
Fast Cross-Layer Vulnerability Analysis of Complex
Hardware Designs

Joseph Paturel
Univ Rennes, Inria, CNRS, IRISA

Angeliki Kritikakou
Univ Rennes, Inria, CNRS, IRISA

Olivier Sentieys
Univ Rennes, Inria, CNRS, IRISA

Abstract—Simulation-based fault injection is commonly used
to estimate system vulnerability. Existing approaches either
partially model the fault masking capabilities of the system
under study, losing accuracy, or require prohibitive estimation
times. This work proposes a vulnerability analysis approach
that combines gate-level fault injection with microarchitecture-
level Cycle-Accurate and Bit-Accurate simulation, achieving low
estimation times. Single and multi-bit faults both in sequential
and combinational logic are considered and fault masking is mod-
eled at gate-level, microarchitecture-level and application-level,
maintaining accuracy. Our case-study is a RISC-V processor.
Obtained results show a more than 8% reduction in masked
errors, increasing more than 55% system failures compared to
standard a fault injection approach.

Index Terms—Fault injection, vulnerability analysis, RISC-V

I. INTRODUCTION

Over the past few years, the Soft Error Rate (SER) of
hardware designs has significantly increased due to reduced
technology node sizes and lower supply voltages [1]. Circuits
designed using modern deep-submicron technologies have
become more and more sensitive to environmental sources [2],
such as ionization, radiation, and high-energy electromagnetic
interferences, leading to temporary reliability violations, called
soft-errors. These sources can affect a memory cell of a design,
corrupting its contents (flip the bit it contains). This type of
fault is known as Single-Event-Upset (SEU). As technology
node sizes have significantly reduced, several memory cells
can be corrupted at the same time, leading to Multi-Bit-
Upsets (MBUs) [3]. Moreover, when a combinational cell is
affected, a logic transient, known as Single-Event-Transient
(SET), is generated. The SET is propagated in the forward
cone of the impacted cell, and it can eventually reach one
or several flip-flops and corrupt their values. Until recently,
soft errors occurring in memory circuits have been considered
as the major contributors to the SER due to their large sizes
and high-density, making them statistically more likely to be
affected. However, soft errors occurring within logic circuits
have become more and more important and combinational
logic cannot be considered negligible anymore [4], [5].

As a result, the vulnerability of a design towards faults has
to be evaluated as part of the development process. To do so,
techniques that force the appearance of faults (fault injection)
in different structures of the design are often employed. To
obtain an accurate vulnerability analysis, the masking effects
occurring at each layer of the design must be taken into
account: from the logical and timing masking occurring at the

gate-level, the microarchitectural masking introduced by the
way computational blocks are arranged, up to the application
masking resulting from the application tolerance to errors. To
achieve that, fault injection has to be performed at a low
layer, such as the gate-level. However, when complex designs
are considered, prohibitive estimation times are required. As
shown by our experimental results (Table VI-Section III), a
gate-level fault injection on a RISC-V processor running an
4x4 matrix multiplication requires more than four months CPU
time for a statistically representative vulnerability analysis.

To speed up the process, some approaches ignore the im-
plementation details of the design. For instance, fault injection
at the application level [6] is only able to alter the data held
in the variables of the application under study. However, by
ignoring the underlying executing hardware, this leads to less
accurate vulnerability analysis [7]. The majority of approaches
considering the hardware of the design focus only on single-bit
faults occurring in the sequential logic [8]–[11]. For example,
in the cross-layer vulnerability analysis flow of [11], the
appearance and propagation of faults are modelled as SEUs,
occurring in selected design regions. The flow uses an RTL
simulator for a predefined number of cycles. Then, the state
of the design is handled to a functional simulator for faster
analysis. However, these approaches discard the presence of
faults in combinational logic and the possibility that several
bits of a design can be affected at the same time. In [12],
several flip-flops of the design are simultaneously flipped
through an almost exhaustive fault injection in the design
registers, which requires high estimation time. Applying this
approach to estimate the vulnerability of only the register file
of the RISC-V processor for the 4x4 matrix multiplication ap-
plication requires 4 hours 18 minutes. The technique presented
in [13] considers faults occurring both in the sequential and the
combinational logic. Authors use an Instruction-Set Simulator
(ISS) to execute the application. To inject a fault, the ISS
invokes a gate-level simulator, that injects the fault in a cell of
the design. The corruptions, induced by the fault, are obtained
and given back to the ISS. As a gate-level simulation is not
used for each application cycle, the estimation time is reduced.
However, ISSs do not consider the hardware implementing the
instruction set and are unaware of the design registers. There-
fore, they cannot model the microarchitecture-level masking
of the design, reducing accuracy. Table I summarises the
aforementioned representative works.

This work addresses the above limitations by proposing



Reference Masking type Fault model
Gate-level µArch Application SEU MBU

[6] - -
[8]–[11] - -

[12] -
[13] -

Proposed

TABLE I: Comparison of representative state-of-the-art

a fast cross-layer vulnerability analysis method, applicable
to entire complex hardware designs, providing statistically
representative vulnerability analysis. It considers faults both
in the sequential and combinational logic, as well as masking
at the gate-level, microarchitecture-level and application-level.
More precisely, the contributions of this work are:

• A vulnerability analysis method combining two fault in-
jection campaigns at different hardware levels, i.e, gate-
level and microarchitectural-level. The gate-level campaign
is applied once per design. It statistically analyses re-
alistic faults both at the combinational and sequential
logic, providing a higher level of accuracy. It produces
error patterns that depict the impact of gate-level mask-
ing. The microarchitectural-level campaign is applied per
application under study. It is based on a fast Cycle-
Accurate and Bit-Accurate (CABA) simulator, able to eval-
uate microarchitectural-level and application-level masking.
The injection is driven by the gate-level error patterns.

• The population of SEUs and MBUs occurring due to re-
alistic SETs on the combinational and sequential logic is
analyzed by tuning the design operating frequency and SET
pulse width. Results highlight the notable impact of MBUs
on vulnerability analysis.

• A vulnerability analysis of a RISC-V processor is provided.
The obtained results show, on average, a 8.32% reduction
in masked faults, which leads to an increase in the number
of crashes (57.81%), hangs (24.76%), and data corruptions
(5.78%) compared to standard SEU-based approaches.

The paper is organized as follows. Section II presents the
proposed vulnerability analysis method. Section III analyzes
the experimental analysis results on a RISC-V processor.
Finally, a discussion on the accuracy of this work as well
as a conclusion and future works are presented in Section V.

II. CROSS-LAYER VULNERABILITY ANALYSIS

To obtain a fast and accurate vulnerability estimation, we
propose a cross-layer method based on two fault injection
campaigns, at different hardware abstraction levels of the
Design Under Test (DUT). Figure 1 depicts the overview
of our method. The first campaign is performed at the gate
level to statistically obtains error patterns independently of
the application to be characterized. The error patterns describe
the number of occurrences and the geometry of errors, due to
SETs in the combinational logic and SEUs directly on the flip-
flops of the DUT, considering gate-level masking. To evaluate
the impact of these patterns on an application, considering
microarchitectural-level and application-level masking, the

Fig. 1: Overview of proposed cross-layer vulnerability analysis

second campaign is performed at the microarchitecture level,
using a fast CABA simulator of the DUT microarchitecture.

A. Single-Cycle Gate-Level Analysis

The aim of the gate-level analysis is to create statistical
models of the SEU and MBU occurring due to soft-errors, in
both combinational logic and flip-flops of the DUT. To do so,
the netlist of the DUT is enhanced with an injection block
(built with a XOR gate and a multiplexer), attached to the
output of each netlist cell, allowing the modification of the
cell’s outputs. These injection blocks allow for the appearance
of an SET anywhere and at any time in the netlist. To not affect
the timing characteristics of the DUT, the propagation delays
of all the injection blocks are set to zero.

Once the netlist modified, it is used by the fault injection
campaign described in Algorithm 1. Since the emergence of
SEUs and MBUs, propagated from SETs through the combi-
national logic, depends on the values of the DUT inputs, we
explore Ninput different sets of values as inputs. For instance,
assuming that the DUT is the execution pipeline stage of a
processor, these sets of values consist of instructions randomly
selected from the processor’s Instruction Set Architecture with
random operands. For each new set of values (L.2), the DUT
is executed without any fault (L.3) in order to obtain the
golden reference (L.4), which will be used to detect errors.
Then, Ngl faults are forced into the netlist for this input set
(L.5). The number of faults N to be injected is defined based
on the required confidence level of the statistical analysis as

Algorithm 1: Gate-level fault injection campaign
L1 for inputData in inputDataSets[0...Ninput-1] do
L2 newInputSet();
L3 executeClockCycle();
L4 goldenReference = collectOutput();
L5 for ninj in [0...Ngl-1] do
L6 targetCell = selectNextCell();
L7 offset = random(0, Tclk);
L8 duration = getWidthFromDistribution(targetCell);
L9 wait(offset);

L10 flipCellOutput(targetCell);
L11 if isCellCombinational(targetCell) == true then
L12 wait(duration);
L13 flipCellOutput(targetCell);
L14 else

// The target cell is a flipflop, the

error is latched

L15 waitForClockRisingEdge();
L16 error = compareDUTOutput();
L17 log(error);



Confidence 95% (t=1.96) 99% (t=2.5758) 99.8% (t=3.0902)
e = 5% 385 664 955
e = 1% 9604 16587 23874

e = 0.1% 960400 1658687 2387335

TABLE II: Number of faults required to be injected.

N = t2×p×(1−p)
e2 (1), where t is the critical value related to

the statistical confidence interval, e the error margin, and p the
percentage of the possible fault population individuals that are
assumed to lead to errors. p is usually set to 0.5 to maximize
the sample size N . Eq. (1) is derived from [14], where the
population size is set to +∞ [15]. Table II presents the
evolution of the number of faults to inject in the DUT in order
to meet certain statistical characteristics. Hence, at the gate
level, the fault injection campaign performs N = Ninput×Ngl

injections. During a fault injection cycle, the netlist cell (L.6),
the time offset (L.7), and the duration of the fault to be injected
(L.8), are selected. The cell that will be subject to injection
is chosen function of its area – the bigger the cell, the higher
its probability to be selected. The SET start time is selected
randomly inside one clock cycle. The duration can be fixed,
random, or provided by tools, that characterize the particles’
impact over the netlist cells, e.g., MUSCA [16]. The campaign
waits until the SET start is reached (L.9) and the injection
block of the selected cell is activated, flipping its output (L.10).
If the selected cell is combinational (L.11), an SET has been
injected and has to remain active for the selected duration
(L.12). After this duration has passed, it is deactivated (L.13).
Otherwise, the injected fault is an SEU affecting directly a flip-
flop cell (L.14). At the end of the cycle (L.15), the contents of
the flip-flops provide the output, which is compared (through
a XOR operation) with the golden reference (L.16). The errors
and the number of times they have been observed are logged
(L.17). With this information, we obtain the error patterns and
their frequencies. They will be used at the microarchitecture-
level injection campaign to perform an accurate vulnerability
analysis. If the affected cell has several flip-flops in its forward
cone, the SET propagation can lead to MBUs.

The gate-level analysis models the propagation of SETs
during a single cycle. Hence, complex designs, that behave
on a multi-cycle basis (such as pipeline circuits), have to be
split into sections. Each section is a part of the design, where
the output of combinational logic is computed and stored to
flip-flops in a single cycle. To estimate the vulnerability of the
complete design, the impact of the gate-level error patterns
needs to be simulated on a platform, that is aware of the
microarchitecture and able to accurately execute the applica-
tion. To achieve that, we perform fault injection campaign at
microarchitecture level, as described in next section.

B. Microarchitecture-Level Analysis

This analysis estimates the vulnerability of the com-
plete DUT, taking into account microarchitecture-level and
application-level masking. To achieve that, we extend a CABA
simulator in order to inject the error patterns, collected at the
gate level per DUT section, at the microarchitecture level.

The microarchitectural fault injection campaign is summa-
rized in Algorithm 2. Initially, the application under study is
executed on the DUT without faults in order to collect a set of
golden references (L.1): i) application output, ii) system state
(memory and registers), and iii) number of execution cycles.
The campaign is executed Nml times per application (L.2),
each time injecting a fault in the DUT. In order to obtain
statistically correct vulnerability estimations, the number of
faults required to be injected is computed using Eq. (1).

During the application execution, the cycle to inject the
fault is chosen randomly between the first cycle and the total
number of cycles considering the fault-free execution (L.3).
Then, the type of logic, where the fault is injected, is selected
based on the area of the logic (L.4). For instance, if 40% of the
DUT area is combinational logic, then it has a 40% chance
of being chosen, and thus a 60% chance for the sequential
logic. If the selected logic is sequential (L.5), an SEU is
injected in a random flip-flop of the complete DUT (L.6),
similar to common fault injection campaigns [8]–[10]. If the
selected logic is combinational (L.7), the injected fault is a
gate-level error pattern of a DUT section. The selection of
the DUT section is area driven (L.8) – the larger the DUT
section, the more chances it has to be selected. Then, an error
pattern is selected as a function of its frequency – the more
often a pattern has been observed during gate-level analysis,
the higher the chances of being selected. The selected error
pattern is injected (L.9) and the simulation is resumed. When
simulation ends (L.10), the outcome belongs into one of the
following error classes (L.11):
• Masked: The application has executed without any error or

mismatch compared to the golden reference.
• Hang: The application has entered an infinite loop. A cycle

counter is used to stop the current injection simulation, if
the counted cycles exceed a threshold.

• Crash: The execution of the application has terminated
unexpectedly and an exception has been raised (out of bound
memory access, misaligned PC, hardware trap, etc.)

• Application Output Mismatch (AOM): Only the output of
the application differs from the golden reference.

• Internal State Mismatch (ISM): Only the system state (mem-
ory and registers) differs from the golden reference.

• ISM & AOM: Both the application output and the system

Algorithm 2: Microarchitecture-level fault injection
L1 output, state, cycles = collectGoldenReference();
L2 for fault in [0...Nml-1] do
L3 waitUntilInjectionCycle();
L4 logicType = selectLogicTypeWithArea();
L5 if logicType == sequential then
L6 injectSEUInRandomSeqStructure();
L7 else
L8 combSection = selectCombSectionWithArea();
L9 injectAnErrorPattern(combSection);

L10 waitForSimulationEnd(timeout);
L11 classifySimulationOutcome(output, state);



state differ from the golden references. Usually, an AOM
will also present a mismatch in the memory of the design.

Note that, the AOM and ISM classes do not completely
overlap. For instance, assume that the DUT is a processor
executing a for loop. A fault affects the register that stores
the iteration counter. As result, the execution skips an iteration.
The application output will not be correct, but if the for loop
has not written to the memory, the final state of the processor
will be the same as the golden reference.

III. EXPERIMENTAL RESULTS

To evaluate the proposed approach, a processor is used as
DUT, i.e., the Comet processor [17] that implements the 32-bit
RISC-V instruction set using a standard 5-stage pipeline. The
processor is designed using a high-level C++ model, enabling
a fast CABA simulator to be compiled from its description.
The processor is synthesized to the gate-level using Mentor
Graphics CatapultHLS and Synopsys Design Compiler with
a target frequency of 650 MHz. The target technology is the
28 nm FDSOI design kit from ST-Microelectronics using the
nominal corner with a supply voltage of 1.0 V. The critical
path of is 1.53 ns, having a maximum operating frequency of
653.6 MHz. The technology node has been selected due to
its low power characteristics, making this implementation of
Comet akin to a low power microcontroller. The sequential
logic represents 45.85% of the total processor area (including
the register file), leaving 54.15% to the combinational logic.
Table III depicts the area that each pipeline stage occupies.
The write-back stage has the largest area, as it includes the
register file, followed by the execution stage, which has the
largest combinational logic.

Pipeline stage Fetch Decode Execute Memory WriteBack
Total Area 6.01% 11.02% 35.47% 5.10% 42.41%
nb. cells 292 3,778 4,872 734 1,196
nb. Comb. cells 226 3,580 4,746 566 172
nb. Seq. cells 66 198 126 168 1,024

TABLE III: Area of each pipeline stage of the Comet processor

To obtain realistic fault models, the different cells of the
design kit are analyzed using MUSCA [16]. Considering neu-
tron injections and an LET set to 58MeV/cm, the peak of the
SET pulse width distribution is 400 ps. Section III-A presents
gate-level analysis and Section III-B the microarchitecture-
level analysis for an SET pulse width equal to 400 ps and
an operating frequency of 500 MHz. Section III-C analyses
the impact of the processor frequency and the SET width.

A. Single-Cycle Gate-Level Analysis

To apply the gate-level analysis, the processor has been
divided into sections, each being a pipeline stage. Due to page
limitations, this section presents the results obtained for the
execution stage. The results for the other stages are similar.

1) Gate-Level Error Patterns: The output of the gate-level
analysis is a set of error patterns. Figure 2.a) shows the proba-
bility of each bit of the output register, i.e., the pipeline register
between the execution and memory stages, to be erroneous.

Fig. 2: Gate-level analysis results of the execution stage

The average probability for a bit to be erroneous is 0.033%.
Some regions of the register exhibit higher error probabilities
than others. Such a region is between bit 32 and bit 63, with
an average error probability of 0.043% (30.9% above average).
This region corresponds to the result field of the register, i.e.,
the ALU output. It is more susceptible to errors because: i) the
ALU combinational cells have large forward cones, and thus,
the SETs are propagated through multiple paths to the register,
and ii) the ALU logic masking depends on the operation – a
multiplication operation has lower masking factor compared
to a logical AND operation. The second most susceptible
region is between bit 94 and bit 125, which corresponds to
data resulting from logical operations on values from Control
and Status Registers (CSRs). The remaining register regions
correspond to data forwarded from the previous pipeline stage.
Fig. 2.b) shows the amount of patterns that exhibit a specific
amount of corrupted bits. We observe that 5.12% of the error
patterns have more than one bit concurrently erroneous, i.e.,
they describe MBUs. The higher number of erroneous bits
observed in an error pattern is 52 faulty bits, i.e, 41.3% of
the register bits is corrupted. Although these error patterns
are latched in the register, they do not necessarily lead to an
error on the application execution. To assess their impact, the
microarchitecture-level analysis of the DUT is required.

2) Estimation time: Based on Eq. (1), considering a 99.8%
confidence interval with 5% error margin for each input set
values, Ninput = 103 different set of values are used as
inputs and Ngl = 103 faults are injected per input, leading
to N = 106 injections in total. Questa Advanced Simulator
10.7b running on a 2nd generation Intel Xeon CPU is used for
gate-level simulation. Table V shows the CPU time required
to perform the gate-level fault injection for all pipeline stages.



Pipeline stage Fetch Decode Execute Memory WriteBack
Est. Time (s) 37 392 496 82 32

TABLE V: Gate-level analysis time of each pipeline stage

B. Microarchitecture-Level Analysis

The gate-level analysis of each pipeline stage of the RISC-
V processor provides the error patterns for each stage. To
simulate the core, a CABA simulator was compiled from
the C++ description of Comet, allowing the fault injection
in any core register at any time. The simulator performance is
18.2 million instructions per second on average, using an 8th

generation Intel i7 CPU running at 2.40 GHz. We built a script
around the CABA simulator to drive the microarchitecture-
level campaign. Initially, the number of faults required to
be injected is computed based on Eq. (1). Using a 99.8%
confidence interval and a 1% error margin, the number of
faults to inject is 23,874. Then, faults are injected in the
microarchitecture and the simulation outcomes are classified,
as described in Section II-B. Four applications are analyzed:
stringsearch, qsort and blowfish from MiBench
suite [18] and an 4x4 integer matrix multiplication.

1) Reliability results: The microarchitecture-level output is
the distribution of observed errors to the error classes. Table IV
compares the following vulnerability analysis methods:
• MA(S): SEUs are injected at microarchitecture-level, with

a uniform occurring probability for all registers, as in [8]–
[10].

• MA(S,A): SEUs are injected at microarchitecture-level, with
a occurring probability proportional to pipeline stage area.

• CL(S,M,A): the proposed cross-layer vulnerability analysis
method, considering SEUs, MBUs and pipeline stage area.
Considering that the Comet processor is microarchitec-

turally close to the Rocket chip [19], the MA(S) results are
coherent with those of [20], strengthening the statement that
processors, sharing the same ISA, also share similar vulner-
ability analysis. The obtained results show, on average, that
the proposed CL(S,M,A) approach leads to 8.32% less masked
faults, which results in a significant increase of other classes:
57.81% more crashes, 24.76% more hangs and 5.78% more
data corruptions, compared to the standard MA(S) approach.
Contrary to the proposed approach, the MA(S) analysis cannot
explore the combinational logic and gate-level masking. More
precisely, when evaluating the blowfish application, the
proposed methodology provides a more than 10% decrease
in the number of masked faults (equivalent to 1,457 faults)
compared to the MA(S) approach. This significantly increases
by 63.4% the number of observed crashes, which can be
explained by the control-dominated nature of blowfish

Application Nb. Full Proposed
cycles gate-level Micro/al-level Gate-level Total

matmul 7096 188.23 days 388 min 40 sec

1039 sec

405 min 59 sec
qsort 6478 171.84 days 327 min 20 sec 365 min 59 sec

blowfish 3058991 81144.83 days 466 min 483 min 19 sec
stringsearch 1636693 43416 days 427 min 20 sec 444 min 39 sec

average 1177314 31230.22 days 406 min 32 sec 423 min 51 sec

TABLE VI: Comparison of estimation times
application. For the matmul application, we observe the
maximum increase in data corruptions (AOM and ISM&AOM
classes), which is 19.23% compared to MA(S) approach. This
behavior is due to the high computation and data-dominated
nature of the application. Since the execution stage has the
largest area, it has a high injection probability, and, thus, a high
probability in corrupting the applications operations.To further
evaluate our cross-layer vulnerability analysis approach, we
compare it with the MA(S,A) approach. The goal is to explore
the origin of the observed results, i.e., whether it is the use
of error patterns to model MBUs or the use of area of the
pipeline stage. Since the percentage of MA(S,A) masked faults
is even higher compared to MA(S), this implies that the origin
is the MBUs modelled by our gate-level error patterns.

2) Estimation time: Table VI shows the estimation times to
obtain the processor vulnerability for the: i) proposed cross-
layer approach, and ii) gate-level fault injection campaign
applied on the complete processor (Full gate-level) running
the target application. The simulator (Section III-A) simu-
lates a gate-level model of the full Comet processor at only
10.2 cycles per second. The smallest application (qsort)
requires 6,478 cycles and the largest application (blowfish)
3,058,991 cycles, which correspond to simulation times of
171.84 and 81,144.83 days, respectively. The gate-level time
of the proposed approach is 1,039 seconds of CPU time, as
depicted in Table V. Since the same error patterns can be used
to characterize several applications, the gate-level analysis is
performed only once. Therefore, the overall estimation time of
the proposed approach ranges between 366 minutes for qsort
and 483 minutes for blowfish.

As a conclusion, the experimental results show that the
Full gate-level approach requires prohibitive estimation time.
On the contrary, the proposed cross-layer method requires
significantly lower estimation time, while maintaining the
accuracy of the analysis. This is achieved thanks to the gate-
level analysis is applied only once per DUT, since the obtained
error patterns are reusable at the microarchitecture-level, and
because of the use of a fast CABA microarchitecture simulator.

C. Target operating frequency and SET pulse width impacts

In this section, we carry out a set of campaigns in order
to explore the impact of the target operating frequency and

Application matmul qsort blowfish stringsearch average
Analysis method MA(S) MA(S,A) CL(S,M,A) MA(S) MA(S,A) CL(S,M,A) MA(S) MA(S,A) CL(S,M,A) MA(S) MA(S,A) CL(S,M,A) MA(S) MA(S,A) CL(S,M,A)Error class

Masked 72.97% 73.28% 67.4% 72.71% 73.27% 67.29% 60.85% 61.48% 54.75% 69.76% 70.46% 63.86% 69.07% 69.62% 63.32%
Crash 6.29% 5.55% 9.71% 7.05% 6.22% 10.92% 6.83% 6.16% 11.16% 7.24% 6.56% 11.45% 6.85% 6.12% 10.81%
Hang 1.54% 1.42% 2.36% 1.07% 1.16% 1.6% 2.14% 2.36% 2.46% 3.65% 3.51% 4.08% 2.1% 2.11% 2.62%
AOM 1.58 1.94% 2.1% 2.47% 2.47% 2.8% 0.06% 0.06% 0.04% 1.67% 1.82% 1.81% 1.45% 41.57% 1.69%
ISM 14 14.17% 14.33% 13.44% 13.72% 14.16% 3.48% 3.32% 3.34% 14.05% 14.06% 14.6% 11.24% 11.33% 11.61%

ISM & AOM 3.62 3.64% 4.1% 3.26% 3.16% 3.23% 26.64% 26.62% 28.25% 3.63% 3.59% 4.2% 9.29% 9.25% 9.95%

TABLE IV: Comparison of vulnerability analysis results



SET pulse width on MBUs population for the execution stage.
Table VII and Table VIII show both the absolute number and
the corresponding percentage of observed SEUs and MBUs,
when varying the target operating frequency and the SET
width, respectively. When frequency is varied, a fixed SET
width of 400 ps is used. We observe that the percentage of
faults leading to MBUs have small fluctuations, on average
5.24% of faults are MBUs. When SET pulse width is varied,
the frequency is set to 500 MHz. We observe a similar
behavior, i.e., on average 4.01% of faults are MBUs. Note that,
when the pulse width is 100 ps and below the SETs are not
often propagated within the latching window of the register.
With a pulse width below 50 ps, no SETs are latched. These
results show that MBUs represent a significant part of the
error population, regardless of the operating frequency or SET
pulse width. This observation, coupled to the impact of MBUs
at the microarchitecture-level, imply that MBUs generated bu
combinational logic, should not be neglected to obtain an
accurate vulnerability analysis.

IV. DISCUSSIONS

It is noteworthy that a full gate-level simulation of the
design, running the application, could yield a better accuracy,
but it would require prohibitive exploration time. Also note
that, once an SET has been propagated to the flip-flops of
its forward cone, the gate-level simulator effectively serves
as a CABA simulator. Therefore, from this point and on,
simulation can continue at a higher abstraction level, such as
the microarchitecture level, making it faster than full gate-level
simulators. The difference between the proposed approach and
a complete gate-level injection campaign is that we replace
the analysis of each application specific instructions, with a
reusable statistically significant distribution of error patterns.

V. CONCLUSION AND FUTURE WORK

The proposed cross-layer vulnerability analysis is based
on two fault injection campaigns, carried out at different
hardware abstraction levels. The gate-level analysis considers
realistic soft-errors, occurring both at the combinational cells
and the flip-flops cells. It is performed only once to reduce
the overall analysis time. The obtained error patterns drive
the fault injection at the microarchitecture level. The experi-
mental results show less masked errors, compared to standard
microarchitecture-level analysis, and significant reduction in
estimation time, compared to full gate-level analysis methods.
On top, although the number of MBUs required to be injected
is small, they have significant impact on the error populations.

Freq. 200 MHz 300 MHz 400 MHz 500 MHz 600 MHz
SEU 9,308 (93%) 15,592 (96.3%) 23,613 (94.1%) 26,489 (94.9%) 30,919 (95.5%)
MBU 699 (7%) 599 (3.7%) 1,473 (5.9%) 1,429 (5.1% ) 1,447 (4.5% )

TABLE VII: Occurred SEUs and MBUs w.r.t. frequency

SET 100 ps 200 ps 400 ps 500 ps
SEU 5,144 (97.6%) 10,529 (95.3%) 26,489 (94.9%) 33,449 (95.9%)
MBU 127 (2.4%) 755 (4.7%) 1,429 (5.1%) 1,432 (4.1%)

TABLE VIII: Occurred SEUs and MBUs w.r.t SET pulse width

As future work, we will focus on improving further the
accuracy and the speed of the proposed methodology. Re-
garding accuracy, the precision of the gate-level analysis can
be improved by considering that a single high-energy particle
can impact to several combinational cells (creating multiple
simultaneous SETs) on scaled technology nodes [3].

REFERENCES

[1] E. Ibe et al., “Impact of Scaling on Neutron-Induced Soft Error in
SRAMs From a 250 nm to a 22 nm Design Rule,” IEEE Trans. on
Elect. Dev., vol. 57, no. 7, pp. 1527–1538, 2010.

[2] S. Rehman et al., Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer, 1st ed., 2016.

[3] M. Ebrahimi et al., “A layout-based approach for multiple event transient
analysis,” in 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6, May 2013.

[4] N. N. Mahatme et al., “Comparison of Combinational and Sequential
Error Rates for a Deep Submicron Process,” IEEE Trans. on Nuclear
Science, vol. 58, pp. 2719–2725, Dec. 2011.

[5] R. Psiakis et al., “NEDA: NOP Exploitation with Dependency Aware-
ness for Reliable VLIW Processors,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 391–396, May 2017.

[6] B. Mutlu et al., “Characterization of the Impact of Soft Errors on
Iterative Methods,” in IEEE Int. Conf. on High Performance Computing
(HiPC), pp. 203–214, Dec. 2018.

[7] J. Laurent et al., “Fault injection on hidden registers in a risc-v
rocket processor and software countermeasures,” in IEEE/ACM Design,
Automation Test in Europe Conference (DATE), pp. 252–255, 2019.

[8] C. Mao et al., “An Automated Fault Injection Platform for Fault Tolerant
FFT Implemented in SRAM-Based FPGA,” in IEEE Int. System-on-Chip
Conf. (SOCC), pp. 192–196, Sept. 2018.

[9] Y. Xie et al., “An Automated FPGA-Based Fault Injection Platform for
Granularly-Pipelined Fault Tolerant CORDIC,” in Int. Conf. on Field-
Programmable Technology (FPT), pp. 370–373, Dec. 2018.

[10] J. Azambuja et al., “A Fault Tolerant Approach to Detect Transient Faults
in Microprocessors Based on a Non-Intrusive Reconfigurable Hardware,”
IEEE Trans. on Nuclear Science, vol. 59, pp. 1117–1124, Aug. 2012.

[11] N. J. Wang et al., “Examining ace analysis reliability estimates using
fault-injection,” SIGARCH Comput. Archit. News, vol. 35, p. 460–469,
June 2007.

[12] M. Wilkening et al., “Calculating Architectural Vulnerability Factors
for Spatial Multi-Bit Transient Faults,” in IEEE/ACM Int. Symp. on
Microarchitecture (MICRO), pp. 293–305, Dec. 2014.

[13] C. Chang et al., “Hamartia: A fast and accurate error injection frame-
work,” in IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN), pp. 101–108, 2018.

[14] R. Leveugle et al., “Statistical fault injection: Quantified error and con-
fidence,” in IEEE/ACM Design, Automation Test in Europe Conference
(DATE), pp. 502–506, April 2009.

[15] I. Tuzov et al., “Accurate Robustness Assessment of HDL Models
Through Iterative Statistical Fault Injection,” in European Dependable
Computing Conf., pp. 1–8, Sept. 2018.

[16] G. Hubert et al., “A generic platform for remote accelerated tests
and high altitude SEU experiments on advanced ICs: Correlation with
MUSCA SEP3 calculations,” in IEEE Int. On-Line Testing Symp.,
pp. 180–180, June 2009.

[17] S. Rokicki et al., “What You Simulate Is What You Synthesize: De-
signing a Processor Core from C++ Specifications,” in 38th IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), IEEE,
Nov. 2019.

[18] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in Int. Workshop on Workload Character-
ization, pp. 3–14, Dec. 2001.

[19] K. Asanović et al., “The rocket chip generator,” Tech. Rep. UCB/EECS-
2016-17, EECS Dept., Univ. of California, Berkeley, Apr 2016.

[20] H. Cho, “Impact of Microarchitectural Differences of RISC-V Processor
Cores on Soft Error Effects,” IEEE Access, vol. 6, pp. 41:302–313, 2018.


