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Abstract— Most linear sparse representation algorithms can
be straightforwardly extended to non-linear models. Their perfor-
mance however, relies on an efficient computation of the gradient
of the objective function. In this paper, we focus on a particular
non-linear model, defined as the nested composition of functions
and propose to resort to a well-known technique from the theory
of optimal control to compute the gradient. As a proof of con-
cept, this computation is then implemented into the optimization
procedure proposed by Candès et al., and applied to a geophysical
dynamical model.

1 Introduction
Recent contributions have addressed the problem of exploiting
sparse priors with non-linear observation models, that is

y = h(x) + n, (1)

where h : RM → RN (with M ≥ N ) is a non-linear obser-
vation operator and n stands for an observation noise. Extend-
ing the approach followed in the linear case, these contributions
propose also a generalization of the penalty function, leading to
an optimization problem of the form (or some variants thereof)

x̂ = argmin
x
‖x‖0 subject to J(x) ≤ ε, (2)

where J(x) is some scalar function (e.g., J(x) = ‖y−h(x)‖22)
accounting for discrepancies from model (1).

Noticing that many sparse representation algorithms dealing
with linear observation models rely - implicitly or explicitly -
on the computation of the gradient of the function J(x), non-
linear versions of them can be straightforwardly derived. Fol-
lowing this idea, the extensions of the well-known algorithms
IHT [1], MP [2], OMP [3] and CoSaMP [4] have thus been
proposed, respectively in [5], [6], [7] and [8] .

However, whereas in the linear case, the evaluation of the
gradient of J(x) only involves multiplications by the dictionary
and its transpose, its computational cost can be prohibitive in
some non-linear cases. In this paper, we elaborate on this prob-
lem for the particular family of cost functions J(x) defined as
the nested composition of some functions. Formally, we write

J(x) =

L∑
l=1

Jl ◦ fl ◦ . . . ◦ f1(x), (3)

where {fl}Ll=1 are some differentiable functions and ◦ stands
for the function-composition operator. This type of model is
for instance of interest in the ubiquitous situations where one
collects partial information on the state of a dynamical system
whose initial condition admits a sparse decomposition (see sec-
tion 2.2). In particular, we emphasize that results from optimal
control [9] can be exploited to provide a fast implementation

of any gradient-based algorithm by taking benefit of the special
structure of the non-linear model (3). We propose then a prac-
tical implementation of this computation into the optimization
procedure proposed in [10].

2 Sparse Representations in Nested
Non-Linear Models

In this section, we elaborate on the efficient evaluation of the
gradient of J(x) when structured as in (3). The methodology
is then applied to a particular geophysical problem.

2.1 Efficient gradient computation
We use the following definitions and notations. Considering
model (3), we set, ∀l ∈ {1, . . . , L}, ∀x ∈ RM ,

sl , fl ◦ . . . ◦ f1(x). (4)

We thus have ∀l ∈ {1, . . . , L},

sl = fl(sl−1), (5)

with the convention s0 = x. We also define the gradient oper-
ator as

∇x , [
∂

∂x1
, . . . ,

∂

∂xM
]T , (6)

so that ∇x applied to a vector z = [z1, ..., zN ]T results in the
M ×N matrix whose (i, j)-th element is ∂zj

∂xi
.

With these notations in mind, (3) evaluated at x? can be
rewritten as

J(x?) =

L∑
l=1

Jl(s
?
l ), (7)

where s?l is defined as in (4) with x = x?. Therefore, using the
chain rule of derivative, we obtain

∇xJ(x
?) =

L∑
l=1

∇xfl(s
?
l−1)

T ∇slJl(s
?
l ),

and from the dependence between sl and sl−1,

∇xfl(s
?
l−1)

T = ∇xfl(fl−1(s
?
l−2))

T ,

= ∇xfl−1(s
?
l−2)

T ∇sl−1
fl(s

?
l−1)

T . (8)

Finally, applying this expression recursively, we have

∇xJ(x
?) =

L∑
l=1

 l∏
j=1

∇sj−1
fj(s

?
j−1)

T

 ∇slJl(s
?
l ). (9)

The latter expression is exclusively based on the derivative of
each function component. Its evaluation can then be performed
through the following forward-backward procedure:



• The sequence {s?l }Ll=1 is evaluated via the forward recur-
sion

s?l = fl(s
?
l−1), (10)

s?0 = x?. (11)

• All multiplications by a same matrix ∇sl−1
fl(s

?
l−1)

T are
gathered in one single operation. This is done through the
backward recursion

pL = ∇L−1fL(s
?
L−1)

T ∇sLJL(s
?
L), (12)

pl = ∇l−1fl(s
?
l−1)

T (∇slJl(s
?
l ) + pl+1), (13)

leading finally to p0 = ∇xJ(x
?). In that way, the mul-

tiplication by each matrix ∇sl−1
fl(s

?
l−1)

T is only per-
formed once during the whole recursion.

This forward-backward procedure is widely used in geophysi-
cal applications (e.g., [11]). However, to the best of our knowl-
edge, the explicit (and motivated) use of this technique into
contexts of sparsity-constrained problems has never been con-
sidered. In particular, in [12] which focuses on a similar non-
linear model, this efficient computation of the gradient is not
proposed.

2.2 Application to super-resolution in SQG dy-
namical model

As a practical example of the proposed methodology, we focus
on a super-resolution problem in a geophysical context, namely
the high-resolution characterization of the state of the ocean by
exploiting: i) the Surface Quasi-Geostropic (SQG) dynamical
model [13]; ii) a sparse prior on the initial condition of the dy-
namical model; iii) low-resolution satellite images.

We assume that the SQG model, of the form of (5), rules
the evolution of some state variable sl. The definition of fl
depends on the considered numerical integration scheme (here
a 4th-order Runge-Kunta method) but is not specified hereafter
for conciseness. Moreover, as a prior knowledge, the initial
state is supposed to be sparse in some redundant dictionary H,

s1 = Hx, (14)

for some sparse vector x. We are interested in recovering the
value of {sl}Ll=1 from the observation of low-dimensional im-
ages {yl}Ll=1 (e.g., collected by satellites), with

yl = Gl sl + n, (15)

where Gl is some known observation matrix and n is an un-
known corrupting noise.

In order to solve this inverse problem, we address the follow-
ing optimization problem

min
x

L∑
l=1

‖yl −Gl(fl ◦ . . . f2(Hx))‖22 + λ r(x), (16)

where λ > 0 and r(x) =
∑

m log(xm + ε), ε = 10−1, is some
sparsity-enforcing regularizing function. A solution to (16) is
searched by using the majorization-minimization optimization
technique exposed in [10]; at each iteration an upper bound
on the goal function is constructed by majorizing r(x) by a
weighted `1 norm. We look for the minimum of each of these
majorizing functions by means of descent procedures involving
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Figure 1: Relative MSE versus the number of non-zero coefficients K in the
sparse vector.

the gradient of J(x) (corresponding here to the first term in
(16)) evaluated as presented in section 2.1.

Particularized to the SQG model, the evaluation of the
forward-backward recursions (10)-(13) have a complexity of
order O(ML). By comparison, using a finite-difference
scheme to evaluate the gradient requires to run (at least) two
forward recursions by element of x, leading to an overall com-
plexity of O(M2L). This order of complexity thus precludes
us from using this type of approach in moderate-to-high dimen-
sional problems.

The simulation setup considered in this paper is as follows.
The state vectors sl are assumed to live in 256-dimensional
space. The initial condition is supposed to have a sparse decom-
position in a dictionary H ∈ R256×512 made up of sine and co-
sine functions. The observations yl ∈ R32 are collected at four
different time instants and the observation matrices Gl corre-
spond to random subsampling operators. The ratio between
the number of observations and the dimension of x is therefore
equal to (32× 4)/512 = 1/4. In Fig. 1, we represent the rela-
tive mean-square error (MSE) ||x̂−x||22/||x||22 achieved by the
minimization of (16) via the majorization-minimization proce-
dure described above. As a point of comparison, we run the
same algorithm on a linear sparse representation problem hav-
ing the same problem dimensions (namely y = GHx where G
is a rate-1/2 random subsampling matrix). For each data point,
we average the performance over 50 trials.

We can notice that the considered procedure can achieve an
acceptable relative mean square error over a wide range of spar-
sity levels. We note also that the non-linear setup suffers from
a reasonable degradation with respect to the linear setup.

3 Conclusion

In this paper, we address the problem of sparse representations
in a non-linear setting. While a high computational cost of the
gradient of the goal function may prevent the use of standard
estimation procedures, we show that it can be overcome by ap-
plying principles from the theory of optimal control, as long
as the cost function satisfies some desirable structural property.
Our derivations are illustrated on a particular example dealing
with the estimation of the state of a geophysical system from
partial observations.
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