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Abstract: Automatically evaluating and quantifying the performance of a player is a complex task since the important

motion features to analyze depend on the type of performed action. But above all, this complexity is due

to the variability of morphologies and styles of both the experts who perform the reference motions and the

novices. Only based on a database of experts’ motions and no additional knowledge, we propose an innovative

2-level DTW (Dynamic Time Warping) approach to temporally and spatially align the motions and extract the

imperfections of the novice’s performance for each joints. In this study, we applied our method on tennis serve

but since it is automatic and morphology-independent, it can be applied to any individual motor performance.

1 INTRODUCTION

One of the key factors of sport performance is the

motor control. The players must indeed accurately

control their movements in space and time, for

instance by temporally synchronizing their limbs or

by placing a body part at a precise location, relative

to their own bodies or their surrounding environment.

The progression of a novice player thus requires to

identify these spatiotemporal errors to correct them.

This evaluation of a motion requires the expertise of a

coach due to the variability of correct performances.

Each expert has indeed his/her own way to perform

the movement depending on morphology, physical

abilities and style.

Some specific motions such as katas in karate

could be repeated and trained without the permanent

presence of a coach, at home for instance. However,

an automatic evaluation system is then required to

identify and highlight the errors of the player to help

him make progress. Some tools are proposed like

the Golf Training System (Explanar Ltd, Manchester,

UK) or the PlaneSWING Training System (Portu-

golfe Ltd, Bedfordshire, UK) in golf, but they are

dedicated to specific motions and to only a limited set

of features (for instance speed in a 2D plane). More-

over, only few studies are taking the morphology of

the players into account (Sorel et al., 2013).

The goal of this paper is to provide an efficient

and automatic morphology-independent and sport-

independent method to evaluate the motion of a

player by comparing it to a database containing the

same motions performed by experts.

2 RELATED WORK

Being able to automatically evaluate the quality

of various actions requires to determine the kinematic

factors that are the core of a good performance for

each of these motions. For this reason, some au-

thors proposed to add knowledge to the motion eval-

uation process to know in advance the features to

analyze. For instance, Burns et al. defined a set

of rules that characterizes some kata in karate, such

as the linear trajectory the kicking wrist must fol-

low (Burns et al., 2011). Komura et al. based their

evaluation on the minimization of the global move-

ment since they considered that the defender can bet-

ter counteract an attack if he does not move too much

just before the action (Komura et al., 2006). Finally,

Ward used several intersegmental angles to com-



pare several classical ballet techniques (Ward, 2012).

These studies provide interesting results that are use-

ful for evaluating specific motions. However, our goal

is to propose a generic evaluation method that can

automatically determine the important features of the

expert motions that are then used to evaluate the per-

formance of a new player.

Several authors have worked on this automatic ex-

traction of the relevant features of motions. It is in-

deed a prerequisite on other domains such as mo-

tion recognition or motion retrieval in which these

features are both used 1) to group set of motions

into categories of actions and 2) to differentiate these

groups of actions. For the first case, some au-

thors have proposed to identify common geomet-

rical patterns of the motions: by partitioning the

3D space with Cartesian patches (Wang et al., 2012)

or angular ones (Xia et al., 2012), by simplify-

ing the joints trajectories with linear regres-

sions (Barnachon et al., 2013) or by using pentagonal

areas to represent the postures (Sakurai et al., 2014).

Some authors also worked on the relation between

the position of a joint relatively to a plan defined

by 3 other joints to give a semantic and intuitive

evaluation of the performed motion (Röder, 2006;

Müller et al., 2005; Müller and Röder, 2006). Fi-

nally, several authors tried to define morphology-

independent features to manage the morphology

variability by normalizing the posture representa-

tion and by extension the motion (Sie et al., 2014;

Kulpa et al., 2005; Shin et al., 2001). The goal of

these studies was to identify the similarity of mo-

tions while our is to evaluate the difference between

a motion and the reference ones performed by ex-

perts. The motions are thus supposed to be sim-

ilar and our objective is to quantify the errors be-

tween them and not to try to ignore these small dif-

ferences. For the second case, some authors have

computed the variance (Ofli et al., 2012) or the en-

tropy (Pazhoumand-Dar et al., 2015) of each joint to

discriminate the most informative features character-

izing the motion. The problem of such approaches is

that they lost some of the temporal information of the

motion.

This temporal information is yet essential to eval-

uate motions and especially sports ones. The tem-

porality of a movement is important for dance of

course but it also concerns all kinds of motions since

the synchronization of the limbs or the sequence of

body motions are the key factors of a good technique

and thus a good performance. The temporal infor-

mation is thus essential at a global level but above

all at the joints level, highlighting the relative tim-

ing of the different body parts of the player. Maes

et al. proposed to evaluate and train the basics of

dance steps (Maes et al., 2012). Since they consid-

ered that the dance steps were very rhythmic, they

based their analysis on the music tempo of the dance.

This case is however very specific and only man-

ages the synchronization of the motion with an exter-

nal and global tempo. To take local synchronization

into account, the temporality must be evaluated even

when motions have different lengths, different speeds

and/or different rhythms. To this end, some authors

proposed to use Hidden Markov Models (HMM)

or Hidden Conditional Random Field (HCRF) to

encode time series as piecewise stationary pro-

cesses (Zhong and Ghosh, 2002; Kahol et al., 2004;

Sorel et al., 2013; Wang et al., 2006). In our context,

the time-varying features are trajectories and are mod-

eled as a state automaton in which each state stands

for a range of possible observation values of the fea-

ture while the transitions between states can model

time. The feature observation values and the transi-

tions between states are driven by probabilities, which

makes HMM very robust to spatiotemporal variations.

However, this approach gathers similar postures to-

gether in a same state and the temporality is only man-

aged between these states that can represent a large

part of the motion if at a period a joint does not move

a lot for instance.

To generically evaluate the synchrony of two

motions, we need a more accurate method such as the

Dynamic Time Warping (Sakoe and Chiba, 1978).

Originally created for speech processing, DTW

has become a well-established method to ac-

count for temporal variations in the comparison

of related time series. Many studies have tried

to upgrade the efficiency of the DTW algo-

rithm over the recent years depending on its

application’s context (Keogh and Pazzani, 2001;

Zhou and De La Torre Frade, 2009;

Zhou and de la Torre, 2015; Heloir et al., 2006;

Gong et al., 2014). In motion retrieval, DTW has

then been used by several authors to align the motion

with some features to determine the movement

performed. Sakurai et al. for instance tried to

evaluate a motion captured with the Microsoft Kinect

by using pentagonal areas defined by the body end-

effector (Sakurai et al., 2014). Pham et al. tried to

compare surgery motions by aligning trajectories of

3D sensors (Pham et al., 2010). The problem of these

studies is that the motion is simplified to manage

the temporality and the joint information are not

preserved. In our approach, we want to take temporal

and spatial information into account concurrently.

In this paper, we propose an efficient and au-

tomatic morphology-independent method based on



DTW to compare a motion performed by a player to a

database of experts’ motions in order to evaluate con-

currently the spatial and temporal relevant informa-

tion of the motion.

3 METHODOLOGY

Figure 1: Global framework of the proposed approach

The purpose of this paper is to determine whether

a motion is correct or not and, if not, to determine

where and when it is badly performed. To this end,

we need to compare this motion to the reference ones,

the motions performed by experts. The reference can-

not indeed be only one motion because it is necessary

to take the variability of all experts performance into

account, all these motions are obviously considered as

correct ones. We thus first extract a reference model

of the correct motion from the database of experts’

movements (Section 3.2). We then compare the new

motion (for instance performed by a novice) to this

model to identify the spatial (Section 3.3.1) and/or

temporal errors (Section 3.3.2).

Our goal is to evaluate the motion of a novice

player in the context of individual sports. As a case

study, we applied our method on tennis serves. These

motions indeed present high spatial variabilities (con-

trary to codified motions such as kata in karate) and

require a strong coordination between body parts, to

achieve at the same time fast and accurate shots.

3.1 Database and gesture coding

To create the database, the tennis serves were cap-

tured with a Vicon MX-40 optical motion capture sys-

tem (Oxford Metrics Inc., Oxford, UK). The players

were equipped with 43 reflective markers placed on

anatomical landmarks to compute the trajectories of

the 25 joint centers as shown in Figure 2.

Figure 2: The captured motion is represented by the trajec-
tories of these 25 joint centers.

To create the database, we captured the tennis

serves of 9 experts (14-18 year old women) and 2

novice players. Each of them made 8 to 10 exam-

ples (or trials) leading to a database of 79 expert and

20 novice examples (see an example at different time

steps in Figure 3).
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Figure 3: Skeletal representation of a captured tennis serve
at different time steps.

In order to be invariant to the initial position

and orientation of the subject, the coordinate system

of each joint trajectories is centered on the root

position (see Figure 2) and oriented according to

the hips. Moreover, to decrease the influence of the

morphology, each joint coordinate is divided by the

distance between head and root joints as proposed by

Sie et al. in (Sie et al., 2014).

Let us now consider the following notations:

• A: number of joints (25 here).

• M j: number of time steps of the jth example.



• NE : number of expert examples (79) and NN :

number of novice examples (20).

• X j(t) = {x
a
j(t),a = 1...A}, with

xa
j(t) = (xa

j(t),y
a
j(t),z

a
j(t)): trajectory of the ath

joint and the jth example.

Thus, X j(t) is a 75-dimensional vector (25×3)

that encodes, at time t, the body posture (position

of all joints) while xa
j(t),a = 1...A only encodes

the position of joint a at time t for the jth example

(3D vector).

3.2 Model of experts’ motions

The model of experts’ motions must at best repre-

sent all these motions with their variability to ensure

that an expert motion is never considered as incorrect.

One of the main problem to create such a model is

that each motion may have different durations. Mod-

els such as HMM or HCRF can overcome this prob-

lem but do not consider the temporality between the

limbs. They thus can consider as correct motions that

are properly executed but badly synchronized. An-

other approach could be to use a nearest neighbor

method but it becomes intractable when the number

of examples in the database increases. To overcome

these limitations and to ensure that our model per-

fectly represents all the experts’ motions with their

variability, we chose to model the serves with both

the average motion and the spatial and temporal tol-

erances between it and each serve of all experts. To

deal with the different motion durations, all examples

are temporally aligned with the longest example us-

ing a Dynamic Time Warping algorithm (DTW). Let

XL(t) be this longest example. This temporal align-

ment simultaneously considers all joints to ensure that

we model both the spatial features of the motion and

the temporality between joints.

3.2.1 Average expert trajectory

To determine the average motion of all experts, we

first made a global temporal alignment between each

expert example X j(t) and the longest example XL(t)
using DTW. To this end, we defined a distance matrix

that contains the similarity values between XL(t1) and

X j(t2), ∀t1 ∈ [0,ML− 1] and ∀t2 ∈ [0,M j− 1] where

ML and M j are the durations of trajectory L and j re-

spectively. These similarities are computed on both

each joint trajectory and its derivative, as suggested

in (Keogh and Pazzani, 2001):

d1
L, j(t1, t2) = ‖XL(t1)−X j(t2)‖

2

d2
L, j(t1, t2) = ‖ẊL(t1)− Ẋ j(t2)‖

2

dL, j(t1, t2) =
d1

L, j(t1, t2)

max
t1,t2

d1
L, j(t1, t2)

+
d2

L, j(t1, t2)

max
t1,t2

d2
L, j(t1, t2)

∀t1 ∈ {0...ML− 1},∀t2 ∈ {0...M j− 1}.

The cumulative distance matrix DL, j is then com-

puted from these similarities:

DL, j(t1, t2) = dL, j(t1, t2)+

min(DL, j(t1, t2−1),DL, j(t1−1, t2),DL, j(t1−1, t2−1)))

with DL, j(0,0) = dL, j(0,0), DL, j(t1,0) =

∑
t1−1
t=0 dL, j(t,0) and DL, j(0, t2) = ∑

t2−1
t=0 dL, j(0, t),

∀t1 ∈ {1...ML− 1},∀t2 ∈ {1...M j− 1}.

The distance between examples XL(t) and X j(t)
is then defined by DL, j(ML− 1,M j − 1). The mini-

mal path that goes from times (0,0) to times (ML−
1,M j− 1) of the two examples gives then their opti-

mal alignment as shown in Figure 4.

Figure 4: Cumulative distance matrix DL, j and the resulting
minimal path that align at best the two motions (in white).

This alignment method of each example X j(t) on

the longest one XL(t) is then applied to all examples

to compute their optimal path. This path provides the

TL, j(t) function that links each time t1 of XL(t) to a

time Tj(t1) of X j(t). Let us denote this path PL, j =
{(t1,TL, j(t1)), t1 = 1...ML− 1}. Each example X j(t)
is then realigned according to the path PL, j to obtain

a new motion X̃ j(t) with a duration of L time steps.

The average motion can then be simply computed like

this:

Xmean(t) =
1

NE

NE−1

∑
j=0

X̃ j(t) ∀t ∈ {1...ML− 1}



Let us recall that X j(t) contains the 3D trajectories

of all joints at time step t. The temporal alignment be-

tween trajectories is thus the same for the whole body,

ensuring to maintain the temporal coherency between

joints while being able to obtain the mean trajectory

of all joints: Xmean(t) = {x
a
mean(t),a = 1...A}.

Based on this mean motion that best represents all

expert examples, we now need to model the spatial

and temporal tolerances (deviations) that enclose all

the variability of experts’ performances.

3.2.2 Spatial tolerance modeling

To better evaluate and model the spatial tolerance of

the experts’ motions, we must be independent of tem-

poral errors, and do not allow bad synchronization

to influence the computation of spatial errors. We

thus consider each joint separately and align each of

them xa
j(t) to the mean joint trajectory xa

mean(t). To

this end, as described above, we compute the ele-

ments da
mean, j(t1, t2) of the distance matrix between

joints as well as the cumulative distance matrix ele-

ments Da
mean, j(t1, t2). A specific path Pa

mean, j is then

defined for each joint. It links each time t1 of xa
mean(t)

to a time T a
mean, j(t1) of xa

j(t). Using these paths

Pa
mean, j = {(t1,T

a
mean, j(t1)), t1 = 1...ML− 1}, new tra-

jectories x̃a
j(t) are obtained, that have the same dura-

tion (ML) but do not correspond to the same temporal

alignment. We can now compute the spatial tolerance,

for each joint and at each time step:

ΣS(t,a) =COV j∈experts{x̃
a
j(t)}

where COV is the covariance matrix,

∀t ∈ {0...ML− 1},∀a ∈ {1...A}.

Each ΣS(t,a) is then a 3×3 matrix that represents

the variations of position of the joint a, in the 3D co-

ordinate system (x,y,z) and at time t, that are allowed

around the mean 3D position to be still considered as

a correct position (a position that experts can have).

The spatial tolerance is illustrated for a specific time t

and all the joints a in Figure 5.

3.2.3 Temporal tolerance modeling

If the joints of experts are perfectly synchronized,

the alignments computed for each joint Pa
mean, j =

{(t,T a
mean, j(t)), t = 1...ML − 1} and for the whole

body Pmean, j = {(t,Tmean, j(t)), t = 1...ML−1} should

be the same. In practice, this is obviously not true, be-

cause there is a variation in joints temporality as can

be seen in Figure 6. The temporal error between the

two paths must then be computed with the cumulative

distance matrix of each joint:

Figure 5: Spatial tolerance of the model of experts’ motions.
The black posture represents the average expert posture at
time t and the black spheres are the spatial tolerance of all
joints around this posture. The red posture is an example of
novice posture.

Ea
j (t) =

max
(

0,Da
mean, j

(

t,Tmean, j(t)
)

−Da
mean, j(t,T

a
mean, j(t))

)

M j

∀t ∈ {0...ML−1}

Da
mean, j (ML− 1,M j− 1) is logically higher than

Da
mean, j

(

ML− 1,Ta
mean, j(M j− 1)

)

as terms T a
mean, j(t)

have been estimated from Da
mean, j. However, it could

happen that

Da
mean, j (t,Tmean, j(t))≤ Da

mean, j

(

t,T a
mean, j(t)

)

for some t ∈ {0...ML− 1} leading to negative values.

These rare cases are not representing real errors of the

player so we consider that Ea
j (t) is null to ensure that

they have no influence on the global path.

The temporal tolerance is then defined, for each

time and each joint, as the standard deviation of these

errors:

σT (t,a) = STD j∈experts{E
a
j (t)} ∀t ∈ {0...ML− 1}

where STD is the standard deviation.



Figure 6: Temporal tolerance computation by path com-
parison on the cumulative distance matrix D13

mean, j of the

RHan joint (a = 13) for an expert example. The global path
Pmean, j and the local one P13

mean, j are respectively shown in

white and yellow.

3.3 Evaluation of novice’s motion

Based on the model of experts’ motions detailed

above, the evaluation process consists in comparing

the joints trajectories of the novice’s motion with the

average motion and its spatial and temporal toler-

ances.

3.3.1 Temporal errors

The temporal error between novice and expert mo-

tions can be global (delay over all the movement) or

local (delay between a joint and an other). The local

error is particularly interesting when evaluating mo-

tions since it can provide information about the prob-

lem of synchronization between limbs for instance.

But to identify these local errors, a common tempo-

ral base is necessary: a global synchronization of the

movement with the model of experts’ motion. The

first step is thus to determine this optimal global path

and to observe the local temporal errors relatively

to it. The difficulty is that each joint influences the

global path and if a joint is very delayed from the

others, the resulting global path would not be repre-

sentative of the global motion. An iterative process

is thus needed to evaluate the best joints to be con-

sidered. We propose to use an interative algorithm

based on random sampling such as RANSAC. First,

some joints are randomly selected and are used to

compute the global path. Then, the other joints with

nearly the same temporal alignment are added and

the global path is re-estimated. This process is iter-

ated NRANSAC times and the best global path is kept to

align the novice serve to the expert model. The same

methodology as in Section 3.2.3 is then used to es-

timate Ea
temp(t) that measures the temporal error, for

each time and each joint. The whole process is de-

scribed in Algorithm 1.

3.3.2 Spatial errors

Based on the global alignment described above, the
spatial errors are computed with the Mahalanobis dis-
tances between the trajectories of the novice’s motion
x̃a(t) and of the model of experts xa

mean(t):

Ea
spa(t) =

√

(x̃a(t)−xa
mean(t))

T ΣS(t,a)(x̃a(t)−xa
mean(t))

where ΣS(t,a) is a 3× 3 matrix modeling the spatial

tolerance as defined in Section 3.3.2.

Both temporal Ea
temp(t) and spatial Ea

spa(t) errors

are thus computed for each time and each joint. These

values inform us about when and how errors occur in

the novice’s motion compared to the reference, the

database of experts’ motions.

4 RESULTS

To validate our method, we made two preliminary

experiments. The goal of the first one is to determine

if our algorithm can automatically distinguish novices

from experts. The second experiment quantifies the

errors made by a novice player to observe when and

how they occurred.

4.1 Automatic recognition of novices

and experts

For this first experiment, the reference database is

only composed of NE − 20 experts examples and the

test database is composed of the NN novice examples

and the 20 unused expert examples.

Temporal analysis

If the temporal sequence of novice joints is not con-

sistent with expert ones (i.e. some joints are delayed),

the temporal error Ea
temp(t) presented in Section 3.3.1

must be higher. We thus compute a global temporal

error as the sum of the local temporal errors, for each

example and for all times and joints:

ERRtemp =
1

MLA

ML−1

∑
t=0

A

∑
a=1

Ea
temp(t)

The values of ERRtemp, computed for each trial,

are represented by box plots in Figure 7 for both pop-

ulations. As expected, the global temporal errors of

novices are larger than of experts.

Spatial analysis

To quantify the spatial errors, we applied the same



Input: X(t) = {xa(t),a = 1...A, t = 0...M− 1}, Xmean(t), σT (t,a)
n = 0, h1 = 5, Esave =+∞, NRANSAC = 50, kT = 3, S = /0, Ssave = /0

Output: Temporal error Ea
temp(t)

while n < NRANSAC do
Randomly choose h1 joints to get the set S = {a0...ah1−1}
Compute the distance matrix between the average expert trajectory Xmean(t) and the new gesture X(t)
using only the h1 joint. Its elements are defined by :

dS(t1, t2) =
∑

a∈S
‖xa(t1)−xa

mean(t2)‖
2

max
t1,t2

(∑
a∈S

‖xa(t1)− xa
mean(t2)‖

2)
+

∑
a∈S
‖ẋa(t1)−ẋa

mean(t2)‖
2

max
t1,t2

(∑
a∈S

‖ẋa(t1)− ẋa
mean(t2)‖

2)

Compute the cumulative distance matrix DS using the distance matrix dS

Compute the initialization of the global path PS = {(t,T S(t)), t = 1...ML− 1} that align Xmean(t) and

X(t)
forall the a /∈ S do

Compute the local path between xa
mean(t) and xa(t)

Compute the error induced by the global path on the cumulative distance matrix of this joint

Ea(t) =
max(0,Da(t,T S(t))−Da(t,T a(t)))

M∗σT (t,a)

if Ea(t)< kT ∀t then
S← S+ a

Compute the total temporal error considering all the joints and all the times E← 1
|S|ML

∑
a∈S

ML−1

∑
t=0

Ea(t))

if (|S|> |Ssave|) or (|S| ≥ |Ssave| and E < Esave) then
Ssave← S

Esave← E

Ea
temp(t)← Ea(t), ∀a ∈ {1...A} and ∀t ∈ {0...ML− 1}

n← n+ 1
Algorithm 1: Algorithm of the temporal error estimation. |S| denotes the cardinal of the set S.

experts novices
0

50

100

Figure 7: Temporal error distribution for novices and the
experts that are not included in the reference database.

evaluation process. For each example, we computed

the global spatial errors from local spatial errors:

ERRspa =
1

MLA

ML−1

∑
t=0

A

∑
a=1

Ea
spa(t)

As shown in Figure 8, box plots of global spatial

errors for the two populations are clearly separated,

experts are distinguished from novices. Moreover er-

rors are larger and more dispersed for novices than ex-

perts, highlighting the worst performance of novices

and the higher variability of their motions.

experts novices

2

3

4

5

Figure 8: Spatial error distribution for novices and the ex-
perts that are not included in the reference database.

Our approach can thus easily distinguish novices

from expert players both with spatial and temporal er-

rors.

4.2 Evaluation of a novice’s motion

The goal of this second experiment is to apply our

method on the motion of a novice player to determine

his/her temporal and spatial errors over time. We

have thus randomly selected one example of novice’s

tennis serve. To better illustrate the results, the

average serve provided by the model of experts



detailed in Section 3.2 is sampled into 9 reference

times {t1...t9}. The first row of Figure 9 shows the

postures of this average motion at all these times

(with a finer sampling at the end of the motion to have

more details on this most dynamic part). The novice’s

serve is shown on the second row of Figure 9. Since

this novice player made his serve faster, only two

postures are illustrated but of course all the postures

of the motions are considered for the following

analyses. Finally, the third row illustrates how the

novice’s serve was globally aligned by Algorithm 1.

The two motions are temporally coherent and the

errors between them can be evaluated.

Temporal analysis

To qualitatively analyze the temporal results obtained

on the novice’s motion, the temporal error of the

novice’s right elbow is drawn in Figure 10. The

temporal error is very low for all times except for t8
where Ea

temp(t8) = 50.48. At this time, the expert is

hitting the ball while the novice is already ending his

motion. This shows that the novice player moved

his arm earlier than the expert relatively to his global

movement. This relative temporal delay between

the motions is obtained thanks to the global optimal

alignment made by Algorithm 1.

Spatial analysis

The spatial error computed by our method for the

novice’s right elbow is drawn in Figure 11. The

greater spatial error is obtained at the beginning of

the motion. Figure 12 shows the position of the

right elbow of the novice (in blue) and of the expert

(in red) above the posture of the average motion

of experts. The main error is indeed located at the

beginning of the motion and is due to a bad technique

of the novice: he did not lower enough the racket to

exploit at best its displacement to have an optimal

speed at ball impact.

Even if these results are preliminary, they high-

light the strength of our method that can take both

spatial and temporal errors into account to accurately

identify the errors over time. Moreover, these errors

are not only global information but are precise enough

to point out local errors such as the synchronization

between limbs or the spatial and temporal error of a

joint relatively to the global motion. All these out-

comes are moreover obtained independently of the

length of the motions.

5 CONCLUSION

In this paper, we proposed an innovative approach to

automatically evaluate sport motions independently

to the type of sport or the morphology of the player.

Preliminary results showed that our algorithm can

correctly distinguish novice players from experts but

even better it can quantify over time the temporal and

spatial errors of the performance of a novice player

compared to a database of experts. These results

were achieved thanks to a 2-level DTW. Actually,

a single DTW can only give information about

the global error of the motion without considering

the temporality between limbs for instance and

without localizing the errors. Another solution could

have been to manage each joint independently but

no relationships between the joints could then be

identified. Our solution overcomes these limits:

both spatial and temporal features are considered

concurrently and can then be used to propose

an accurate training solution to work on that spe-

cific imperfections of the gesture and at the right time.

Our algorithm is based on a random-based selec-

tion process that could make it stochastic and then

subject to variations. On the contrary, this process

allows the detection of outliers, i.e. joints that are

badly synchronized with others, in an efficient way.

However, these preliminary results must be extended

to a bigger population to have a statistical analysis.

This approach opens wide range of use cases.

It can indeed be used to automatically compare

the novice’s motion of any individual sport to the

database of expert without adding knowledge or edit-

ing/annotating the experts’ motions. But it can also be

used to compare a novice or injured player along time

to evaluate his/her progression. This method could

thus be the core of a generic and automatic training

system to be used complementary to traditional train-

ing sessions.
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Figure 9: First row: average motion provided by our model of experts’ motion, sampled into 9 times for illustration purpose.
Second row: original novice’s motion at the same times. Third row: novice’s serve after alignment with the path PS
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Figure 10: Temporal error of the novice’s right elbow over time. The 9 reference times illustrated in Figure 9 are represented
by vertical dashed lines.
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Figure 11: Spatial error of the novice’s right elbow over time. The 9 reference times illustrated in Figure 9 are represented by
vertical dashed lines.



t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8 t

9

Figure 12: Position of the right elbow of the experts’ average motion (red) and of the novice’s one (blue) after local alignment

PRElb
mean .

REFERENCES

Barnachon, M., Bouakaz, S., Boufama, B., and Guillou,
E. (2013). A Real-Time System for Motion Re-
trieval and Interpretation. Pattern Recognition Letters,
34(15):1789–1798.

Burns, A.-M., Kulpa, R., Durny, A., Spanlang, B., Slater,
M., and Multon, F. (2011). Using virtual humans and
computer animations to learn complex motor skills: a
case study in karate. BIO Web of Conferences, 1(12).

Gong, D., Medioni, G., and Zhao, X. (2014). Structured
time series analysis for human action segmentation
and recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 36(7):1414–1427.

Heloir, A., Courty, N., Gibet, S., and Multon, F. (2006).
Temporal alignment of communicative gesture se-
quences. Computer Animation and Virtual Worlds,
17(3-4):347–357.

Kahol, K., Tripathi, P., and Panchanathan, S. (2004). Com-
putational analysis of mannerism gestures. In ICPR,
pages 946–949.

Keogh, E. J. and Pazzani, M. J. (2001). Derivative dynamic
time warping. In In Proceedings of the First SIAM
International Conference on Data Mining.

Komura, T., Lam, B., Lau, R. W. H., and Leung, H.
(2006). e-learning martial arts. In Advances in Web
Based Learning – ICWL, volume 4181, pages 239–
248. Springer-Verlag, Berlin, Heidelberg.

Kulpa, R., Multon, F., and Arnaldi, B. (2005). Morphology-
independent representation of motions for interactive
human-like animation. Computer Graphics Forum,
24(3):343–352.

Maes, P.-J., Amelynck, D., and Leman, M. (2012). Dance-
the-music: an educational platform for the mod-
eling, recognition and audiovisual monitoring of
dance steps using spatiotemporal motion templates.
EURASIP Journal on Advances in Signal Processing,
2012(1):35.

Müller, M. and Röder, T. (2006). Motion templates for
automatic classification and retrieval of motion cap-
ture data. Proceedings of the 2006 ACM SIGGRAPH,
pages 137–146.

Müller, M., Röder, T., and Clausen, M. (2005). Efficient
content-based retrieval of motion capture data. ACM
Transactions on Graphics, 24(3):677.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy,
R. (2012). Sequence of the most informative joints

(SMIJ): A new representation for human skeletal ac-
tion recognition. In CVPRW, pages 8–13.

Pazhoumand-Dar, H., Lam, C.-P., and Masek, M. (2015).
Joint movement similarities for robust 3d action
recognition using skeletal data. Journal of Visual
Communication and Image Representation, 30:10–21.

Pham, M. T., Moreau, R., and Boulanger, P. (2010). Three-
dimensional gesture comparison using curvature anal-
ysis of position and orientation. In EMB, pages 6345–
6348.

Röder, T. (2006). Similarity, Retrieval, and Classification
of Motion Capture Data. PhD thesis, Rheinischen
Friedrich- Wilhelms- Universität, Bonn.

Sakoe, H. and Chiba, S. (1978). Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26(1):43–49.

Sakurai, K., Choi, W., Li, L., and Hachimura, K. (2014).
Retrieval of similar behavior data using kinect data.
In ICCAS, pages 97–104.

Shin, H. J., Lee, J., Shin, S. Y., and Gleicher, M. (2001).
Computer puppetry: An importance-based approach.
ACM Transactions on Graphics, 20(2):67–94.

Sie, M.-S., Cheng, Y.-C., and Chiang, C.-C. (2014). Key
motion spotting in continuous motion sequences using
motion sensing devices. In ICSPCC, pages 326–331.

Sorel, A., Kulpa, R., Badier, E., and Multon, F. (2013).
Dealing with variability when recognizing user’s per-
formance in natural 3d gesture interfaces. Interna-
tional Journal of Pattern Recognition and Artificial
Intelligence, 27(8):19.

Wang, J., Liu, Z. L., Wu, Y. W., and Yuan, J. (2012). Mining
actionlet ensemble for action recognition with depth
cameras. In CVPR, pages 1290–1297.

Wang, S. B., Quattoni, A., Morency, L.-P., and Demirdjian,
D. (2006). Hidden conditional random fields for ges-
ture recognition. In CVPR, volume 2, pages 1521–
1527.

Ward, R. E. (2012). Biomechanical Perspectives on Clas-
sical Ballet Technique and Implications for Teaching
Practice. PhD thesis, University of New South Wales,
Sydney, Australia.

Xia, L., Chen, C.-C., and Aggarwal, J. K. (2012). View
invariant human action recognition using histograms
of 3d joints. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 20–27.



Zhong, S. and Ghosh, J. (2002). HMMs and coupled HMMs
for multi-channel EEG classification. In Proceedings
of the 2002 International Joint Conference on Neural
Networks, pages 1154–1159.

Zhou, F. and de la Torre, F. (2015). Generalized canonical
time warping. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1–1.

Zhou, F. and De La Torre Frade, F. (2009). Canonical time
warping for alignment of human behavior. In NIPS,
pages 2286–2294.


