
Evaluation of NoC on Multi-FPGA Interconnection
Using GTX Transceiver

Atef Dorai
University of Rennes 1, IRISA/INRIA

Lannion, France

Olivier Sentieys
University of Rennes 1, IRISA/INRIA

Lannion, France

Helene Dubois
University of Rennes 1, IRISA/INRIA

Lannion, France

Abstract—Multi-FPGA platforms are very popular today for
pre-silicon verification of complex designs due to their low
cost and high speed. The idea is to divide these systems into
smaller sub-systems and implement each one on a separate
chip. The challenge is that the number of IOs available on
FPGA remains constant despite the technological evolution. This
problem is resolved by multiplexing several cut-signals using the
time division multiplexing scheduling mechanism. This structure
has a strong effect on the speed of transmission between FPGAs.
However, an inter-FPGA bottleneck appears. In this paper,
we focus on evaluating the Network-on-Chip on multi-FPGA
using the high speed serial transceiver GTX block. In order to
speed up the transmission between FPGAs, GTX Transceiver
is used to provide a high bandwidth while using fewer pins
compared to existing approaches based on ordinary FPGA IOs
pins. Depending on the available multi-gigabit transceiver, the
bandwidth per connection is between 3.125 and 28 Gb/s which
allows for large amounts of data to be moved quickly between
multiple FPGAs. In our evaluation, a VC707 platform based on
the Virtex-7 device is used. The simulation results show that
the proposed architecture provides low area consumption and
latencies under different traffic patterns.

Index Terms—Inter-FPGA link, NoC, GTX Transceiver, multi-
FPGA.

I. INTRODUCTION

As the number of IPs (Intellectual Property) increases
rapidly inside a chip, interconnecting them becomes increas-
ingly challenging [1]. Network-on-Chip (NoC) is the most
efficient architecture to build a many-core interconnect system.
The debug and test of such complex architectures can be
performed by prototyping them on programmable devices.
Therefore, mapping a large-size NoC on a multi-FPGA re-
quires several challenges in the prototyping flow in order to
get the best performance due to the limited resources on FPGA
(Field Programmable Gate Arrays). Therefore, a complete
system is required to be partitioned into several FPGAs. As a
result, a multi-FPGA platform is formed.

Multi-FPGA platforms offer the potential to supply high-
performance solutions for computationally intensive tasks,
logic emulation and rapid prototyping [2]. However, the large
delays in the inter-FPGA communication and the limited I/O
pins per FPGA restrict the bandwidth system performance
and create a bottleneck [3]. The logic capacity per FPGA is
increasing at a much faster scale as compared to the number
of I/O pins. Indeed, emulating a large NoC on multi-FPGA is
mainly divided into two steps. In the first step, the design is

divided and partitioned into several sub-NoCs. A successful
partitioning approach ensures that every sub-NoC does not
exceed the logic capacity of the FPGA [4]. The second step
routes the signals of sub-NoC from inter-FPGA to the off-
chip according to the available physical I/O resources. Over
the past year, Time Division Multiplexing Access (TDMA)
is used to route the signals of NoC to the limited inter-
FPGA I/O [5]. However, an efficient inter-FPGA architecture
is required for multiplexing the signal of sub-NoC at the
source FPGA and demultiplexing them at the destination
FPGA through a high-speed adapter protocol [2]. All the
multiplexing, demultiplexing, sub-NoC and adapter protocol
can be performed in different clock domains.

Last generation boards based on FPGAs provide a wide
range of multi-Gigabit transceivers (GBT), clock conditioning
modules and large amount of logic gates. The serial transceiver
is much useful for applications where high-speed data trans-
mission is required. It offers a higher bandwidth and a superior
auto-adaptive equalization. Higher-order modulation schemes
can also be used to increase performance [6]. The GTX which
is the basic block for common interface protocols is becoming
an increasingly popular solution for communication between
FPGAs. The GTX supports line speeds from 500Mb/s to
12.5Gb/s [7]. Moreover, configuring the GTX for a single
channel that moves the data to the other side securely is
easy. The architecture of the 7th series FPGA [8] contains
four different types of receivers: GTX, GTP, GTH and GTZ.
These options range from high-performance options to low-
power options. Therefore, in this work we propose an approach
to interconnect a NoC on multi-FPGA based on the GTX
transceiver available in almost all modern FPGAs.

The rest of the paper is organized as follows. In section II,
we present an overview of our contributions. In section III we
introduce our design flow. In section IV, we give a general
introduction and provide detailed information on the GTX
transceiver used in our evaluation. The experimental results
are presented and analyzed in section V. Finally, section VI
presents the conclusion of this work.

II. RELATED WORK

[9] presents a hierarchical NoC architecture to support
multi-chip platforms, which incorporates the required qual-
ity of service for multi-FPGA systems. The interconnection
between chips is done by a generic bridge scheme at different

hierarchical levels of the NoC protocol stacks. The generic
bridge is based on the Ethernet protocol to accelerate the
transmission between chips. [2] proposes a new architecture
for inter-FPGA traffic management dedicated to NoC on multi-
FPGA. The proposed architecture is easily placed between the
external protocol and the sub-NoC. The comparisons show that
the random access mechanism can be an efficient solution for
inter-FPGA compared to the planned schedule. [4] proposes an
exploration flow in order to optimize the inter-FPGA for multi-
FPGA prototyping. To check the exploration and optimization
of the partitioning tools, five different FPGA boards are used
when the number of FPGAs on board varies from two to six.

To ensure a fast communication with FPGA, [10] proposes
a serial transceiver architecture based on dynamic clock phase
shifting technology. This solution can handle all possible phase
offsets between the transmitter and the receiver. [11] presents
an auto-adaptive serial link able to support the reconfiguration
of GTX parameters to take full advantage of the available
bandwidth link by setting the highest rate.

III. DESIGN FLOW

To evaluate the performance of GTX transceiver on multi-
FPGA system, we propose a design flow based on existing
NoC architecture. The flow generation of a NoC on multi-
FPGA requires passing through several stages as synthesis and
partitioning of the NoC on multi-FPGA. These steps require
an adaptation between the sub-NoC, the TDMA inter-FPGA
architecture and the GTX transceiver. A detailed discussion of
these steps is provided in the following.

A. Synthesis and Partitioning of the NoC

The synthesizable architecture depends on the configuration
of NoC as the number of routers, flit size and the routing
algorithm used. Once the NoC design is defined, it can be
generated as input for the Vivado tools from Xilinx. Synthesis
is the first process to adapt the NoC architecture with the target
FPGA device. Firstly, it transforms the hardware description
into a grid level representation and mapped it onto the target
FPGA. Since the NoC architecture considered is larger than
the number of resources available in the target FPGA, it
must be partitioned into several parts and each part should
be implemented on multiple chips. Partitioning applied on the
design is a very critical step as it has a direct relationship to
architecture performance. Efficient partitioning takes the size
of each partition into account and is directly related to the
capacity of the target FPGA and the number of connections
between the different partitions. Once the design is partitioned,
an inter-FPGA architecture is integrated to adapt the NoC
signals with the multi-Gigabit transceiver.

B. Inter-FPGA Architecture

Although partitioning a NoC on multi-FPGA attempts to
tackle the resource limitation problem on FPGA, but due to a
large gap between the FPGA logic capacity that can support
a significant number of routers, the number of cut signals is
larger than the number of IO pins available on FPGA. Indeed,

an inter-FPGA structure which adapts the on-chip with the
off-chip is interesting. It can be seen from Figure 1 that inter-
FPGA architecture based on TDMA is used to route the cut
signals of sub-NoC to the transceiver. The objective of the
inter-FPGA architecture is to ensure a communication between
the sub-NoC and the GTX with low latency and resource. The
inter-FPGA architecture is generic in the sense that it supports
all sub-NoC based handshake flow control signals. Once the
inter-FPGA architecture is designed, we can assume that each
sub-NoC can be successfully placed and routed into an FPGA.

IP IP IP

IP IP IP

IP IP

IP IP IP

IP

IP IP IP

IP IP IP

IP IP

IP IP IP

IP

FIFO

FIFO

TX

RX

RX

RX

Frame gen Frame check

GTX
In

te
r-FP

G
A

stru

ctu
re

In
te

r-
FP

G
A

st

ru
ct

u
re

Fig. 1: Structure for NoC partitioning on multi-FPGA

IV. GTX TRANSCEIVER

The multi-Gigabit Transceiver used in this work is based
on the GTX Transceiver deployed in the Xilinx Virtex7 series.
Inside the FPGAs, GTXs are available as robust configurable
cells. Each cell contains a pair of transceivers that share basic
components such as the reset logic and the phase-locked loop
(PLL). Figure 2 illustrates a simplification of the components
included in each transceiver such as the transmitter (TX) and
the receiver (RX). Before explaining the configuration of the
GTX, it is interesting to detail the basic elements constituting
this architecture.

A. Structure of the GTX Transceiver

The GTX transceiver consists of two main blocks TX and
RX. First, at the transmitter and before serialization, a parallel
data stream at a frequency well below 1 GHz is converted
if necessary into a transmit signal using an appropriate Line
Encoder (TX) as 8b/10 encoder. Indeed, most multi-Gigabit
transceivers allow to bypass the line encoder to leave coding to
the FPGA fabric. After, at the serialization step, the TX PLL
generates the reference clock for the high-speed transmitter
clock and for the PISO (Parallel Input Serial Output). Finally,
an optional equalizer is applied in the analog front end of the
transceiver to correct the disturbance of signals.

At the receiver side, the transmitted signals pass firstly
through another equalizer. This latter is used to correct any fre-
quency distortion at the transmission lane. Then, the incoming
signals are detected and a recovered clock is generated using
a receive clock that is provided by the reference clock RX
PLL. This step is very interesting because in most cases the
clock of the receiver is not exactly equal to the transmitted
clock located on another FPGA. After, the latest signals are
deserialized via a SIPO (Serial Input Parallel Output) block.
This deserialization is done at a frequency below 1 Ghz. The

FPGA TX
interface

LineEncoder (TX)Serializer (TX)Equalizer (TX)

TX PLL (TX)

Equalizer
(RX)

Clock recovery
(RX)

FPGA RX
interface

Deserializer (RX) &
Word alignement

LineDecoder
(RX)

RX PLL (RX)

Fig. 2: Simplified scheme of the GTX Transceiver

correct alignment of the received signals is also performed
in this step. Finally, data is decoded if necessary using an
appropriate decoder as 10b/8b and is transferred to the elastic
buffer in order to be adapted to the difference clock domains.
Also, as illustrated in Figure 1, Frames gen and check can be
used to adapt the packet with FPGA TX and RX interfaces.

B. GTX Lane Configuration

GTX transceiver requires a specific packet format which is
illustrated in Figure 3. The chosen packet length is fixed to
32 bits. Any transmission of packet is started by a header and
followed by a payload data. The header contains five fields
that are TAG, destination, size, source and the number of
packets. The ID field allows to identify and route the packet
between the inter-FPGA structures. The GTX receiver searches
the incoming serial comma field, so that all the packets that
follow are aligned and RX receiver reorganizes parallel data.
The GTX can be configured by supporting a wide variety of

Destination
Packet

size
Source

Packets
number

Header Data

0

TAG

Comma port

1523

IDX’’00’’

31

FLIT 0 FLIT 1 FLIT 2 FLIT 3 FLIT 4

Fig. 3: Packet format

protocols like PCI-Express, SATA or Ethernet. These protocols
are used to operate data links in the range of several Giga-bits
per second. All links operate at a speed of 3.125 Gb/s requiring
a reference clock operating at a frequency of 156.25 MHz.

The Frame gen module adapts the control signals and
the packet format. It depends on the protocol and the En-
coder/Decoder used in the GTX. The packets received from
the multiplexer side are of size 32-bit. The incoming packets
are stored in the FIFO. At the output of the Frame gen block,
the packet size is 80 bits. The frame checker monitors the
received packet, ensures the adaptation of packets format and
control signal between RX transceiver and demultiplexer. The
Frame check works by first scanning the TAG field (comma
port) to detect the incoming packets sent from sub-NoC.

V. EXPERIMENTS

In this section, we evaluate the number of resources and
the transmission time of our proposed flow under different
traffic patterns. We interconnect two sub-NoC based SoC to
the GTX transceiver. The complete system is implemented on
the same VC707 board based on Xilinx FPGA Virtex-7 [8].
Several configurations are applied to the GTX to prove the
performance of NoC on multi-FPGA systems.

A. GTX configuration

Due to hardware constraints, there are different sources of
clock like SGMII, Si570 and FMC HPC connector. The SGMII
mode supports the Ethernet interface and is deployed in our
evaluation. The clock frequency is fixed to 156.25 MHz.

B. Emulation platform

In order to evaluate our architecture, an emulation platform
is used to generate different traffic patterns. This emulation
platform is constituted by traffic generators and receivers that
are used to generate and process the packets, respectively. The
choice of the synthetic traffic patterns is based on the objective
evaluation of NoC on multi-FPGA. The source-destination
pairs must be in different sub-NoC structures. The synthetic
traffic patterns are bit-complement, bit-reverse and transpose
[12]. The simulated NoC has a size of 4×4, with a total of 16
routers. We performed our simulation by comparing the static
XY routing algorithm with the dynamic XY (Dxy) routing
algorithm [13]. The Dxy considers the local traffic state in
decision making in which each router compares the congestion
condition in the instance input buffers of neighboring routers.
The average latency is measured with the packet injection rate
from 10% to 100%. The FIFO integrated between the inter-
FPGA structure and GTX transceiver is large and can support
up to 1024 packets.

C. Resource analysis

The on-chip architecture that includes the GTX transceiver
and the inter-FPGA structure is synthesized on Virtex-7 using
Vivado tools and also is implemented on VC707 board. As
observed in Table I, the number of resources used by the on-
chip structure is less than 1% of the total FPGA. The number
of resources does not exceed 5% for the complete system when
adding the 4 × 4 NoC architecture. We observe that the
evaluation platform requires more LUTs than registers for a
given NoC size.

TABLE I: The on-chip synthesis results

Cell On-chip structure Complete system
Slice as LUTs 1189 (0.39%) 16 277 (5.36%)

Slice as Flip Flop 609 (0.1%) 6186 (1%)

D. Timing analysis

The first test is based on the bit-complement synthetic traffic
(Figure 4). Each router sends 100 packets and the packet
size is 10 Flits. With this synthetic traffic, there are eight
transmitter and receiver routers in each sub-NoC. In the first

test, the XY and Dxy routing algorithms demonstrate a very
similar behavior. The XY have slightly lower latency than the
Dxy routing algorithm during the packet injection rate. The
saturation point is obtained around 20%.

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

la
te

nc
y

(c
yc

le
s)

Packet injection rate

Bit-Complement

XY
Dxy

Fig. 4: Average latency under bit-complement traffic pattern

The second test scenario is based on the transpose synthetic
traffic (Figure 5). Each router sends 100 packets and the packet
size is 10 Flits. Using this synthetic traffic, there are four
transmitter and receiver routers in each sub-NoC. Also in this
test, the XY and Dxy routing algorithms demonstrate a very
similar behavior. However, the Dxy have slightly lower latency
than the XY routing algorithm during the packet injection rate.
The saturation point is obtained around 30%.

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

la
te

nc
y

(c
yc

le
s)

Packet injection rate

Transpose

XY
Dxy

Fig. 5: Average latency under transpose traffic pattern

The bit-reverse traffic model is applied on the third test
scenario (Figure 6). Each router sends 100 packets and the
packet size is 10 Flits. With this synthetic traffic, there are
three transmitter and receiver routers in each sub-NoC. Unlike
the others test scenarios, it is difficult to extract the appropriate
routing algorithm as the results are very similar. The saturation
point is now obtained around 50%.

VI. CONCLUSION

Multi-FPGA platforms are now widely used for prototyping
a SoC with large scale. However, these platforms suffer from
a bottleneck on inter-FPGA structure due to the delay between
on-chip and off-chip as well as the limited bandwidth between
FPGAs due to the limited number of IOs per FPGA. In order to
solve this bottleneck problem, we multiplexed the cut-signals
of NoC to a Multi-Gigabit transceiver (MGT). This MGT used

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

la
te

nc
y

(c
yc

le
s)

Packet injection rate

Bit-Reverse

XY
Dxy

Fig. 6: Average latency under bit-reverse traffic pattern

is the GTX transceiver for achieving higher performance. The
included inter-FPGA structure and GTX transceiver represent
an efficient on-chip architecture for NoC on multi-FPGA. The
complete system is implemented on VC707 board and the
resources used are less than 1%. The timing results showed
that the on-chip structure provides low latency guarantees to
traffic for different considered traffic patterns.

REFERENCES

[1] F. Lemonnier et al., “Towards future adaptive multiprocessor systems-
on-chip: an innovative approach for flexible architectures,” in Proc. IEEE
Int. Conf. on Embedded Computer Systems: Architectures, Modeling and
Simulation (IC-SAMOS), Jul. 2012, pp. 1–6.

[2] A. Dorai, V. Fresse, C. Combes, E.-B. Bourennane, and A. Mtibaa,
“A collision management structure for noc deployment on multi-fpga,”
Microprocessors and Microsystems, vol. 49, pp. 28–43, 2017.

[3] Q. Tang, H. Mehrez, and M. Tuna, “Multi-fpga prototyping board issue:
the fpga i/o bottleneck,” in 2014 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), July 2014, pp. 207–214.

[4] U. Farooq, R. Chotin-Avot, M. Azeem, M. Ravoson, M. Turki, and
H. Mehrez, “Inter-fpga routing environment for performance exploration
of multi-fpga systems,” in Rapid System Prototyping (RSP), 2016
International Symposium on. IEEE, 2016, pp. 1–7.

[5] F. Mao, W. Zhang, B. Feng, B. He, and Y. Ma, “Modular placement
for interposer based multi-fpga systems,” in Great Lakes Symposium on
VLSI, 2016 International. IEEE, 2016, pp. 93–98.

[6] J.-M. Philippe, S. Pillement, and O. Sentieys, “A low-power and high-
speed quaternary interconnection link using efficient converters,” in
Proc. of the IEEE International Symposium on Circuits and Systems,
ISCAS’05, 2005, pp. 4689–4692.

[7] M. Cannon, M. Wirthlin, A. Camplani, M. Citterio, and C. Meroni,
“Evaluating xilinx 7 series gtx transceivers for use in high energy physics
experiments through proton irradiation,” IEEE Transactions on Nuclear
Science, vol. 62, no. 6, pp. 2695–2702, Dec 2015.

[8] Xilinx, “Vc707 evaluation board for the virtex-7 fpga user guide,” Tech.
Rep., UG885 (v1.7.1) August 12, 2016.

[9] A. B. Nejad, A. Molnos, M. E. Martinez, and K. Goossens, “A
hardware/software platform for qos bridging over multi-chip noc-based
systems,” Parallel Computing, vol. 39, no. 9, pp. 424–441, 2013.

[10] X. Liu, Q.-X. Deng, and Z.-K. Wang, “Design and fpga implementation
of high-speed, fixed-latency serial transceivers,” IEEE Transactions on
Nuclear Science, vol. 61, no. 1, pp. 561–567, 2014.

[11] A. Aloisio, R. Giordano, V. Izzo, and S. Perrella, “A frequency agile,
self-adaptive serial link on xilinx fpgas,” IEEE Transactions on Nuclear
Science, vol. 62, no. 3, pp. 955–962, 2015.

[12] N. Nedjah, L. S. Junior, and L. de Macedo Mourelle, “Congestion-aware
ant colony based routing algorithms for efficient application execution on
network-on-chip platform,” Expert Systems with Applications, vol. 40,
no. 16, pp. 6661–6673, 2013.

[13] M. Ebrahimi, “Fully adaptive routing algorithms and region-based ap-
proaches for two-dimensional and three-dimensional networks-on-chip,”
IET Computers & Digital Techniques, vol. 7, no. 6, pp. 264–273, 2013.

