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1 INTRODUCTION 
 

This work is aimed at providing a consultancy on the complex problem of mining image time-series of 
satellite images. This can be done in several ways, but we will concentrate on the most promising one 
which consists in modelling hierarchically the data information content in a Bayesian framework. 
Therfore a concept for spatio-temporal information mining is introduced in section 2. The relevance of 
the approach is demonstrated in section 3 with several examples of probabilistic retrieval of spatio-
temporal patterns.  The implementation of this concept results in a system composed of an automatic 
processing chain and a interactive learning module. Details on the technical aspects of the system  are 
provided in section 4 and in the appendices. 

2 CONCEPT FOR SPATIO-TEMPORAL INFORMATION 
MINING 

 

Authors:  Patrick Héas  / Mihai Datcu  
 

2.1 PROBLEM CHARACTERIZATION  

2.1.1 Satellite image time-series 

 

 

Figure 1: SITS contain many spatio-temporal structures. The yellow arrow points out a ploughing 
phenomenon occurring in the ADAM SITS. We can also see a plane occlusion in the image acquired 32 
days after the first acquisition (14 November 2001), as well as the smooth evolution of the forest cover. 
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Nowadays, huge quantities of satellite images are available from many different Earth observation sites. 
Moreover, thanks to a growing number of satellite sensors, the acquisition frequency of a same scene is 
permanently increasing. Furthermore, the high spatial resolution of the sensors gives access to detailed 
image structures. Thus, opportunities to compose high resolution SITS are growing and the observation 
of precise spatio-temporal structures in dynamic scenes is getting more and more accessible. 

 

A SITS composed of SPOT multispectral images containing 2000x3000 pixels is partially visible in figure 
1. The spatial resolution is 20 meters. The acquired scene is a rural area located in the East of 
Bucharest (Romania). The acquisition campaign was driven in order to provide remote sensing data for 
the Data Assimilation for Agro-Modeling (ADAM) project. The SITS was obtained by daily acquisition 
and by filtering out images presenting a cloud or a snow cover above the project test sites. This 
selection procedure resulted in 38 images irregularly sampled in time, which were acquired over a 
period of 286 days. Figure 2 displays the irregular sampling of the SITS. The images were then made 
superposable and a radiative transfer model was applied to produce reflectance measurements. The 
ADAM project SITS is available on-line [1].  

 

 

Figure 2 : Acquisition dates of cloud free images in the ADAM database. The horizontal axis represents 
time which is irregularly sampled while the vertical axis represents the time difference between 
consecutive acquisition dates.. 

 

SITS are complex objects possessing a rich information content. They contain numerous and various 
spatiotemporal structures. For example in rural scenes, one can observe the growth and the maturation 
of cultures, their harvests, evolutions of ploughland, river floods, etc. Near urban areas, car and plane 
occlusions are frequent but there are also evolving constructions, pollution phenomenon, etc. Some 
examples of spatio-temporal structures are pointed out in figure 1. 

The analysis of spatio-temporal structures are useful to understand complex evolutions which concern 
various domains such as agriculture, forest monitoring, ecology, hydrology, urbanization, etc. But our 
capacity to store these large volumes of data has exceeded our ability to access the broad variety of 
information contained in it. Indeed, limited tools exist to exploit this huge potential of information. 
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Change detection, monitoring and validation of physical models by data assimilation constitute the most 
used analysis for information extraction in SITS. The methods developed in these fields are complicated 
and dedicated to specific applications. Although these techniques are efficient, together they represent 
a limited range of applications. Nevertheless, one may be interested in finding a specific forest cover 
evolution or in detecting wheat harvests occurring during a given period. Until now, only few 
methodshave been developed. They mainly focus on low resolution images regularly sampled in time 
such as meteorological data [2][3][4]. Thus, in order to adapt to a broader range of application and to 
have access to the variety of information contained in SITS, collaborative and generic methods are 
needed. 

2.1.2 Information Mining 

Large volumes of data are important resources. But to be relevant, users must be able to interpret the 
data information content. Understanding this huge quantity of data, which may be complex and 
multidimensional, can represent laborious work for users. Images are particularly complex objects 
possessing rich information contents. A manual analysis of associations and relations among images is 
not feasible. Furthermore, the usefulness of such an analysis may be restricted to a particular 
application. But there is a broad diversity of application domains and it is not possible to produce a 
specific analysis for each one of them. Generic analysis methods are needed to respond specifically to 
the needs of each application domain.  

In summary, in many fields, there is a real need to transform growing databases into knowledge. The 
objective of information mining is to solve this problem, by adapting the data information content to the 
users’ needs. Information mining can be defined as the non-trivial process of analyzing data in the 
perspective of discovering implicit but potentially useful information. The discovered information can be 
for instance patterns, association rules, causal effects, changes, anomalies, etc. An information mining 
perspective enables content based retrieval, knowledge discovery and data understanding.  

 

Figure 3 :  Phenomenon process changes which occur in a dynamic scene have different time-scales. 
For example, plane occlusions are evanescent objects over short time-periods whereas buildings are 
stationary objects over long time-periods. Phenomena process which are changes relevant to crop 
evolutions, such as the growth of crops or their harvests, possess various time-scales. Spatio-temporal 
objects with time-periods below the blue dashed line, might possess higher frequencies in their spectrum 
than the sampling limit frequency. 
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The information mining problematic can be understood as a communication channel problem with : on 
one hand the database representing the information source and, on the other a user representing the 
receptor. Along the channel, the data is hierarchically processed, inducing a signal representation 
followed by a semantic representation. The signal representation is obtained by extracting information 
from the data by stochastic modeling of the signal. In such a case, extracted information is described 
with a particular model vocabulary, which is unmeaningful for users. The semantic representation is 
obtained by modeling the users’ semantics. In such a case, information is described with a vocabulary 
and a syntax natural to users. 

The goal of information mining is to bridge the semantic gap, that is to say, to minimize the loss of 
information between information available through the semantic representation, and information 
obtained by a direct data inspection. 

 

Before going into the kernel of this paper which is the description of a SITS information mining concept, 
let us motivate our approach by pointing out some difficulties for SITS modeling.  

The analysis of spatio-temporal structures in SITS is particular. Indeed, heterogeneous temporal and 
spatial scales characterize structures. Figure 3 illustrates the variety of temporal scales attached to 
structures. Spatial scales of structures are also very different. Thus, SITS modeling methods should 
capture information at various scales. However, a pixel-localized time-series analysis is generally not 
appropriate to characterize high resolution SITS structures. For the ADAM database in particular, the 
superposability difficulties, the irregular sampling, and the sampling limit frequency, prevent a pixel-
localized stochastic modeling. The dashed vertical line in figure 3 illustrates this limit. It discriminates 
objects which possess higher frequencies in their spectrum than the sampling limit frequency. To fight 
against these constraints, analysis at an object level may be more robust against noise and 
superposability errors. Moreover, it may enable an investigation below the frequency limit by using 
contextual information. For instance, the behavior of the smoke of a factory, which is an object evolving 
in space according to the wind effects and in time according to the factory activities, can be modeled in 
a more efficient way using its spatial context rather than a space localized time-series analysis. 

 

To respond to the problematic of information mining in SITS, we present in the following section a 
Bayesian hierarchical modeling of SITS information content. The different inference steps of the 
hierarchy are hereby detailed : we present in section 3 an unsupervised learning procedure which 
results in a graph of dynamic cluster trajectories, and in section 4 we detail an interactive learning 
procedure which results in a semantic labeling of spatio-temporal structures. The graph of trajectories 
and the semantic labels constitute the signal and the semantic representations of the SITS information 
content. 

 

2.2 BAYESIAN HIERARCHICAL MODELING OF SITS 
INFORMATION CONTENT 

 

In order to build an information mining system for dynamic scene understanding which is free from the 
application specificity and which enables its open use in almost any scenario, we use a Bayesian 
hierarchical model made up of 6 different levels (Fig. 4). The model links the information source , 
which represents a SITS comprising spatio-temporal structures, to the different users' semantics        . 

The hierarchy is defined by the relation between the random variables  

 
where , , , , and are refined levels of information representation. As it is a Bayesian 
hierarchical model, the inference of a higher level in the hierarchy depends on the adjacent lower level 
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and, conditionally to the latter, is independent of all other lower levels. Thus, given some data, we infer 
the most likely model by maximizing the joint distribution  

 
Hence, the levels of the hierarchy are learned independently by applying Bayesian inferences or 
inferences based on entropic measurements on families of stochastic models. Moreover, for each 
learning step, we can incorporate prior knowledge by using Bayes rule.  

 

 

Figure 4 : Hierarchical modeling of SITS information content. The hierarchy enables users to link spatio-
temporal structures to their specific interests. First, primitive SITS features are extracted from the data 

. Two complementary representation are induced by using the TL feature spaces and the MT feature 

space. Next, dimension reduction techniques are applied and result in projected features . Then, the 
feature distributions are learned and clusters and classes are discriminated. The unsupervised learning 

procedure is finally achieved by inferring graphs and dynamic classifications, which code the data 

structures. By interactive learning, the user interests are linked to the graphs and semantic labels 
are assigned to spatio-temporal structures. 
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We decompose the hierarchy  into two parts :  

• unsupervised learning : for a particular SITS realization , we infer a 

collection of graphs representing dynamic cluster trajectories coding spatio-
temporal structures;  

• interactive learning : the collection of graphs are linked to a collection of 

users' semantics ; thus we induce a semantic labeling of spatio-temporal structures 
of SITS. 

The graph inference, which requires a significant computational cost, is an application-free learning 
procedure. Based on this objective representation, the semantic labeling, which is interactive, learns 
user-specific interests using positive and negative examples. 

 

Before detailing the levels of the hierarchy, let us introduce several spaces for the SITS representation. 
Image time-series are stochastic processes which are usually represented in a multidimensional space 
comprising two spatial axes , a time axis , and several feature components (radiometric values, 
texture parameters,...). Since the features are assumed independent, the analysis of the 
multidimensional space is done independently on the different types of features. In such a 
multidimensional space, the signal denoted by is represented by a cloud of points. This is the natural 
space for the SITS representation. But, SITS possess several other representations which lead to 
various interpretations. We hereby introduce as follows, several spaces for the SITS representation 
which are used in the proposed information mining concept.  

The space formed by the feature components  and the time axis  is called the dynamic feature 
space. In this space, SITS is represented by a histogram of features evolving in time. 

Considering  time samples, we denote by the  feature components localized at different times 

. We can form  different Time Localized (TL) feature spaces with the  

different time localized feature components . In them, we represent SITS by a succession of 
histograms of features. These spaces constitute the different states of the dynamic feature space. If we 

group features by similarity, we obtain  different collections of  clusters . 

In the image space, we represent the  spatial classifications associated to 
the collections of TL clusters.  

The MultiTemporal (MT) feature space is a multidimensional space composed of the  TL feature 

components . In this space we represent SITS by a multidimensional histogram of 

features. If we group features by similarity, we obtain a collection of clusters 

. In the image space, we represent the spatial classification 

associated to the collection of MT clusters. By projecting the MT clusters 
in the different TL feature spaces, we can decompose the MT representation and reconstruct the 

different states of the dynamic feature space. We denote by , an MT cluster projected in the TL 

feature space at time .  

 

 Equipped with these SITS representations, we present the different levels of the hierarchy. 

• The lowest level represents the data , which is constituted by spatio-temporal structures 
defined in time windows and spatial masks.  
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• First, by using different signal models, features are extracted from the data at a pixel level for 

the different time locations . We then induce two complementary 
representations by placing them in the TL feature spaces and in the MT feature space.  

• Next, to fight against the ``curse of dimensionality'', we employ dimension reduction techniques 
to extract, from the MT feature space, interesting projections containing linear and non-linear 

structures. The projected features are represented in a space composed of the extracted 
components.  

• Then, the distribution of the MT projected features and the TL features are learned using a 
Gaussian mixture model of unknown complexity. The modeling procedure discriminates MT and 
TL clusters possessing Gaussian shapes. MT and TL classifications are then produced, by 
mapping these clusters in the image space.  

• The unsupervised learning procedure is finally achieved by inferring graphs coding the data 
structure of SITS. They model the dynamic feature space by formalizing trajectories of MT 
clusters through TL clusters. Additionally, a spatial constraint is introduced into the inference by 
using the MT and TL classes.  

• By interactive learning, the users' interests are linked to the graphs which represent spatio-
temporal structures. To complete this semantic labeling, parameters of a graph similarity model 
are interactively estimated by updating probabilities of a Bayesian network. This update is 
performed using a Dirichlet model with positive and negative examples provided by a user.  

Further details on this hierarchical model can be found in [18]. 
 

2.3 UNSUPERVISED INFERENCE OF A GRAPH OF DYNAMIC 
CLUSTER TRAJECTORIES 

2.3.1 Feature extraction  

Dynamic scene understanding relies on the ability and robustness of information extraction from the 

observed data. We apply appropriate stochastic models to capture spatial, spectral, or geometric 
structures in each image of the time-series at a pixel level. These models are given as parametric data 

models and assign a likelihood to a given realization of the data for a particular 
value of the parameter vector . Examples of these image models are Gibbs-Markov random field 
models for textural features or the intensities of the multi-spectral images for spectral features [5]. Of 
course, for the latter, no sophisticated modeling is involved.  The extracted features are represented in 
the MT feature spaces. This signal carries the global information on the time-series. But, these 
extracted features can also form, in the TL feature spaces, a collection of signals containing precise 
spatial information.   

 

In the next two sections, we detail the analysis of the extracted features represented first in the MT 
feature space and then in the TL feature spaces. Finally, we use these two types of representation to 
model the dynamic feature space. 
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2.3.2 Modeling a multitemporal feature space  

2.3.2.1 Dimension reduction 

The MT feature space represents a space of high dimensionality since it results from the union of all the 
TL feature spaces. A direct application of a nonparametric procedure is severely restricted in this case, 
by the limitation called the ``curse of dimensionality'' [6]. However, the information contained in a 
feature space of high dimensionality can often be represented with fewer dimensions. In remotely 
sensed images in particular, the spectral bands usually present redundancies. Furthermore, the 
phenomenon is likely to be accentuated when considering an MT feature space. Dimension reduction 
techniques, exploit this property to reduce the space dimension by extracting interesting projections.  

Assuming a model for the  dimensional distribution associated with feature realizations 

, the quality of the  dimensional projected features  can be 

evaluated by the likelihood . Gaussian distributions for PCA or just non-Gaussian 
distributions for PP are examples of these models.  

 

Principal Component Analysis is a linear projection of a dimensional space into a space in which 
the axes of the projections called principal component axes are decorrelated. Moreover, the principal 

components are ordered according to a variance criterion. In other words, the eigenvector of the 

data covariance matrix corresponding to its biggest eigenvalue defines the principal component 
axis. This eigenvalue decomposition is more convenient than the maximization of the projection 
likelihood. The analysis relies on the assumption that the data has a normal distribution in the feature 
space.  

In order to perform a dimension reduction, only principal components with should be selected. 

To evaluate the loss of information, we use the signal energy  where the represent 
the eigenvalues of the features autocorrelation matrix. Thus, selecting the first principal 
components corresponds to a percentage  of restitution of the signal energy equal to 

. 

 

Projection Pursuit groups dimension reduction techniques that extract linear projections which 
contain non-linear structures from a multidimensional space. Furthermore, under certain assumptions, 
the extracted components are independent from the others. The extracted components are ordered 
according to a criterion of non-Gaussianity evaluated by a projection index. This approach is equivalent 
to the maximization of the projection likelihood [7]. The analysis relies on the very general assumption 
that the data possesses a non-Gaussian distribution, which is in most cases, a valid hypothesis. After 
selecting a sufficiently large percentage of the signal energy with PCA, we apply PP on the reduced 
signal in order to exploit the extra compression associated with non-linear relationships.  

The higher the dimensionality of the extracted projections, the richer their information contents. For 
example, structures in a plan can not always be detected in one-dimensional projections. We perform 
our analysis using a bi-dimensional projection index based on the chi-square distance. The relevance of 
this distance for the approximation of Kullback-Leibler divergence has been shown in [8]. In order to 
reveal all the maxima of the projection index, we employ an efficient stochastic optimization procedure 
proposed by Posse [9] combined with the structure removal technique proposed by Friedman [10].  
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To perform a dimension reduction, the  first independent components with are selected. -
values are employed in order to decide whether the components are the effect of noise or are really 
independent. Indeed, -values are useful to determine limits which correspond to probabilities of 
projection independence [8]. Thus, for a given index limit called quantile,  independent dimensions 
are extracted and dimension reduction is achieved.  

 

Dimension reduction techniques such as PCA and PP are able to condense the information contained in 
the MT feature space into a sub-space of lower dimensionality. They provide an efficient solution for 
parameter and model inference in multidimensional spaces with limited sample sizes. For further details 
on these techniques, we refer the reader to section 6.1.2 of [19]. 

 

2.3.2.2 Mixture modeling 

A. Gaussian mixture models  
 
Stochastic models are appropriate tools to learn about this multidimensional signal. A Gaussian mixture 
model is able to approximate efficiently, any distribution for which no prior knowledge is available and 
in particular multimodal distributions. Thus, a Gaussian mixture assumption is well suited to model the 

distribution of the  dimensional realizations of the random variable , which are 
assumed independent and identically distributed. A mixture modeling procedure can infer similarities 
that can then be used for clustering the feature space. Components of the mixture are constituted by 
the grouping of similar feature points and thus, will define clusters .  

A dimensional Gaussian mixture model is composed of components weighted by with 

mean vectors noted as and covariance matrices noted as . The quality of the model for 

given realizations si evaluated by the likelihood . In order to perform the modeling 
procedure without any constraints either on the number of Gaussians present in the mixture or on their 
parameters, a criterion is needed to select the best model among all the possible Gaussian mixture 
configurations. In order to infer among a collection of models, the minimum description length (MDL) 
principle is applied. 

 

B.MDL principle for Gaussian mixture modeling 
 

For the realizations , we choose out of a finite set of possible models 

, a model hypothesis of distribution for . We consider also the 

code length function (measured in bits) needed for the description of under the model 

hypothesis . A bijection appears between the probability distribution , and the code 

length function .  

Minimizing this code length, called by Rissanen, ``stochastic information complexity'', over selects 
the model maximizing the Bayesian evidence. But the computational cost of this quantity is often 
prohibitive. A first order approximation is achieved by the so called ``2-part MDL code'' [11]. For 

parametric model families, this code length function noted as is composed of two terms : the 

code length necessary to encode the model and its estimated parameter , and the code length 
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necessary to encode the data keeping in mind the model and its estimated parameters. The first 
description length part is induced by the model and parameter encoding using non-informative prior 
distributions. The second description length part is related to the model maximum likelihood 

.  

 
The MDL principle states that the best model among a collection of tentatively suggested ones, is the 
one that encodes the data with the smallest code length. To estimate the code length, we can use the 
stochastic information complexity or its first order approximation, the 2-part MDL code. The 
computation of this approximation requires a less intensive calculation procedure and is particularly 
convenient for mixture modeling.  

 

On the basis of the 2-part MDL code, we derived the description length of the data for the family of 
Gaussian mixture models. A simplified model, neglecting the influence of surrounding Gaussian 
components and assuming constant variances for the Gaussians, was previously developed in [12]. A 2-
part description length, derived from modeling a mixture of uncorrelated Gaussians, has been proposed 
by Wallace and Dowe [13]. In this paper, we extend this algorithm to the correlated Gaussian mixture 
model. This algorithm is to some extend, equivalent to the Bayesian Autoclass algorithm [14]. We 
assume the hypothesis of non-interfering Gaussians. The 2-part MDL code length for encoding the data 

using a Gaussian mixture model of Gaussians of dimensionality , is thus 
defined. Section 6.1.3.1 of [19] details how this 2-part description length is derived. 

 

C.Optimization 

The goal is to estimate , and , by minimizing . Enumerating all 
configurations and evaluating the 2-part MDL code is not feasible. Instead, an optimization algorithm 
which evaluates the changes of the code length between two configurations rather than the code 
length itself is used.  

The change of the code length induced by the removal of a given Gaussian can 

be expressed as a function of . We refer the reader to section 6.1.3 of [19] for the detail of this 
function. With this establishment, we introduce the optimization algorithm. It is composed of the 
following steps : 

 
Ø 1 Initialization : A initial Gaussian mixture is produced. It is composed of a high number of 

Gaussian, with parameters noted as and . The initialization is done by 
randomly spreading the clusters according to a Gaussian distribution of mean and variance 
learned from each data feature component.  

 

Ø Adaptation : At iteration , we consider Gaussians in the mixture. An Expectation 
Maximization (EM) algorithm [15] is used to perform a ML estimation of the Gaussian mixture 

parameters and . 
 

Ø Selection : For the same iteration , we remove the Gaussian which induces the 
biggest decrease in the description length 

. 
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Then we increment and go back to step 2. If no decrease is observed, that is to say if 

, 
 we do not remove any Gaussians and go to step 4. 
 

Ø Convergence : if at iteration (q_end), no other decrease in the description length is observed, 
then the algorithm stops iterating step 2 and 3. We then obtain the estimated number of 
Gaussians K(q_end), with the ML estimates of the parameters of the mixture model 

. 
 
Section 6.1.3.2 of [19] details the optimization procédure.  
 
The MT feature space is modeled according to a Gaussian mixture distribution. Thus, we learn the 

parameters , and related to the Gaussian mixture model. The modeling 
procedure infers similarities which are then used to cluster this multidimensional feature space. 

Therefore, each Gaussian comprises feature points and defines a cluster . In parallel, MT 

spatial classes of the image time-series are generated. 
 

2.3.3 Time-localized representations 

2.3.3.1 Projecting the multitemporal feature space 

From an initial perspective, the signal representation in the MT feature space can be 

projected to enable TL representations. Consequently, each MT cluster with  can 
be projected into different TL feature spaces. We obtain projected MT clusters denoted by 

. The projected clusters are representative of global behaviors decomposed in 
time. Furthermore, they are specific of the MT feature space modeling. Consequently, they contain 
information about the time evolution of the feature distribution. 

 

2.3.3.2 Modeling the time-localized feature space  

New modeling procedures can be performed directly for each of the TL representations , 
independently from the MT feature space modeling. This procedure produces  sets of TL clusters 

with , where  is the number of estimated clusters at time . In 

parallel, spatial classes are obtained. In this case, the TL clusters are defined for given time 
locations which are specific to the TL feature space modeling. Consequently, they contain TL 
information on the feature distribution.  

To perform these TL clusterings, we use the MDL based Gaussian mixture modeling algorithm defined 
in section 3.2.2. 
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2.3.3.3 Complementarity of the representations 

The MT feature space contains global information including the TL information. Moreover, for TL 
clustering, the separability of the different clusters is not as clear as for the MT case.  
However, TL analysis in contrast to the analysis of the highly dimensional MT feature space, allows a 
more detailed information extraction.  

Consequently, as the interest is a time decomposition of the signal, one should associate these 2 
different TL representations for a complete understanding of dynamic clusters. 

 

2.3.4 Modeling the dynamic feature space 

Our interest is now focused on modeling the signal represented in the dynamic feature space.  

Each MT cluster has a particular behavior when observing its evolution into successive TL 
representations. For example, some MT clusters may share the same cluster at a given time and split 
or/and merge with other MT classes at another time. The problem is to quantify, at a given time, the 
similarity of these projected MT clusters with the goal of inferring spatio-temporal relations. Since our 
interest is particularly time locations and according to the previous remarks on the complementarity of 
both TL representations, we propose the following model of trajectories : the trajectories of the 

projected MT clusters at the different times are formalized using collections 

of TL clusters . 

 

2.3.4.1 Inference of dynamic cluster  

Based on these considerations, we define a model, noted as , for the dynamic cluster trajectories. 
This model is a probabilistic distribution on the MT cluster collection conditioned by a graph of 

trajectories constituted with TL clusters. Thus, we define the likelihood of a given a 
graph of trajectories.  To express this distribution, we hereby introduce a few notations. We decompose 

the graph in a set of graphs of trajectories formed by TL clusters, where 

each graph is associated to an MT cluster . By independence assumptions, we 

decompose this joint probability distribution into a simple product of probabilities 

. We refer the reader to section 6.2.1 of [19] for further details on this decomposition. 
To evaluate the latters, we map into probabilities the Kullback-Leibler divergence [16] noted as 

, which is an entropic measurement able to compare the two different TL distributions 
and learn about their similarity. Because of the relative interest for each of the MT class separately, a 
spatial constraint is introduced : this divergence measurement is weighted by the number of data points 
belonging to both of the corresponding MT and TL spatial classes.  

 

Note that the clusters are characterized by multivariate Gaussian distributions and thus, the divergence 
calculation is performed analytically. The maximum of the likelihood probability (c.f. Eq. ) can be 

obtained by using graphs comprising all the TL clusters . But as the objective is to infer only the 
most likely associations of MT clusters with TL clusters, we limit the graphs complexity by removing 
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associations with TL clusters which possess a probability below a given threshold . 

Thus, the graphs maximizing the likelihood are simply those constituted with TL 

clusters for which probabilities are higher than .  

 

Hence, using MT clusters, we infer graphs of trajectories of dynamic clusters which are composed of TL 

clusters and where the complexity of the graphs depends on a threshold parameter . These graphs 
constitute a model for the signal representation in the dynamic feature space. 

2.3.4.2 A graph of dynamic cluster  

The image time-series has been previously submitted to several processing levels. They result in a 
specific representation which is a graph modeling the trajectories of dynamic clusters. The chronology 
of the time-series and the irregular sampling information are stored in the graph. The trajectories 
information is condensed in the nodes and branches of the graph. Figure 5 summarizes the description 
of the graph characterizing the dynamic clusters. 

 

Figure 5 : Description of the graph of dynamic cluster trajectories. 

• A node represents a TL cluster defining the component of the Gaussian mixture at a 

given time and is related to a collection of MT clusters by a set of probability measurements. 

The complete Gaussian mixture at a given time is described by the entire set of TL clusters. 

Each MT cluster associated to the node is characterized by a pixel weight 

, a divergence measurement and TL Gaussian parameters. 
Moreover, each node regroups a set of indexed points in time and space represented in a TL 

class .  
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• The branches of the graph represent the MT cluster evolutions between two image samples. A 

branch, linking two consecutive TL clusters and which is related to a given MT 

cluster , is characterized by a time sampling interval , a pixel flow and TL and MT 
Gaussian parameter evolutions. The flow of feature points exchanged between the TL cluster 

and is the number of pixels shared by the two TL spatial classes and 

. Furthermore, because of the restriction to a given MT class, the flow is determined 
by the number of pixels shared by the previous TL spatial classes and the MT spatial class 

. The quantization of flow of feature points enables us to evaluate the merging and 
the splitting of the dynamic clusters in time and in each feature dimension. These phenomena 
are simply related to the number of in going and out going branches associated to the nodes.  

The internal MT cluster changes between two consecutive times and can be quantified 

by mutual information. By using the projections of an MT cluster in two consecutive times 

and , mutual information between the two Gaussian projections can be measured using an 
analytical computation.  

 

The graph characterizing the dynamic clusters is a representation of the signal where the 
spatial variable is hidden. However, spatial indexes related to each point in this feature space 
representation are accessible. Exploiting them permits us to generate representations in the image 

space. Indeed, we can associate to the different MT cluster trajectories, different 
representations in the spatio-temporal space. This space is formed by the spatial and temporal 

components and . We call these representations dynamic classifications. At each time , 

each dynamic classification is composed of a particular combination of TL classes . The TL 

classes of the dynamic classification related to the MT class , are those which correspond 

to TL clusters in the associated graph of trajectories .  

 

These dynamic classifications contain spatio-temporal information missing in the dynamic feature space 
representation. Together, these representations describe objectively the feature evolution and the 
spatial evolution of the image time-series. 

 

2.4 UNSUPERVISED INFERENCE OF A GRAPH OF DYNAMIC 
CLUSTER TRAJECTORIES 

 

In this section we focus on a very important step in providing content-based query techniques: the 
interaction with the user and the flexible incorporation of user-specific interests. It constitutes the last 
level of the hierarchical information modeling. The semantic modeling detailed in this section was 
previously presented in [17]. The learning framework presents similarities with the one adopted by 
Schroder et al. [5].  

 

Spatio-temporal processes, present at a given time and in a spatial window, can possess subjective 

user-specific semantics denoted by . A user may be interested in retrieving similar events and thus, 
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may want to know when and where similar spatio-temporal patterns occurred. Moreover, the inference 

of the graph is a robust and unsupervised coding of SITS. And, as sub-graphs contained in are 
stochastic models for these spatio-temporal patterns, they can also possess user semantics. Therefore, 
based on this objective signal characterization, we are interested in learning semantics from users in 
order to achieve a semantic labeling of sub-graphs representing spatio-temporal patterns. Such a 
learning procedure could enable the recognition and the probabilistic retrieval of similar events.   

 

 

 

Figure 6 : Interactions between a user and a graph-based learning system. The user transmits time-
windows and a spatial masks to the system. They correspond to spatio-temporal patterns of interest or 
non-interest; based on the graph representations of these examples associated to their dynamic 
classifications, the system learns interactively user-specific semantics and retrieves, in time and in space, 
similar spatio-temporal structures. 
In this perspective, we schematize in figure 6 the interactions between a user and a graph-based 
learning system : the user transmits to the system time-windows and spatial masks corresponding to 
spatio-temporal patterns of interest or non-interest; based on the graph representations associated to 
these positive and negative examples, the system learns interactively user-specific interests and 
retrieves a collection of spatio-temporal structures with similar semantics occurring in defined time-
windows and spatial masks. 

In order to define a model for user-specific semantics, a parametric similarity measure 

between two sub-graphs and is employed [17]. This measure is an extension of the inexact 

matching algorithm proposed in [20]. The parameter vector weights the contribution of each type of 
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sub-graph features. A given parameter vector corresponds to a particular user-specific similarity and 
formalize a particular semantic.  

By defining interactively a similarity, it is possible to link the subjective elements representing the 

user semantics to the objective sub-graph features . For this we derive from the parametric 

similarity likelihood probabilities , where is an estimated parameter 

vector and is an estimated reference sub-graph. The estimation of this parameter vector is made 
interactively by updating the probabilities of a Bayesian network with user examples. More precisely, 

the probability update is performed indirectly by adjusting the hyper-parameters vector of a 
Dirichlet model, depending on the users' examples. For further details, we refer the reader to [17].  

For notation simplification, the conditioning of the likelihood by a model is omitted in the following. 
Based on the likelihood, using a Bayesian context enables the estimation of posterior probabilities 

and thus, allows a semantic representation of the SITS content. Indeed, considering that a 

user provides positive or negative examples, corresponding to a positive or negative 

semantics, two likelihood probabilities and can be derived for each sub-

graph. Moreover, graph priors can be obtained using the formula , 
where the summation is done over the positive and negative semantics. Thus, assuming a uniform prior 

on the semantics, the posterior probability of the positive semantics is inferred using Bayes 
rule. For details on this Bayesian inference procedure, we refer the reader to chapter 7 of [19].  

 

By interactive learning, user-specific semantic posterior probabilities are obtained for each 

sub-graph . Therefore, a semantic labeling of sub-graphs is carried out which enables spatio-
temporal reasoning and probabilistic retrieval of spatio-temporal structures in SITS. 
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3 EVALUATION OF THE SPATIO-TEMPORAL 
INFORMATION MINING SYSTEM 

 

Author:  Patrick Héas   

 

3.1  INTRODUCTION 
An exhaustive evaluation of an information mining system is not an easy task. It requires the 
development of specific tools able to measure the amount of information communicated between the 
data and the users [22]. Thus, the loss of information at each level of the model hierarchie has to be 
evaluated. In this document, we limit ourselves to validate the system by showing relevant examples of 
query results obtained by interactively learning several semantics. 

 

Experiments presented in this document were performed using a SITS composed of SPOT multispectral 
images containing 2000x3000 pixels. The spatial resolution is 20 meters. The acquired scene is a rural 
area located in the East of Bucharest (Romania). The acquisition campaign was driven in order to 
provide remote sensing data for the Data Assimilation for Agro-Modeling (ADAM) project. The SITS was 
obtained by daily acquisition and by filtering out images presenting a cloud or a snow cover above the 
project test sites. This selection procedure resulted in 38 images irregularly sampled in time, which 
were acquired over a period of 286 days. The images were then made superposable and a radiative 
transfer model was applied to produce reflectance measurements. The ADAM project SITS is available 
on-line [1]. 

 

3.2  SPATIO-TEMPORAL REASONING 
In order to demonstrate the capabilities of this spatio-temporal information system, which is able to 
exploit the information diversity contained in image time-series, we present in the following learning 
examples of various semantics, specific to dynamic rural scenes. 

 
Ploughing of crops We begin by the search of spatio-temporal structures, associated to the ploughing 
of crops. We perform the learning with examples defined in a spatial window of 200x200 pixels and in a 
time-window constituted of the 38 samples. The searched structures are defined spatially by a MT class 
and temporally by a time-window of 4 samples. Note that prior knowledge is already introduced at this 
level by chosen the size of the time window including the structures. Candidates which posses different 
time scales are thus excluded from the search. By interactive learning of the semantic, posterior 
probabilities of structures are inferred and, by maximization of these probabilities, structures are 
retrieved in space and in time. The figure 7 present the retrieved structures possessing the highest 
posterior probabilities. The learning has enabled to retrieved the majority of the ploughing phenomena 
occurring in the data. Nevertheless, we note a few false detections. We then extend the search to a 
wider spatial window of size 800x800 pixels. The figure 8 presents the retrieved structures possessing 
the highest posterior probabilities and the associated dynamic classifications. As expected, we retrieve 
structures with similar semantic. Because the number of ploughing phenomena increases with the 
image size, we characterize better this semantic and false alarm decrease. Note that the visualization of 
the dynamic classification enables us to follow the spatial evolution, what is particularly interesting 
when the image size becomes important.  

Note that the wider the time-window containing the structure is, the more they will be characterized 
and their semantics will be differentiated. Thus, the ploughing phenomena occur in a quite short time-
period. Moreover, these phenomena possess variable characteristics, depending on the crop nature. 
Consequently, the differentiation of a positive semantic class from a negative semantic class is difficult.. 
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Figure 7 : Spatio-temporal structures associated to the ploughing of crops, retrieved by interactive 
learning. The spatiotemporal structures are searched in a spatial window of 200x200 pixels and in a 
temporal window constituted of 38 samples. The most likely structures, defined spatially by a MT class 
and temporally by a time-window constituted of 4 samples, are retrieved in space and time. The figure 
presents the most likely spatio-temporal structures ranked, from top to bottom, according to their 
posterior probabilities P . Each line presents a retrieved spatio-temporal structure, i.e. a retrieved MT 
class (left) and a time window (given by the dates displayed in the first and last image of the line), and 
the image time-serie (right) where the spatio-temporal structure appear. 

 

Thus, we limit ourselves to the positive examples. Therefore, posterior probabilities are not very high 
and there is a moderate discrimination of this semantic 

This example demonstrate the system capability to learn very accurate semantics, that is the ploughing 
after the harvest of a wheat crop. Moreover, in addition to the probabilistic retrieval of structures, the 
system enables the user to understand the spatial evolution of the ploughing phenomena via the visual 
analysis of the dynamic classification. 
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Figure 8 : Spatio-temporal structures associated to the ploughing of crops, retrieved by interactive 
learning. The spatiotemporal structures are searched in a spatial window of 800x800 pixels and in a 
temporal window constituted of 15 samples. The most likely structures, defined spatially by a MT class 
and temporally by a time-window constituted of 4 samples, are retrieved in space and time. The figure 
presents the most likely spatio-temporal structures ranked, from top to bottom, according to their 
posterior probabilities P. Each line presents a retrieved MT class (left) and its associated dynamic 
classification (right). The time window in which is defined the retrieved structure is given by the temporal 
location of the first and last image of the line. The image time-serie, containing all the retrieved spatio-
temporal structures, is presented in the bottom of the figure.  

 
Maturation of crops. We then train the system to retrieve spatio-temporal structures associated to 
the maturation of crops. The structures are searched in a spatial window of 200x200 pixels and in a 
time-window constituted of the 38 samples. As the maturation phenomena occur on a rather long time 
period, we search structures included in a time window of 12 samples. We communicate a few positive 
examples which are enough for the discovery of similar structures. Contrary to the previous ploughing 
semantic, the learning of a negative semantic is performed with very few examples. This learning 
facility is likely to be induced to the important width of the considered time window. We thus obtain a 
relevant learning of both positive and negative semantics. Consequently, the retrieved structures are 
associated to high posterior probabilities. The results of the search in space and time is presented in 
figure ç. The spatio-temporal structures are represented together with sub-sampled time-series (only 
three images have been selected from the 12 samples of the time-serie). Note that the crop evolutions  
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Figure 9 : Spatio-temporal structures, associated to the maturation of crops, retrieved by interactive 
learning. The spatiotemporal structures are searched in a spatial window of 200x200 pixels and in a 
temporal window constituted of 38 samples. The most likely structures, defined spatially by a MT class 
and temporally by a time-window constituted of 12 samples, are retrieved in space and time. The figure 
presents the most likely spatio-temporal structures ranked, from top to bottom, according to their 
posterior probabilities P. Each line presents a retrieved spatio-temporal structure, i.e. a retrieved MT class 
(left) and a time window (given by the dates displayed in the first and last image of the line), and the 
image time-serie (right) where the spatio-temporal structure appear. 

 

during the training, while the evolutions associated to lower probabilities correspondent to the 
maturation of different cultures.  

This example highlights the system capability to learn a very general semantic which is associated to 
quite different structures. Indeed, the maturation semantic can be associated to the specific culture of 
soja, but can also be associated to the increasing of a forest biomass. 

 
Evolution and blooming of colza. We focus now on the training of a semantic associated to the 
blooming of colza. The colza blooming period is quite short, a few weeks, and occurs in spring. 
Consequently, the searched structures are included in time window constituted of of 6 samples 
comprised between march and june. A single example communicated to the system is enough to 
retrieve similar phenomena in a spatial window of 800x800 pixels. The figure 4 presents the structures 
possessing the highest probabilities. We note that because any negative examples have been 
communicated to the system, the probabilities remain low. The presence of an aerosol is interpreted as 
a blooming phenomenon. 

If we communicate negative examples to the system then, the semantic class differentiate slightly. The 
figure 10 presents colza crops, retrieved and clearly differentiated from other cultures, retrieved in a 
window containing 200x200 pixels and in a time window of 38 samples. 
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This result is congruent with the previous remarks and strengthen our intuition : the wider the time-
window containing the structure, the more differentiate the semantic. 

 

 

Figure 10 : Spatio-temporal structures, associated to the blooming of colza crop, retrieved par 
interactive learning with a single positive example. The spatio-temporal structures are searched in a 
spatial window of 800x800 pixels and in a temporal window comprising samples acquired between march 
and june 2001. The most likely structures, defined spatially by a MT class and temporally by a time-
window constituted of 6 samples, are retrieved in space and time. The figure presents the most likely 
spatio-temporal structures ranked, from top to bottom, according to their posterior probabilities P . Each 
line presents a MT class (left) and its associated time window (given by the dates displayed in the first 
and last image of the line). 

 

Cultural practice for wheat and pea. Finally, we research spatio-temporal structures associated to 
crops submitted to some cultural practice. We thus focus on identical annual evolutions and more 
precisely to the wheat cycle : in autumn, the crop is ploughed then sowed; the culture vegetate during 
winter; during spring, the cultures grow until maturation; at the end of summer, the wheat is finally 
harvested. We also consider the evolution of pea culture : the evolution is characterized by the leaves 
development and ramification during spring, a blooming in the beginning of june and a harvest in 
august. We search spatio-temporal structures in a spatial window of 800x800 pixels. In this spatial 
window, a single positive example is chosen, defined spatially by a MT class and temporally by a 
maximal time-window constituted of 38 samples. We retrieve so crops of same nature which have been 
submitted to identical changes. For instance, we will be able to differentiate crops of similar nature 
which have been harvested in different periods. 

The most likely structures retrieved after that we provided a particular wheat or pea crop to the system, 
are presented in figure 11. First of all, we observe a sparse spatial repartition of the structure 
associated to these semantics. Then, in order to understand why these structures have been retrieved 
with the highest posterior probabilities, we need to inspect carefully the structure temporal evolutions 
visible in the image time-serie. This visual inspection enables us to conclude that similar cultural 
practice characterize the retrieved crops. Consequently, this example demonstrate the system capability 
to recognize complex phenomena, spread in space and marked in time by similar events. Obtaining 
similar results by only inspecting visually the data would require a lot of man power. 
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Figure 11 : Spatio-temporal structures, associated to some cultural practice for wheat or pea, retrieved 
par interactive learning with a single positive example. The spatio-temporal structures are searched in a 
spatial window of 800x800 pixels and in a temporal window comprising 38 samples. The most likely 
structures, defined spatially by a MT class and temporally by a maximal time-window constituted of 38 
samples, are retrieved in space. A single example of evolution of wheat or pea crops, enables the 
system to discover crops of same nature submitted to the same cultural practice (same period of 
harvest, ploughing, etc). The figure presents on two lines, corresponding to the 2 different learnings, 
the most likely spatio-temporal structures (above). On each line, the retrieved MT classes are ranked, 
from left to right, according to their posterior probabilities P . The image time-serie, temporally sub-
sampled, is presented on 3 lines (below). The latter contains all the retrieved spatio-temporal 
structures. 
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3.3 CONCLUSION 
Through these semantic labeling examples, the power of the system has been highlighted. Indeed, the 
variety of the information content of satellite image time-series has been exploited. The modeled 
semantic can be associated to very specific phenomena but also to more general evolutions. In 
addition, these examples have demonstrated the system performance to search structures in space and 
in time and to understand them. Nevertheless, we noted difficulties to learn negative semantics, i.e. to 
discriminate positive semantics, when considering too narrow time-windows to characterize structures. 
These difficulties are probably induced by the semantic model limitations [19]. 
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4 THE SPATIO-TEMPORAL INFORMATION MINING 
SYSTEM AND ITS IMPLEMENTATION 

 

Authors:  Patrick Héas  / Alain Giros 

 

This section describes the general architecture of the spatio-temporal information mining system. The 
latter is based on the theoretical concept which has been introduced in section 2 and evaluated in 
section 3. As exposed previously, this concept enables us to link the interest of a user to specific spatio-
temporal structures.  

 

The system is decomposed in two parts : an unsupervised modeling of  spatio-temporal structures 
resulting in a graph, and an interactive learning procedure based on graphs which leads to the semantic 
labeling of spatio-temporal structures. Fig.1 and Fig.2 present the general architecture of the 
unsupervised learning system and of the interactive learning system. 

 

 
Figure 12. Architecture of the graph unsupervised learning system 
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Unsupervised learning architecture.   Two complementary representations are first induced by 
placing the image time series features (spectral, textural;)  in the Time-Localized (TL) feature spaces 
and in the MultiTemporal (MT) feature space. On the latter, we  apply the dimension reduction 
algorithm “PCA &PP” to produce a condensed description of the MT feature space by extracting several 
interesting projection components. We then use the “TL GMM” and “MT GMM” algorithms to model the 
different feature spaces by Gaussian Mixture Modeling (GMM). It results in classification maps named 
with the extension “.cl”. For each produced classification map, we apply the “AttMaker” algorithm to 
generate classifications attribute files named with the extension “.att”  This algorithm takes as input 
files a classification map with its  corresponding  image components : for the TL representation, each 
map correspond to a given multispectral image, while for the MT representation, the classification map 
correspond to all the  images of the time-serie. Then, the TL/MT classfiles and attribute files are used 
as an input of the “GraphMaker” algorithm which infers the graph of cluster trajectories. The algorithm 
produces graph files at various format ( e.g.  Format 5, Format 6). This programs concludes the 
unsupervised learning part. 

Figure 13. Architecture of the interactive learning system  
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Interactive learning architecture.  The  interactive learning is performed by the 
“SupervisedLearning” algorithm and employs a Graphical User Interface abbreviated as GUI.  

The “SupervisedLearning” algorithm takes as inputs the graph (at format 5) and an extra text file called 
“Delay.txt” (format 9). Semantic labellings are  enabled by user-provided positive and negative 
examples. The user uses the GUI to find the spatio-temporal locations of his structure of interest. These 
locations are transmitted to the learning system by the standard input (keyboard) . The 
“SupervisedLearning” algorithm  generates after each learning step a text file called “ApostList”which is  
an a posteriori list together with relevance feedback parameters. The latter is used as an input by the 
GUI in order to enable the user to visualize the current semantic labeling.  

The GUI  uses as input the graph (at format 6) and an adapted image time-serie in JPG format. We 
remark here that the time delay between consecutive images of the time series is introduced directly in 
the applet code (c.f. Part VII). The adapted image time series is generated by applying the “GaussLUT” 
algorithm on  the original data and converting the raw images in JPG quiklooks using Unix/Linux 
commands. By simple clicks, the user can navigate in the different data representation and view the 
current semantic labeling provided by the “ApostList” input file. 

 

We now detail each module of the unsupervised and supervised learning chains. 

 

4.1 PCA &PP : MULTIDIMENSIONAL ANALYSIS AND DIMENSION 
REDUCTION BY PRINCIPAL COMPONENT ANALYSIS AND 
PROJECTION PURSUIT 

 

This program :  first analysis a multidimensional feature space composed by several images bands by 
Principal Component Analysis (PCA). It produces as an output the principal components. and second 
analysis a reduced multidimensional feature space composed by only principal components representing 
a signal energy percentage (fixed by the user) by Projection Pursuit (PP). It produces as an output the 
extracted projections.  

 

For an overview on the used  models and inferences, we refer the reader to the concept description. 
For further details, we refer the reader to section 6.1.2 of [19]. 
 

a)Activation syntax 
  

i.The program is in the following directory 
../DoxygeneCode/Learning/NonSupervisedLearning/DimReduc 

  The name of the compiled program implementing this module has the   
  following syntax : 'PCA_PP'+terminology 
  where the string terminology is either ‘_SI’ or’_F’, specifying that the input data is either  in   
  short  integers or in floats. 

 
ii.The input/output parameters are designed by the following strings listed on one line, one after 

the others and separated by a white space: 

 
➔Required parameters : 

•arg[1] Text file name containing the names of input image bands. The number of 
lines of this file must be the total number of bands 

•arg[2] Text file name containing the names of output projections created by PP  
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•arg[3] Text file name containing the names of output components created by PCA   
•arg[4] Number of lines of the images  
•arg[5] Number of columns of the images  

 
➔Optional parameters fixing dimension reduction factors : 

•arg[6] Signal energy percentage to preserve with PCA (default is 90%) 
•arg[7] Quantile : index projection limit to stop the search (default is 0.7) 

 
➔Optional parameters for selecting a spatial window in the 'image steak' : 

•arg[8] Column offset when reading the image file (default is 0) 
•arg[9] Line offset when reading the image file (default is 0) 
•arg[10] Number of columns of the image file(default is arg[5]) 

 
➔Optional parameters for tuning the PP optimization algorithm : 

•arg[11] Number of rand_departures (default is 5) 
•arg[12] Maximum number of iterations (default is 50)  
•arg[13] Precision of the convergence (default is 1e-3)  
•arg[14] Factor decreasing the scale of the search at each iteration (default is 2)  

 
iii.Activation syntax example : 

 

Move to the Example directory  

 cd ../DoxygeneCode/Learning/NonSupervisedLearning/DimReduc 

 

Run the  script ./example.sh which contains the following line : 

 ./PCA_PP_SI inputData.txt outPP.txt outPCA.txt 100 100 95 0.7 400 200 3000 
 

b)Input & output formats 
  

• The input image bands are stored in individual files . Their format depends on the compiled program 
terminology. 

To create the input text file , the names of each image band of the multidimensional  image must 
be listed one after the other in consecutive lines 

• The output image components and projections are always saved individually in float format. 

To create the output text file containing the PCA/PP components/projections , the names of the 
components/projections  must be listed one after the other in consecutive lines 

 
c)Usage recommendation: 

 

The analysis by PP requires quite a lot of computation power when dealing with big images  or/and 
a high dimensionality. However, because the PCA analysis is an analytical calculation it is performed 
very fast. Note that the PCA components are created and saved on the disk  before going into the 
PP procedure 
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4.2 TL & MT GMM: GAUSSIAN MIXTURE MODELING OF 
MULTIDIMENSIONAL SPACES BY THE MDL PRINCIPLE  

 

This is the program for inferring by MDL using a data 2-part coding, a Gaussian mixture model of 
unknown complexity (parameters and number of Gaussians). 

Modeling procedures are  chained. for clustering consecutive TL feature spaces.  The initialization is 
done using the Gaussian parameters inferred for the previous modeling. Furthermore, the algorithm 
checks that there is a sufficient number of Gaussians (fixed by the user) after an initialization, and adds 
new Gaussian if necessary. For the MT feature space a independent modeling procedure is performed. 

 

For an overview on the used  models and inferences, we refer the reader to the  concept description. 
For further details, we refer the reader to section 6.1.3 & section 6.1.4 of [19]. 

 

a)Activation syntax 
  

i.The program is in the following directory 

../DoxygeneCode/Learning/NonSupervisedLearning/GM_Modeling 
 

The name of the compiled program implementing this module has the following syntax 
:‘MDLGMM'+terminology 

where the string terminology is either '_SI' or '_F', specifying that the input data is either  in short 
integers or in floats. 

 

ii.The input/output parameters are designed by the following strings listed on one line, one after 
the others and separated by a white space: 

 

➔Required parameters : 

•arg[1] Text file name containing the names of input multiband-images :  The number of 
lines of this file must be (numberImagesXnumberBands)  

•arg[2] Text file name of output image classfiles  

•arg[3] Number of bands of each image  

•arg[4] Number of lines of the images  

•arg[5] Number of columns of the images  

 

 

➔Optional parameters for selecting a spatial window in the 'image steak' : 

•arg[6] Line offset when reading the image file (default is 0) 

•arg[7] Column offset when reading the image file (default is 0) 

•arg[8] Number of columns of the image file(default is arg[5]) 

 

➔Optional parameters for spatial sub-sampling : 

•arg[9] factor to reduce each line (default = 1 ) 

•arg[10]  factor to reduce each column (default = 1 )  
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➔Optional parameters for fixing the initial number of Gaussians : 

•arg[11] Minimum number of Gaussians in the mixture for initialization (default  is a 
function of arg[3],arg[4],arg[5].  

 

ii.Activation syntax example : 

 

Move to the directory  

cd ../DoxygeneCode/Learning/NonSupervisedLearning/GM_Modeling 

Run the the script ./example.sh which contains the following lines :  

./MDLGMM_SI in.txt out.txt 3 100 100 200 400 3000 

./MDLGMM_F inMT.txt outMT.txt 2 100 100 
 

b)Input & output formats 
  

•Each input image band is stored individually in a file.  Their  format depends on the compiled 
program terminology. 

Too create the input text file containing the  multispectral image band names,  the names of each 
image band of each multidimensional  image must be listed one after the other in consecutive lines.  

(e.g. :      ../image1_band1 

 ../image1_band2 

 ../image2_band1 

 ../image1_band2 ) 

•The output image components are always saved individually in float format. 

To create the output text file  containing the classfiles names , the names of the classfiles  must be 
listed one after the other in consecutive lines. 

 

c)Usage recommendations : 
 

Be aware that for a fixed number of samples, the  higher the dimensionality is,  the less the space is 
be populated. So, if the initial number of component (arg[11]) is too high,  it might happen that the 
initialization fails. For special case, it might also happen, that the initial Gaussian components spread 
according to a mean and variance criterion fail to produce a good initial Gaussian Mixture and the  
algorithm reveal a false Gaussian Mixture of very few components . This situation was observed for 
instance when data possessed strong outliers  

 

4.3 ATTMAKER : CREATION OF THE CLASSIFICATION ATTRIBUTE FILES  
 
Program creating an attribute file associated to a classification map and a stack of image. The TL 
classifications together with their corresponding multispectral image constitute the algorithm inputs.  

The MT classification is associated to the stack of images of entire time-serie. 

.  
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a) Activation syntax 
 

i.The program is in the following directory 

../DoxygeneCode/Learning/NonSupervisedLearning/MakeClusterAtt 
The name of the compiled program implementing this module has the following syntax 
:'MakeClusterAtt'+terminology 

     where the string terminology is either '_SI' or '_F', specifying that the input data is either  in   

     short integers or in floats. 

 
ii.The input/output parameters are designed by the following strings listed on one line, one 

after the others and separated by a white space: 

 
➔Required parameters : 

•arg[1] Text file name containing  an input multidimensional image : 
the image bands are listed one after the other; 

•arg[2] Name of the input classfile   
•arg[3] Name of the output classification attribute file 
•arg[4] Number of lines of the images  
•arg[5] Number of columns of the images  

 
➔Optional parameters for selecting a spatial window in the 'image steak' : 

•arg[6] Line offset when reading the image file (default is 0) 
•arg[7] Column offset when reading the image file (default is 0) 
•arg[8] Number of columns of the image file(default is arg[5]) 

 
➔Optional parameters for spatial sub-sampling : 

•arg[9] factor to reduce each line (default = 1 ) 
•arg[10]  factor to reduce each column (default = 1 )  

 
iii.Activation syntax example 

 

Move to the  directory  

 cd ../DoxygeneCode/Learning/NonSupervisedLearning/MakeClusterAtt 
Run the  script ./example.sh which contains the following lines : 

ls ../data/20001015.tg*.*  >   inIm.txt 
./MakeClusterAtt_SI inIm.txt ../data/20001015.cl ../data/20001015.att 100 
100 400 200 3000 
ls ../data/20001025.tg*.* >   inIm.txt 
./MakeClusterAtt_SI inIm.txt ../data/20001025.cl ../data/20001025.att 100 
100 400 200 3000 
ls ../data/20001031.tg*.*  >   inIm.txt 
./MakeClusterAtt_SI inIm.txt ../data/20001031.cl ../data/20001031.att 100 
100 400 200 3000 
ls ../data/20001015.tg*.* ../data/20001025.tg*.* ../data/20001031.tg*.* 
>   inIm.txt 
./MakeClusterAtt_SI inIm.txt ../data/MT.cl ../data/MT.att 100 100 400 200 
3000 
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b) Input & output formats 
  

•The input image bands are stored in individual files . Their format depends on the 
compiled program terminology. 

To create the input text file , the names of each image band of the multidimensional  
image must be listed one after the other in consecutive lines 

•The output classification attribute files are in text files at format defined in Format 4) (c.f 
appendix A) 

 
 

4.4 GRAPHMAKER :  INFERENCE OF A GRAPH OF DYNAMIC CLUSTER 
TRAJECTORIES 

 
Program  for the inference of a graph of dynamic cluster trajectories. For an overview on the used  
models and inferences, we refer the reader to the concept description. For further details, we refer the 
reader to section 6.2 of [19]. 

 
a)Activation syntax 
 

i)The program is in the following directory 
../DoxygeneCode/Learning/NonSupervisedLearning/GraphInference 

 

The name of the compiled program implementing this module is the following :GraphMaker 
 
ii)The input/output parameters are designed by the following strings listed on one line, one 

after the others and separated by a white space:The program is in the following directory 

 
➔Required parameters : 

•arg[1]  Text file name of input TL classfiles and attribute files. The classfiles and 
attribute files are listed one after the other; The number of lines of this text file 
must be equal to 2 X numberOfClassfiles.  

•arg[2] Text file name of input MT classfile and attribute file? The classfile and 
attribute file are listed one after the other; The number of lines of this text file 
must be equal to 2  

•arg[3] Dimensionality of the TL feature space  
•arg[4] Number of lines of the images  
•arg[5] Number of columns of the images  

 
➔Optional parameters  : 

•arg[6] Format of the Graph out puts 

 1:standard, 2: adapted to the actual interactive learning  and GUI (default = 1) 
•arg[7] Resolution factor for the divergence integration (default = 10)  
•arg[8](0= mean/1= divergence). If "0" the divergence calculation between 

consecutive TL clusters for edge characterization is replaced by a simple mean 
difference (default =0) 
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iii)Activation syntax example : 

 

Move to the  directory  

  cd ../DoxygeneCode/Learning/ NonSupervisedLearning/GraphInference 
 

Run the  script ./example.sh 'which contains the following lines : 

./GraphMaker TL.txt MT.txt 3 100 100 2 10. 0 
mv grapheV2* ../../../data/ 
 

 

b) Input & output formats 
  

•The input TL and MT classfiles are in bytes while the TL and MT classification attribute file 
are at format defined in Format 4) (c.f appendix A).  

To create the input text file with the TL classfile and attribute names , the names of 
each TL classfile alternated with the name of the classification attribute file must be 
listed one after the other in consecutive lines. The number of lines of this text file must 
be : numberClassfiles X 2. 

To create the input text file with the MT classfile and attribute  , the names of the MT 
classfile followed by  the name of the classification attribute file must be listed on two 
lines.  

•The output graphs are either in the :standard format or defined in Format 5) and 6), 
where Format 5) is adapted to the actual supervised learning implementation and 
Format 6) is adapted to the actual GUI (c.f appendix A). 

 

c) Usage recommendations: 
 

The integration needed when the edge characterization is done with Kullback-Leibler 
divergence (arg[8]=1) may require a long calculation time. As the actual learning algorithm 
runs only with mean calculation, it is for the format 1 is for the moment not needed. 

 

4.5 SUPERVISEDLEARNING :  INTERACTIVE LEARNING 
 
Program for learning interactively user-specific semantics attached to sub-graphs. 

For an overview on the used  models and inferences, we refer the reader to the  concept description. 
For further details, we refer the reader to the chapter 7 of [19] 

 

     a) Activation syntax and Man-Machine dialogue 
  

i. The program is in the following directory 

../DoxygeneCode/Learning/SupervisedLearning 
The name of the compiled program implementing this module is the following : SupLearnPara 
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ii. The input/output parameters are designed by the following strings listed on one line, one after 
the others and separated by a white space: 

 
➔Required parameters : 

•arg[1]  Graph file name at format 5 (c.f appendix A) 
•arg[2]  Text file name containing, on a single line and separated by a white space, 

the time delay between the different time samples specific to the given graph.  

 
iii. Activation syntax example : 

 

Move to the  directory  

cd ../DoxygeneCode/Learning/SupervisedLearning 
Run the  script ./example.sh which contains the following line : 

 ./SupLearnPara  ../../../data/grapheV2 ../ ../../data/TimeDelays.txt 
 

iv. Man-Machine dialogue  

 

              1) User initializes the learning procedure  : 
 

Once the program is launch the system ask the user to transmit him several parameters to 
initialize the learning procedure using the standard input   

Using the GUI (c.f. section 4.6) the user visualizes the different information representation, 
which enables him to respond the following questions : 

 
1. number of samples of the time-window?  

That is the time-window in which spatio-temporal structures will be defined   
2. Minimum sample time of the graph for searching other sub-graphs? 

That is the time sample index corresponding to the time lower bound above which 
the system will search sub-graphs of the similar semantic 

3.  Maximum sample time of the graph for searching other sub-graphs? 
That is the time sample index corresponding to the time higher bound bellow which 
the system will search sub-graphs of similar semantic 

4. Divergence threshold? 
That is the the weighted divergence measurement (not normalized to probabilities -
> to be done!!) tuning the graph complexity. Should be fixed according to the 
visualization of the graph with the GUI. A standard value is 30. If this value is set to 
0, the system understands that the user is interested in only MT most likely 
trajectories. 

5. First sample of the sub-graph of interest? 
That is the time sample index corresponding to the lower bound of the temporal 
window in which is defined the spatio-temporal structure example 

6. Index of the MT Class of interest? 
That is the MT class index  comprising the spatio-temporal structure example   

7. Do you want to fix  a priori parameters for the similarity model ('y'/'n')? 
If prior knowledge on the parameters exist respond 'y' and then follow the 
instruction. Otherwise respond 'n'.  

8. Do you want to fix some specific parameters for the search ('y'/'n')? 
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For experimented user responding 'y' enables to fix  the number of branches to 
consider in the search tree for the similarity model optimization For novice , please 
respond 'n' 

 

After fixing these initialization parameters, the system creates 1) the sorted a 
posteriori list of sub-graphs and 2) relevance feedback measurements (c.f. third 
section).   

 

             2) Learning by communication of user's examples to the system  
 
To enhance the learning, visualizing the spatio-temporal structures through the GUI 
(c.f. VI), the user continue providing to the system locations of  structure  examples : : 

 
1.LOCATION OF SUB-GRAPH OF INTEREST (1) OR OF NON-INTEREST (-1)? 

User must respond '-1' if he wants to provide a negative example or '1' is he wants 
to provide a positive one 

 
2.First sample of the sub-graph of interest or non-interest? 

That is the time sample index corresponding to the lower bound of the temporal 
window in which is defined the spatio-temporal structure example 

3.Index of the MT Class of interest or non-interest? 
That is the MT class index comprising the spatio-temporal structure example  

 
4.do you want to keep the actual reference subgraph: (time sample=X, Index MT 

class=X)? (yes='1'/no='0')#? 
After giving the user the spatio-temporal location of the most likely sub-graph of the  
a posteriori list, the system asks if he should update the reference subgraph: 

5.Erase learning memory (pos='1',neg='-1',both='2'/no='0')? 
the system asks then if the user wants to restart learning without considering the 
positive example (1), negative examples (-1), both (2) or considering the current 
state of learning (0) 

  

If the user has not changed of reference sub-graph, the system updates the 
sorted a posteriori list of sub-graphs and the relevance feedback measurements (c.f.  
Section 3). Then,  questions 2.1 to 2.5 are iterated and the system keeps learning.  

 
 
 
 
 
Else, questions 1.5 and 1.6 (from section 1) are iterated, and next, the system asks 
the  following questions: 

 
6.Factor to reduce Sub-Graph list ? 
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the system asks  if the user wants to reduce the size of the a posteriori list 
considered to remove, according to the currently defined semantic, non-likely sub-
graphs 

7.Do you want to fix some specific parameters for the search ('y'/'n')? 
For experimented user responding 'y' enables to fix  the number of branches to 
consider in the search tree for the similarity model optimization and if the similarity 
model should use Kullback-Leibler divergence instead of a simple mean calculation  
However , in almost all cases, it is safer to keep a mean calculation. For novice , 
please respond 'n'  

 

The system updates the sorted a posteriori list of sub-graphs and the relevance 
feedback measurements (c.f.  Section 3).  Then  all questions since question 2.1) are 
iterated. 

 

            :3). System feedback  
 

After each learning step, the system writes a file on the disk named 
“./APostList”containing the relevance feedback measurements and the sorted a 
posteriori collection of sub-graphs. The user can visualize this data, using the GUI (c.f. 
4.6.) 

 

     b)Input & output formats 
  

•The graph input format is format 5 (c.f appendix A) 
•The output file “./APostList” for the result visualization using the GUI is at format 8) (c.f 

appendix A) 

 

c)Usage recommendations : 
 

Let us point out several factor inducing learning instabilities: 
–The present learning system runs in 'real-time', only when using the mean difference 

instead of the Kullback-Leibler divergence to characterize sub-graph edges (c.f. question 
2.7). By the way, bugs may appear when using the latter. 

–For an efficient parameter learning, the number of branches of the search tree must be 
high enough (c.f. question 1.9 and i2.7).Indeed, a low number induces and non-
relevant learning (parameter estimation). However, because a too high number of 
branches induces a very slow calculation, user may  balance these effects. (The default 
number of branches is set to 30) 

–The larger  the time-window is (c.f. question 1.1) , the easier  the learning is. Indeed, 
when the time window is large, the positive examples are clearly separated from the 
negative ones, and both semantic are easy to learn. 

–It is easy to get a coherent a posteriori list using only the positive semantic (note that in 
this case a posteriori list = likelihood list).  

–When incorporating the negative semantic, the user must be very cautious to give 'very' 
negative examples before giving  examples not very discriminated from the positive 
ones. Indeed, as the search tree optimization (for parametric similarity model) 
converges to a local minima, if the system is confused since the beginning, it might 
estimate wrong parameters for the similarity function and remain in the neighborhood 
of this false estimate latter on  
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4.6 GAUSSLUT : GAUSSIAN DYNAMIC ADAPTATION AND QUICKLOOKS 
GENERATION   

 

4.6.1 Gaussian dynamic adaptation 

Program for the histogram dynamic adaptation of image time-series.  

This procedure transforms, one after the other, the histograms of the different images (or a spatial 
window in the images) composing the time-series into a Gaussian distribution. For a given spectral band, 
each image can either be processed independently from the others or can be processed considering the 
statistics of all the other images. But as we are interested in an visual homogeneity between the image 
time samples, we only consider the first case in which the processing is done independently for each 
image band. 

For further details, we refer the reader to the concept description and to section 8.1.2 of [19] 

 

a) Activation syntax 
 

i.The program is in the following directory 
../DoxygeneCode/VisualInfMining/HistoDynaAdatp 

The name of the compiled program implementing this module is the following  :GaussLUT 

      
ii.The input/output parameters are designed by the following strings listed on one line, one 

after the others and separated by a white space 

 
➔Required parameters : 

•arg[1] input text file name containing on separated lines, the paths of the image 
bands to convert; 

•arg[2] output text file name containing on each line the paths of the images to save 
on the disk   

•arg[3] number of spectral bands x number of images 
•arg[4] Number of lines of the images  
•arg[5] Number of columns of the images  

 
➔Optional parameters for selecting a spatial window in the 'image steak' : 

•arg[6] Column offset when reading the image file (default is 0) 
•arg[7] Line offset when reading the image file (default is 0) 
•arg[8] Number of columns of the image file(default is arg[5]) 

 

 

 

 
iii.Activation syntax example 

 

Move to the  directory  

cd ../DoxygeneCode/VisualInfMining/HistoDynaAdatp 
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Run the first line of the script ./example.sh : 

 ./GaussLUT in.txt out.txt 9 100 100 400 200 3000 
 

b) Input & output formats 
 

•The image bands must be in short integers 

 (otherwise needs to be recompile changing the PIX variable definition) 
•The output normalized image bands  are in bytes 
 

4.6.2 Quicklook generation 

We use the  unix/linux function to convert the steaks of 3 image bands into JPEG RGB images 
quicklooks  

 
i. Activation syntax example 

  

 Move to the  directory  

cd ../DoxygeneCode/VisualInfMining/HistoDynaAdatp 

Run the last lines of the script ./example.sh: 

 rawtoppm  -bgr  100 100 ../../data/20001015.Graw >  ../../data/20001015.ppm 
ppmtojpeg ../../data/20001015.ppm > ../../data/20001015.jpg 
rm ../../data/20001015.Graw ../../data/20001015.ppm 
rawtoppm  -bgr  100 100 ../../data/20001025.Graw > ../../data/20001025.ppm 
ppmtojpeg ../../data/20001025.ppm > ../../data/20001025.jpg 
rm ../../data/20001025.Graw ../../data/20001025.ppm 
rawtoppm  -bgr  100 100 ../../data/20001031.Graw > ../../data/20001031.ppm 
ppmtojpeg ../../data/20001031.ppm > ../../data/20001031.jpg 
rm ../../data/20001031.Graw ../../data/20001031.ppm 

 

4.7 GUI : GRAPHICAL USER INTERFACE  
 

This visual interface was developed in order to create a first tool to navigate through the generated 
image time-series representations, and therefore to validate the results.  

This tool enables the visualization and the synchronized navigation through the image time-series 
representation, the graph of dynamic cluster trajectories and the dynamic classfiles. Furthermore, if the 
interactive learning C++ program is launch in parallel, the current semantic labeling and the relevance 
feedback measurements learned by the system can be visualized by this JAVA GUI (The communication 
between the C and the JAVA program is done using text files).  

For further details, we refer the reader to section 8.1.2 of [19]. 

a) Activation syntax 
 

i.The program is in the following directory 
../DoxygeneCode/VisualInfMining/JAVA_GUI1.0 
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The name of the main compiled class  implementing this module is the following 
ITS_Graph3.class 
 
ii.The input/output parameters must be fixed before compilation   

 
•in the ./ITS_Graph3.java file : 

 
• at line 76  private static int dimx=X;  

where X is the number of line of the images  
•  at line 78  private static int dimy=X; 

where X is the number of column of the image;  
•at line 151, private static String IMAGEPATH ="X", 
  where X  has the following syntax:  directoryPath+imagePrefix 

and where  directoryPath is the directory path of the images JPG quick looks  of 
200x200 pixels, and imagePrefix is the quicklook images name prefix. The image 
name sufffix must be the image time sample index (e.g. 01,02,...,10,34,etc..)  

•at line 153  private static String CLASSFILEPATH_MT = "X”, 
where  X is the path to the MT classfile of 200x200 pixels 

•at line 155, private static String CLASSFILEPATH_TL = "X”, 
where X  is the directory path of the classfiles of 200x200 pixels in this directory 
the classfile must be named with their corresponding dates in format 
'yyyymmdd'+'.cl', where 'yyyy' means year,'mm' means month,and 'dd' means 
day. 

( e.g. 20001015.cl,...,20010216.cl, etc) 
•at line 159 String path= "X",  

where X is the path to the graph at format 6 (c.f appendix Af) 

 
•in the ./Dates.java file : 

•fill the imageDate vector of the class Dates with dates of the time samples at the 
format 'yyyymmdd', where 'yyyy' means year,'mm' means month,and 'dd' means 
day. ( e.g. 20001015,...,20010216, etc). 

 

Note that the ApostList file is read directly in the directory where it was created that is to 
say : ../SupervisedLearning. For any modification change this directory in the file 
SBList.java, at line 32. 

 
iii.Activation syntax example: 
 

Once the path fixed in the source, move to the  directory  

 cd  ./DoxygeneCode/VisualInfMining/JAVA_GUI1.0 
then, compile the source using this command line 

javac -classpath ./ ITS_Graph3.java 
and run the program  java ITS_Graph3 

 
iv.Mouse interactions 

 

The frame contains: 
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• a) the image time-series sub-frame  
•b) the graph sub-frame  
•c) a TL classfile sub-frame  
•d) a MT classfile sub-frame.  
•e) a sub-frame for relevance feedbacks visualization  
•f) a sub-frame to navigate through the current sub-graph a posteriori collection  
•and g) a sub-frame for text values visualization (sub-graph spatio-temporal location, 

sub-graph posterior probabilities, etc...).  
 
User can interact with almost all these sub-frames. Interactions in the frames : 

 
• -> In the sub-frame a) the user can navigate in time through all the signal 

representations by pressing buttons. By clicking on a images location, he can 
naviguate in space and visualize corresponding MT classes, TL classifications, and 
graph representations 

• -> In sub-frame b) the user can visualize the dynamic cluster trajectories associated 
to the current MT classes (a maximum of 2 MT classes are visualized at the same 
time in yellow and red). The mutual information is visualized in the same frame. The 
user can update all the other representations by defining a time coordinate by simple 
click in the sub-frame. The complexity of the graph can also be fixed interactively, by 
adjusting the divergence threshold. Note that, consequently the TL classes 
associated to the MT classes are updated. 

• -> In sub-frame c) the user visualize the dynamic classifications. They are constituted 
of TL classes associated to the 2 different MT classes (common TL classes are 
displayed in black, and in red and yellow for TL classes associated to only one of the 
2 MT classes). Divergence threshold can be tuned to extend or concentrate these 
dynamic classification. 

• -> In sub-frame d) the MT classes are visualized. The user can select the MT classes 
by clicking on the image interesting locations or by pressing buttons. A maximum of 
2 MT classes are visualized in this frame : they are visualized in yellow and red in 
correspondence with the cluster trajectories and the dynamic classifications.  

•-> Sub-frame e) is dedicated to visualize divergence histograms related to the current 
state of learning. No interaction exist in this frame  

•In sub-frame f), to navigate through the current sub-graph a posteriori collection, 
press buttons are used to read an ./APostlist text file containing relevance feedback 
measurements and the sub-graphs a posteriori stored collection.  

•-> Sub-frame g) is dedicated to the visualization of text parameters. No interaction 
exist in this frame  

 

b) Input & output formats 
  

•image quiklooks must be in jpg format. Their size must be 200x200 (possibly subsampled) 
•TL and  MT classfiles must be in byte format. Their size must be 200x200 (possibly 

subsampled)  
•Graph must be at format 6) (c.f appendix A) 
•“./APostList”  must be at format 8) (c.f appendix A) 
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Format 1 - Image Time Series: 

 

image bands are raw binary files where the pixels are coded either in short integers (2 bytes) or in 
floats (4 bytes)  

Extension : .(tg1,tg2,tg3); (.norm,.var,.evid) 

 

Format 2 - Projection components: 
 
these images are coded in raw binary files where pixels are coded in floats (4 bytes) 

Extension : .(PCA1,PCA2,...); (PP1a,PP1b,...)  

 

Format 3 - MT & TL Classfiles : 
 
these images are raw binary files where  pixels are coded in unsigned char (1 byte) 

Extension : .cl  

 

Format 4 - Attribute files 
 
these objects are associated to the classfiles; each attribute fil is coded in binary floats (4 bytes) using 
the following syntax: 

Extension : .att  

 

The files contains 255 lines of D*(D+1) float elements, where D is the feature space dimension  

•On the 1st line the number of classes followed by zeros 

•Each following line correspond to a cluster; it comprises: 

the cluster mean vector on D floats 

the covariance matrix on D*D floats. 

 

Format 5 -Graph file for the supervised learning program: 
 
Let us introduce the following notations : MT for Multitemporal and TL for Time-Localized  

This binary object is named grapheV2 

 

It is coded on one line, in text format, using the following syntax : 

•the number of MT clusters (integer) 

•the TL feature space dimension (integer) 

•the number of image time samples (integer) 

•for each MT cluster kMT: 

the class index (integer) 

the cluster weight (unsigned integer) 

for each time sample t 
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�the time sample index (integer) 

�the D mean vector elements of the projected MT cluster at t  (floats) 

�the D*D covariance matrix elements  of the projected MT cluster at t (floats) 

�the number of assigned TL clusters (integer) 

�for each assigned TL cluster kTL_t 
-the assigned TL class index(integer) 

-pixel quantity belonging to classes kTL_t & kMT(unsigned integer) 
-Kullback-Leibler weighted divergence between kTL-t & kMT (double) 
-the D mean vector elements of the TL cluster (float) 
-the D*D covariance matrix elements of the TL cluster (float) 
-if (t>0)  

for each assigned TL cluster at the previous time kTL_t-1 
➢the kTL_t-1 cluster index (integer) 

➢the flow of points in that edge (unsigned integer) 

➢the Kullback-Leibler or the mean vector difference between 
cluster kTL_t-1 and  kTL_t (double) 

�if (t>0) 

Mutual information between the MT cluster projected at time t-1 and t (float) 

 

Format 6 - Graph file for the Graphical User Interface (GUI): 
 
This binary object is named grapheV2JAVA  

 

It is coded on several lines, in text format, using the following syntax : 

•the number of MT clusters (integer) 

•the TL feature space dimension (integer) 

•the number of image time samples (integer) 

•for each MT cluster kMT : 

the class index (integer) 

the cluster weight (unsigned integer) 

for each time sample t  : 
�the time sample index (integer) 

�the D mean vector elements of the projected MT cluster at t  (floats) 

�the D*D covariance matrix elements  of the projected MT cluster at t (floats) 

�the number of assigned TL clusters (integer) 

�for each assigned TL cluster kTL_t 
-the assigned TL class index(integer) 

-pixel quantity belonging to classes kTL_t & kMT(unsigned integer) 
-Kullback-Leibler weighted divergence between kTL-t & kMT (double) 
-the D mean vector elements of the TL cluster (float) 
-the D*D covariance matrix elements of the TL cluster (float) 
-if (t>0)  
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for each assigned TL cluster at the previous time kTL_t-1 
➢the kTL_t-1 cluster index (integer) 

➢the flow of points in that edge (unsigned integer) 

➢the Kullback-Leibler or the mean vector difference between 
cluster kTL_t-1 and  kTL_t (double) 

-go to a new line  

�if (t>0) Mutual information between the MT cluster projected at time t-1 and t 
(float) 

 

 

Format 7 - Quiklooks for the Graphical User Interface (GUI) : 
 

the quiklooks multispectral  images coded in the standard JPG format  

Prefixe : date of acquisition at the format «yyyymmdd » 

Extension .jpg 

Example: 20001015.jpg 

 

Format 8 – A posteriori list for the Graphical User Interface (GUI) : 
 
This file is a text file named APostList. 
It has  the following syntax: 

-on 1 line the 7 Kulbback-Leibler divergence measurement (floats) 

-on 1 line the mean and the variance of the a posteriori list probabilities (floats)  

-on 1 line the 2 convergence measurements (floats) 

-on 1 line thenumber of time samples composing the time-window (int)  

-for each element of the a posteriori collection of sub graphs on 1 line :  

othe index of the associated MT cluster 

othe index of the other associated MT cluster (if only one is associated, then this index is the same 
as the previous) 

othe associated a posteriori probability 

 

Format 9 - Delay text file for the Graphical User Interface (GUI) : 
 

           This file is a text file named TimeDelay.txt 
           This file stores, on a single line and one after the other, the time differences in days between  

           consecutive images in the time-serie  

 

 

 

6.2  B- INSTALLATION 
 

a)Requirements  
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Requires the g++ compilator and a machine with at least 256 Mo of memory 

 

b)Compilation of the source  
 

i.From the   ../Install directory run the installation script ./InstallPart1.sh 

 

ii.Then in order to change the format of the input data for the  programs  of 1) dimension 
reduction, 2) Gaussian mixture modeling and 3) attribute of classfiles generation. Source 
modification have to be done. Thus, 

1)   go in the directory 

../DoxygeneCode/Learning/NonSupervisedLearning/DimReduc/ 
change at line 28 of the file PCA_PP.cpp the definition of PIX to  

#define PIX short int 
2)  go in the directory 

../DoxygeneCode/Learning/ NonSupervisedLearning/GM_Modeling/ 
change at line 20 of the file ReferenceVector.hh the definition of PIX to  

#define PIX short int 
3)  go in the directory 

../DoxygeneCode/Learning/ NonSupervisedLearning/MakeClusterAtt/ 
change at line 30 of the file MakeClusterAtt.cpp the definition of PIX to  

#define PIX short int 
 

iii.From the  ../Install directory run the installation script ./InstallPart2.sh 

 

iv.From the actual  ../Install  directory run the installation script ./InstallPart3.sh  
 
 
 


