Network-on-Chip (NoC) model that could be combined with

the previous tools to fulfill this gap. Rethinagiri et al. [11]

proposed a fast virtual platform emulation to address power

estimation in multiprocessor systems. It combines a functional-

level power analysis with a fast platform simulator to compute

application power consumption.

All theses approaches require one simulation per version

of the application, which still leads to long estimation time,

and they can therefore not be applied to a fast task map-

ping process when HMpSoC architectures are targeted. The

aim of this paper is to propose a fast and accurate power

modelling framework able to compute, for each mapping

solution, the power consumption with no extra development

delay. To answer the above challenge, this paper introduces

a communication-based power model that addresses a wide

range of heterogeneous architectures. Indeed, when comparing

two different parallel application mappings over a HMpSoC

architecture, their energy consumption mainly differs from the

communication cost and the static power. The contributions of

the paper are the followings:

• a new power model of HMpSoC architectures mainly

based on the communication cost between processors,

• a methodology based on micro-benchmarking for esti-

mating the model parameters,

• a validation of the proposed power modelling framework

on a real and representative hardware platform: the Zynq

architecture from Xilinx.

This paper is organized as follows. Section II introduces

HMpSoC architectures and defines a generic model based on

2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

978-1-5090-3531-1/16 $31.00 © 2016 IEEE

DOI 10.1109/MCSoC.2016.27

209

(a) HMpSoC architecture (b) Memory hierarchy as an oriented tree.

Fig. 1: Generic representation of a HMpSoC.

inter-task communications and memory hierarchy structures.

Section III presents the core of our power model. Section IV

shows how to determine the parameters of our power model

using micro-benchmarks running on HMpSoC architectures.

Section V presents the validation of the model on a real

HMpSoC architecture using the Zynq platform from Xilinx.

Finally, conclusions are given in Section VI.

II. HETEROGENEOUS MULTIPROCESSOR ARCHITECTURES

A. Generic architecture
MpSoCs are generally composed of a set of memories, pro-

cessors, interconnecting elements and I/O peripherals. When

associated with specialized hardware accelerators, MpSoC are

referred to as heterogeneous, in the sense that they combine

software (SW) processors with hardware (HW) accelerators. A

generic representation of a HMpSoC is formalized and shown

in Fig. 1a. This HMpSoC architecture is built around clusters

linked together through NoCs. Each cluster is composed of

up to N SW cores coupled with HW accelerators of size

S. At the cluster level, the communications occur through

shared memory banks. From this description, different families

of HMpSoC can be build depending on the mapping of the

integrated HW area in the architecture. When it is placed at the

processor level in each cluster (S �= 0), Distributed HMpSoC
are obtained. They enable fast communication between the

SW and HW parts. Consequently, the maximum area of a

hardware accelerator is reduced. When the HW area is placed

at the cluster level, two cluster types are involved: the SW

one with N �= 0 and S = 0 and the HW one with N = 0
and S �= 0. HW area is therefore shared between SW clusters.

These Shared HMpSoCs induce an increase in communication

time and latency between the SW and HW parts. On the

other hand, the total HW size could increased and sharing

the accelerators between SW clusters becomes possible.
This generic architecture has been extracted from the study

of three representative and commercially available architec-

tures with multiprocessor and/or heterogeneous features as

described below. As communications mainly rely on the

memory hierarchy of the architecture, the memory hierarchy

will be particularly reported.

a) Kalray MPPA: Kalray’s Massively Parallel Processor

Array (MPPA) architecture [12] is a homogeneous MpSoC

which is mainly composed of 256 VLIW (Very Long Instruc-

tion Word) processors gathered into 16 clusters. All clusters

are linked together through two NoCs, one with low bandwidth

for control information and one with high-bandwidth for

data communications. External communications are managed

through four I/O clusters. Each cluster contains 16 5-way

VLIW processors and NoC interface. On each side of the

cluster array, an I/O cluster provides access to external Double

Data Rate (DDR) memory banks and to PCIe and Ethernet

interfaces.

b) Tilera TileGx: The TileGx architecture [13] includes

from 36 to 72 tiles, each tile being composed of a 3-way 64-

bit processor with 3-level cache memory. Tiles are connected

together through an iMesh NoC. This architecture can be

extended by connecting multiple chips through a shared DDR

memory or Ethernet interfaces. Including hardware accelera-

tors, such as some Field-Programmable Gate Array (FPGA),

establishes a shared HMpSoC architecture.

c) Xilinx Zynq: The Zynq architecture from Xilinx [14]

is representative of heterogeneous targets as it combines two

ARM cortex A9 processors with an FPGA fabric. The Zynq

computation cores communicate through different memory

levels: L2 cache and DDR. Each level can be accessed from

two channels: one for SW and one for HW. Furthermore,

synchronization and configuration communications can occur

from a dedicated channel without memory bank access. A

distributed HMpSoC can be built using Zynq chip as a target

cluster, Zynq chips being connected together through Ethernet

interface.

210

(a) Task graph. (b) Target HMpSoC memory hierarchy.

Producer Consumer Memory Bank Used

1 2 Cluster Memory A

1 3 SW Memory A

1 4 NoC

2 5 NoC

3 6 NoC

4 5 SW Memory B

4 6 Cluster Memory B

(c) Upper communication channels needed.

Fig. 2: Example of communication channel extraction for a 6-task application.

B. Memory tree abstraction

The memory hierarchy of a HMpSoC can be classified in

three main levels: network, cluster, and core. A representation

of this memory hierarchy as an oriented tree, equivalent to

Fig. 1a, is shown in Fig. 1b. Each level contains sublevels,

with the following properties:

• At the network level, sublevels are separated such that

each sublevel can be used independently.

• At the cluster level, sublevels are mixed such that sub-

levels are chained but can be accessed at each sublevel.

• At the core level, sublevels are chained. Accessing sub-

level at depth L crosses the L− 1 upper sublevels.

To describe precisely a target architecture, the characteristics

of each memory class have to be defined. Important parameters

that need to be measured are the energy and the time required

to transmit a given number of bytes through each edge of

the memory hierarchy oriented tree. A method that provides

the identification of those parameters on real hardware archi-

tectures is described in Section IV. This generic architecture

and memory abstraction will be used to derive the proposed

communication-based power model.

C. The need for a communication-based power model

A fast power model for task mapping exploration is pro-

posed in this paper based on a memory-centric view of

heterogeneous architectures. Considering an application which

can be perfectly parallelized, its execution on multiple threads

distributed on multiple processors reduces the execution time

but not the total amount of computation. Computations are

equally distributed between the processors and therefore the

amount of computation can be considered as independent

of the parallelism degree. However, when multiple threads

are computed in parallel, the amount of communications and

synchronizations is directly linked to the number of execution

threads.

Assuming that each thread is executed on the same type

of target processor, the energy consumed for executing the

application in its sequential and parallel versions solely differs

from the communication cost (and slightly from the static

power). Therefore, a power model which is able to evaluate

the communication cost and execution time to quickly derive

the power consumption of a parallel application, is essential

for a fast design exploration of the mapping space. In this

paper, we propose and validate a communication-based power

model, suitable for HMpSoC, with a fine-grained resolution

and a low computational cost.

III. COMMUNICATION-BASED POWER MODEL

The energy consumption of an application executed on a

heterogeneous multicore architecture depends on three main

sources: the dynamic energy consumption used for computa-

tions, the static energy dissipated during execution time, and

the energy used for communications between processing cores.

Any parallel applications can be divided into NTk concur-

rent computational tasks that could be executed in parallel.

Those tasks, represented as nodes, are linked together into

a graph, where edges depict communications between tasks.

Execution of tasks is atomic: synchronization mechanisms and

IO accesses are held on communication edges. For each pair of

tasks, the amount of required communications is considered as

known. As the content of these tasks is sequentially executed,

each computational task Tkk contains the same amount of

computations regardless of its mapping in the task graph.

Thereby the energy used for computation in each task could be

calculated as well as its execution time. After calculation of

these values, the task mapping space begins to be explored

over the NTk tasks. For each graph corresponding to a

mapping solution, the total energy Et is

Et = Estat +
∑

k∈NTk

Ecomp(Tkk)

+
∑

(i,j)∈N2
Tk

Ecom(Tki, Tkj),
(1)

where Estat is the static energy consumption, Ecomp(Tkk) is

the energy of computations in task Tkk and Ecom(Tki, Tkj)
is the energy used for communication between tasks Tki
and Tkj .

A. Computation energy cost

The energy consumption Ecomp(Tkk) of each computation

task is supposed to be known. In the case of heterogeneous

211

architectures, Ecomp(Tkk) is computed for each kind of

available computational cores. Since this step is executed only

once, the estimation time required by the power evaluation

tools is not an issue. In the experiments, theses values will be

directly measured on the real SW/HW execution.

B. Communication energy cost

Depending on the task mapping, the communications be-

tween tasks depend on their allocation to a specific memory

hierarchy level. For example, the task graph represented on

Fig. 2a, composed of six tasks with two of them being

hardware (HW) compatible, is considered. This task graph is

mapped over the target HMpSoC shown on Fig. 2b, which

is composed of two clusters connected through a one-channel

NoC. Each cluster contains two software (SW) cores and one

hardware core, associated with a two-level memory hierarchy.

Following the task mapping, the memory bank used for

each communication flow can be inferred. Fig. 2c shows the

communications needed for our example.

When communications are mapped into memory, a solving

function can be used to compute the communication cost. Let

C(Tki, Tkj) be the set of communication channels crossed

from task Tki to task Tkj via the required memory bank.

The communication energy can be expressed as

Ecom(Tki, Tkj) =
∑

c∈C(Tki,Tkj)

e0c + e1c × bytes(Tki, Tkj),

(2)

where e0c and e1c are energy parameters of the cth crossed

channel. bytes(Tki, Tkj) returns the number of bytes com-

municated from Tki to Tkj .

In the same way, the communication time Tcom can be

computed as

Tcom(Tki, Tkj) =
∑

c∈C(Tki,Tkj)

t0c + t1c × bytes(Tki, Tkj),

(3)

where t0c and t1c are the crossed channel time parameters.

Section IV introduces a method to determine those parameters

for a target architecture.

C. Static energy cost

Once the execution time of each computation task and each

communication is determined, the overall execution time Texec

can be computed as the critical path in the mapping graph

weighted with execution time of computation and communi-

cation. Then, the static energy consumption can be deduced

as

Estat = Texec × Pstat, (4)

where Pstat is the static power consumption that could be

measured with the micro-benchmark based method presented

in the next section.

IV. MODEL PARAMETER ESTIMATION USING

MICRO-BENCHMARKS

The proposed communication-based power model relies on

HW parameters of the target architecture that are not neces-

sarily provided by chip manufacturers. This section presents a

method that enables the extraction of each of those parameters

on real hardware multicore architectures.

A. Micro-benchmarking

The proposed methodology relies on the use of micro-

benchmarks (μbench). A micro-benchmark is a simple and

synthetic application that aims at stressing a specific part

of the execution architecture. Equations (2) and (3) show

that the energy and time used by a communication could

be represented as a multi-parameter function in which each

parameter represents a crossed channel. To obtain the value of

those parameters, a solution is to compute the partial derivation

following each parameter. This is the aim of micro-benchmark

applications.

To fulfill this purpose, each μbench is designed to focus on

a specific communication channel or a specific memory bank

following the following properties:

• Selectivity: μbenchs only stress a specific communication

channel, as much as possible.

• Intensity variability: μbenchs stress a communication

channel with different intensity.

B. General structure of a μbench set

Using the architecture shown in Fig. 2b, each cluster is

composed of three kinds of communication channels: SW

Core to SW Memory; SW Memory to Cluster Memory; HW

core to Cluster Memory. There is another channel between

clusters and NoC. To determine the model parameters of this

architecture, a set of micro-benchmarks composed of four

subsets must be built as follow:

• SwChannel: this subset focuses on communication cost

between processing core and SW memory level. It gen-

erates read or write accesses in an array allocated in SW

memory.

• HwChannel: this subset focuses on communication cost

between HW accelerators and cluster memory. It gener-

ates read or write accesses in an array allocated in cluster

memory.

• IntraCluster: this subset focuses on communication cost

between SW memory and cluster memory. Theses param-

eters can not be measured directly. Instead the μbench

generates read or write accesses in an array allocated in

cluster memory from the processing core and then de-

duces Intracluster parameters by subtracting the SwChan-

nel value.

• InterCluster: this subset focuses on communication be-

tween clusters and generates data transfers through the

NoC.

All these micro-benchmark executions are parameterized with

the size of the data to communicate.

212

Algorithm 1: Generic micro-benchmark structure.

Data: scaleFactor, size
initBenchmarkEnv()

startPowerMeasure()

for iteration in scaleFactor do
openCommunicationChannel()

producer = spawnProducerThread(size)

consummer = spawnConsumerThread(size)

waitThread(producer, consumer)

closeCommunicationChannel()
end
stopPowerMeasure()

writePowerMeasureToFile()

Communication time is an order of magnitude smaller than

the usual power measurement time resolution. To overcome

this issue and limit measurement noise, it is necessary to

build the μbenchs over large number of communications. For

this reason, μbenchs are composed of three parts: opening,

kernel, and closing. The opening part is responsible of SW

and HW initialization, and then micro-benchmark iterates

scaleFactor time on the kernel. The kernel part generates a

communication of size bytes over the target channel. Then, the

closing part retrieves power measures and logs them into a file.

Algorithm 1 presents a generic micro-benchmark structure.

V. POWER MODELLING OF THE ZYNQ ARCHITECTURE

A. Experimentation infrastructure

For our experiments, the Zc702 Zynq board provided by

Xilinx is used with Linux Operating System. Power measure-

ments are done through the Power Management Bus (PMBus)
embedded on the board. PMBus is an open standard power

management protocol that enables the communication with

the power converter and other devices on the board. This

protocol could be used to set the output voltage of the power

converter or to retrieve the output voltage and current. On the

Zc702 board, PMBus enables to read eight input power rails

of the Zynq SoC. PMBus values can be accessed through two

methods: using ARM peripheral with Linux interruption, or

using full HW mechanisms implemented in the programmable

logic. In our experiments, the second approach is used since

HW power consumption is more predictable that SW one.

B. Estimation of communication parameters

A micro-benchmark set is used on the Zynq platform to

extract the communication parameters of such architecture.

The Zynq architecture has been introduced in Section II.

Fig. 3 shows the memory hierarchy tree for a distributed HMp-

SoC network composed of several Zynq chips interconnected

through an Ethernet network. The Zynq embedded processors

can access to different memory hierarchy levels with various

channels, as listed below:

• Access to L2 cache memory:

– SW channels use standard memory access.

Fig. 3: Memory hierarchy of a network of Zynq clusters.

– HW channels use Advanced Coherency Port (ACP).
• Access to DDR memory:

– SW channels use standard memory access.

– HW channels use High Performance Port (HP).
Unmapped memory channels can also be used. Heteroge-

neous communications occur without memory bank access

through General Purpose Port (GP) using two synchronization

modes: pooling and ARM Interrupt ReQuest (IRQ).
In order to extract the communication cost of these channels,

a set of six micro-benchmarks is used, as detailed below:

• CL1: for channel between SW cores and the first memory

level. It generates read or write operations from SW core

in an array located in the L1 cache.

• CL2: for channel between SW cores and the second

memory level. It generates read or write operations from

SW core in an array located in the L2 cache.

• DDRM: for channel between SW cores and the external

memory. It generates read or write operations from SW

core in an array located in the DDR.

• HPx: for channel between HW core and the external

memory. It generates read and write operations from HW

core in an array located in the DDR.

• ACP: for channel between HW core and the second

memory level. It generates read and write operations from

HW core in an array located in the L2 cache.

(a) Pipeline manner. (b) Shared manner.

Fig. 4: Communication pattern.

213

• GPx: for unmapped communications on GP. It generates

ping-pong control flow between SW and HW with and

without IRQ enabled.

Each μbench family listed above, except GPx, is executed

on two configurations to illustrate the memory line phe-

nomenon. The first configuration generates cache misses on

each memory access, while the second one retrieves a full

memory line between two misses.

Two extra micro-benchmarks are written to measure the

communication cost at a coarser grain, since the previous set

cannot consider communication side effects such as synchro-

nizations. These micro-benchmarks expose synchronization

impact on consumption through two communications patterns,

named pipeline and shared. They are illustrated in Fig. 4, and

explained thereafter.

a) Pipeline pattern: When a set of tasks requires to pro-

cess the same input sequentially, the pipeline communication

pattern is involved. The μbench uses two tasks to illustrate this

pattern (Fig. 4a). The first task consumes data from the input

channel and produces output for the second one. The second

task reads this data and produces results that are sent on the

output channel.

b) Shared pattern: This pattern appears in data-parallel

applications. The μbench is composed of two tasks working

on the same input data block (Fig. 4b). Theses two tasks read

part of input data and produce their own data chunk that will

be updated in the input block. Before updating the input block,

tasks are synchronized with a barrier.

Fig. 5 and 6 show execution time and power for access (read

and write) on the CL2 memory bank. The results are given for

different data size (in bytes). The values are extracted after

20 independent executions of the micro-benchmark. Results

show that the variance of the measurements is quite small. The

power consumption is nearly constant during the execution

and the execution time could therefore be approximated with

a linear function. In the following, the execution time and the

energy cost of communication are approximated as a linear

function f(bytes) = a× bytes+ b, where the values a and b

Fig. 5: Execution time on channel CL2.

Fig. 6: Power consumption on channel CL2.

Time [s] Energy [J]
Benchmark f : x → ax+ b f : x → ax+ b

a b a b

HPx read 6.71e-09 7.82e-07 5.56e-11 6.49e-09
HPx write 1.34e-08 1.06e-06 1.18e-10 9.37e-09
ACP read 1.14e-08 6.07e-07 9.97e-11 5.30e-09
ACP write 3.59e-08 8.97e-07 2.78e-10 6.95e-09

GPx polling 5.41e-07 0 8.27e-09 0
GPx irq 2.85e-06 0 9.47e-08 0

DDR read 1.86e-08 7.48e-06 1.54e-09 6.16e-07
DDR read burst 7.06e-09 1.54e-06 6.07e-10 1.32e-07

DDR write 8.76e-08 -3.84e-06 2.37e-08 -1.04e-06
DDR write burst 4.40e-08 -1.34e-05 3.24e-09 -9.85e-07

CL1 read 1.82e-08 -2.95e-08 1.52e-09 -2.45e-09
CL1 read burst 1.02e-08 6.68e-09 8.40e-10 5.50e-10

CL1 write 6.03e-08 3.12e-07 4.72e-09 2.44e-08
CL1 write burst 5.05e-08 -3.73e-07 3.73e-09 -2.75e-08

CL2 read 1.76e-08 -2.69e-08 1.51e-09 -2.30e-09
CL2 read burst 9.62e-09 3.19e-07 8.01e-10 2.66e-08

CL2 write 7.19e-08 -5.46e-09 1.70e-08 -1.29e-09
CL2 write burst 5.08e-08 -4.14e-07 3.71e-09 -3.02e-08

Shared Pattern CL1 4.15e-08 1.54e-05 6.66e-09 2.46e-06
Shared Pattern CL2 4.95e-08 -4.79e-04 1.54e-08 -1.49e-04
Shared Pattern DDR 6.08e-08 -7.41e-03 2.87e-08 -3.49e-03

Pipeline pattern 2.98e-07 -1.03e-05 3.32e-08 -1.15e-06
Static Power n.v. n.v. 1.20e+00 n.v.

TABLE I: Extracted power model parameters for the Zynq

architecture.

are respectively the dynamic and static parts.

Table I gives the execution time and energy cost parameters

extracted on the Zynq architecture with the micro-benchmark

set detailed before. The validity domains of these functions

ranging from [128 bytes, 1 Kbytes] for the L1 cache memory

channel to [4 Kbytes, 128 Kbytes] for the DDR memory

channel.

C. Power estimation validation on mutant applications

In this subsection, mutant applications are generated to

validate the parameter values extracted from previous micro-

benchmark characterization. A mutant application is an ab-

stract application automatically generated from pattern func-

tions. It randomly generates communication traffic over differ-

ent communication channels of the target architecture. To this

214

mutantRank Total bytes
Channel name

Cache L1 Cache L2 DDR HPx ACP GPx

mutant 1 4.56e+07

read 6.6% read 1.3% read 1.3%
read 1.2% read 0.6% polling 3.5%

read burst 0.6% read burst 5.5% read burst 18.0%
write 6.8% write 2.5% write 1.1%

write 2.0% write 0.4% irq 0.5%
write burst 6.6% write burst 0.0% write burst 41.3%

mutant 2 5.37e+07

read 6.7% read 2.1% read 4.7%
read 2.9% read 4.8% polling 2.0%

read burst 4.7% read burst 0.2% read burst 10.0%
write 5.0% write 0.6% write 0.0%

write 7.4% write 2.0% irq 0.5%
write burst 4.7% write burst 6.8% write burst 35.0%

mutant 3 4.10e+07

read 5.3% read 0.0% read 5.0%
read 3.3% read 0.0% polling 3.0%

read burst 1.9% read burst 0.0% read burst 11.7%
write 7.6% write 6.1% write 0.6%

write 1.9% write 8.7% irq 1.2%
write burst 7.2% write burst 3.9% write burst 32.6%

mutant 4 4.21e+07

read 4.1% read 2.2% read 2.9%
read 5.0% read 0.1% polling 1.1%

read burst 6.1% read burst 1.8% read burst 13.9%
write 16.3% write 0.4% write 7.2%

write 5.5% write 3.4% irq 1.4%
write burst 1.6% write burst 2.1% write burst 25.2%

TABLE II: Communications involved in mutant applications.

mutantRank
Time [s] Energy [J] Error

measured estimated measured estimated time energy

mutant 1 2.308 2.311 2.949 2.943 0.1% 0.2%
mutant 2 2.340 2.336 3.031 2.964 0.2% 2.2%
mutant 3 2.775 2.780 3.621 3.540 0.2% 2.3%
mutant 4 2.828 2.833 3.739 3.624 0.2% 3.1%

average on 80 mutants 2.974 2.975 3.855 3.861 0.5 % 1.0 %

TABLE III: Power estimation results of mutant executions.

purpose, 12 SW and 6 HW functions were written for the Zynq

architecture. Each of them generates communication traffic on

a communication channel following a specific mode. A mutant

generator framework then combines these functions randomly

to obtain an application that stress the overall communication

channels at the same time.

Table II shows the configuration of four generated mutants

applications. Their configuration is summarized by the overall

generated communications. The percentages of communica-

tions over the different channel are also displayed.

Table III details the results of the power consumption

estimation on the four described mutant applications. The

last line shows average results obtained over 80 mutants. The

estimated values of Table III were computed with parameters

shown in Table I and the mutant configuration. These inputs

were used in the communication-based power model presented

in Section III, each mutant iterates multiple time on three

randomly chosen tasks. These tasks contain no computation

operation, so the computation energy cost of each task can be

neglected. The mutant configuration contains the amount of

communication in each pair of task and was used alongside the

architecture parameters to compute the communication energy

cost and time. Then the mutant critical path was computed

and associated with static power parameter to compute the

static power cost. Table III also gives the error between

measured and estimated values of the mutant application

power consumption. The error obtained for the previous set

of mutant application are lower than 3.1%. The three first

lines shows that the communication channel division has no

incidence on the power estimation error. These experiments

enable to validate the parameter values obtain through micro-

benchmarking method and the communication-based power

model.

The power estimation computed with a mono-threaded

python script on Intel i5 Haswell-ult processor takes 0.55
second on the 80 previous mutants. The obtained precision

and computation time of the introduced communication-based

power model shows that our model seems to be the right

approach to target task mapping issues.

VI. CONCLUSION

This paper introduced a generic model of heterogeneous

multicore architectures and a new power modeling approach

focused on communication channels. The proposed power

model is mainly communication-centric and aims at simplify-

ing the task mapping step under energy or power constraints.

A micro-benchmarking approach was introduced to enable the

identification of the target architecture parameters defined in

the power model. This identification method was experimented

and validated on the Xilinx Zynq architecture.

The combination of communication-based power model and

parameter estimation method based on micro-benchmarking

has shown its efficiency on a large number of synthetic appli-

cations. The achieved estimation accuracy is largely enough

for being used in the task mapping step, while the estimation

time also fits design space exploration constraints. These

results open new opportunity for future computer-aided design

tools. Such fast power estimation model and methodology

215

could be easily integrated into automatic parallelization tools

(e.g. [15] [16]) to fasten and improve the development of

parallel applications targeting heterogeneous multicore archi-

tectures.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in 38th
Annual International Symposium on Computer Architecture, (ISCA),
June 2011, pp. 365–376.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in 27th Interna-
tional Symposium on Computer Architecture (ISCA), June 2000, pp. 83–
94.

[3] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec. 2009, pp. 469–480.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[5] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” SIGARCH Computer Architecture, vol. 33, no. 4, pp. 92–99,
2005.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Computer Architecture, vol. 39, no. 2, pp. 1–7,
2011.

[7] S. Schürmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen,
and L. Wang, “Creation of ESL Power Models for Communication
Architectures Using Automatic Calibration,” in Proceedings of the 50th
Annual Design Automation Conference, 2013, pp. 58:1–58:58.

[8] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee, “Instruction level power
analysis and optimization of software,” in 9th International Conference
on VLSI Design (VLSI), Jan. 1996, pp. 326–328.

[9] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional Level Power
Analysis: An Efficient Approach for Modeling the Power Consumption
of Complex Processors,” in Design, Automation Test in Europe Confer-
ence and Exhibition (DATE), Feb. 2004, pp. 1–6.

[10] A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “Orion 2.0: A
fast and accurate noc power and area model for early-stage design
space exploration,” in Design, Automation Test in Europe Conference
Exhibition (DATE), April 2009, pp. 423–428.

[11] S. K. Rethinagiri, O. Palomar, J. A. Moreno, O. Unsal, and A. Cristal,
“Vppet: Virtual platform power and energy estimation tool for heteroge-
neous mpsoc based fpga platforms,” in 24th International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS),
Sept 2014, pp. 1–8.

[12] B. D. de Dinechin, R. Ayrignac, P. E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embedded
and accelerated applications,” in IEEE High Performance Extreme
Computing Conference (HPEC), Sept 2013, pp. 1–6.

[13] C. Ramey, “Tile-gx100 manycore processor: Acceleration interfaces and
architecture,” in Proceedings of the 23th Hot Chips Symposium, 2011.

[14] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The
Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx
Zynq-7000 All Programmable Soc. Strathclyde Academic Media, 2014.

[15] A. Floch, T. Yuki, A. El-Moussawi, A. Morvan, K. Martin, M. Naullet,
M. Alle, L. L’Hours, N. Simon, S. Derrien, F. Charot, C. Wolinski, and
O. Sentieys, “GeCoS: A framework for prototyping custom hardware
design flows,” in 13th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), Sept. 2013, pp. 100–105.

[16] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. As-
cheid, H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: An Integrated
Framework for MPSoC Application Parallelization,” in Proceedings of
the 45th Annual Design Automation Conference, 2008, pp. 754–759.

216

