PeerCube: a Hypercube-based P2P Overlay
Robust against Collusion and Churn

E. Anceaume, R. Ludinard, A. Ravoaja F. Brasileiro
IRISA/CNRS/INRIA/ENS Cachan Universidade Federal de Campina Grande
Campus Universitaire de Beaulieu Laboratério de Sistemas Distribuidos

Rennes, France 58.109-970, Campina Grande, PB, Brazil

{anceaume,roludina,aravoj@irisa.fr fubica@dsc.ufcg.edu.br

Abstract triggered engendering accordingly multiple and concurren

maintenance traffic. Ensuring routing tables consistency

This paper presents PeerCube, a DHT-based system aimguickly becomes unbearable, leading to misrouting, and to
ing at minimising performance penalties caused by high possible partitioning of the system. The other fundamental
churn while preventing malicious peers from subverting the issue faced by any practical open system is the inevitable
system through collusion. This is achieved)ogpplying a presence of malicious peels]22]. Guaranteeing the ligenes
clustering strategy to support quorum-based operatidijs; of these systems requires their ability to self-heal orastie
using a randomized insertion algorithm to reduce the prob- to self-protect against this adversity. Malicious peens ca
ability with which colluding Byzantine peers corrupt clus- devise complex strategies to prevent peers from discayerin
ters, and;iii) leveraging on the properties of PeerCube’s the correct mapping between peers and data keys. They can
hypercube structure to allow operations to be successfully mountSybil attackg6] (i.e., an attacker generates numer-
handled despite the corruption of some clusters. In spite ous fake peers to pollute the system), they camading
of a powerful adversary that can inspect the whole systemtable poisonindalso callececlipse attack§3l [24]) by hav-
and issue malicious join requests as often as it wishes; Peer ing good peers redirecting outgoing links towards malisiou
Cube guarantees robust operations@{logN) messages, ones, or they can simply drop or re-route messages towards
with IV the number of peers in the system. Extended simu-other malicious peers. They can magnify their impact by
lations validate PeerCube robustness. colluding and coordinating their behaviour.

This paper presents PeerCube, a DHT-based system aim-
. ing at avoiding high churn from impacting the performance
1 Introduction of the system and at the same time at preventing mali-
cious behaviour (coordinated or not) from subverting the
Research on the development of efficient peer-to-peersystem. As many existing DHT-based overlays, PeerCube
systems has recently received a lot of attention. This hasis based on a hypercubic topology. PeerCube peers self-
led to the construction of numerous structured peer-ta-pee organise into clusters whose interconnections form the hy-
overlays systems$ [16, P4, 119,[9] 14]. All these systems arepercubic topology. Peers within each cluster are classified
based on distributed hash tables (DHTs) which partition aninto two categories, core members and spares, such that
identifier space among all the peers of the system. Struc-only the former ones are actively involved in PeerCube op-
tured overlays enjoy numerous important properties. Theyerations. Thus only a fraction of churn affects the overall
are efficient, scalable, and tolerant to benign failuresvHo topology of the hypercube. Defences against eclipse atack
ever, less investigation has been carried out for handlingare based on the observation that malicious peers can more
both very high churn and collusive behaviour issues. As easily draw a successful adversarial strategy from a deter-
pointed out by Locher et all_T13], most proposed peer-to- ministic algorithm than from a randomised one. We show
peer overlays are highly satisfactory in terms of efficiency that regardless of the adversarial strategy colludersempl
scalability and fault tolerance when evolving in weakly the randomised insertion algorithm we propose guarantees
dynamic environments. On the other hand, in the pres-that the expected number of colluders in each routing table
ence of very frequent connections/disconnections of peersis minimal. Furthermore, by keeping the number of core
a very large number of join and leave operations are locally members per cluster small and constant, it allows to rely

on the powerful consensus building block to guarantee con-similar performance with regard to churn if their parame-
sistency of the routing tables despite Byzantine peers. Fi-ters are sufficiently well tuned. However, these protocols
nally, PeerCube takes advantage of independent and optimado not focus on reducing the frequency at which routing ta-
length paths offered by the hypercubic topology to decreasebles are updated. Such an approach has been proposed in
exponentially the probability of encountering a faulty pee the eQuus architecturgJ13], in which nodes which are ge-
with the number of independent pathsl[23]. ographically close to each other are grouped into the same

To summarise, PeerCube brings together researctcliques to form the vertices of the hypercube. EQuus offers
achievements in both “classical” distributed systems andgood resilience to churn and good data availability, howeve
open large scale systems (Byzantine consensus, clusteringelying on local awareness to gather peers within cliques
distributed hash tables) so that it efficiently deals with co makes this architecture vulnerable to adversarial callusi
lusion and churn. To the best of our knowledge this work is and geographically correlated failures.
the first one capable of tolerating collusion by requiring fo
eachl ookup, put,j oi nandl eave operationD(logN) 3 Model
latency and only)(log N') messages.

In the remaining of the paper, we discuss related work in
Sectior® and then present the system and adversary models'1 System Model
in SectiorB. Description of the architecture is given in-Sec
tion[, together with an analysis of the churn impact. Ro-
bustness against malicious behaviours (coordinated 9r not
is studied in Sectiofl5. Results of simulations are presente
in Sectior®. We conclude in Sectibh 7.

Peers are assigned unique random identifiers from an
m-bit identifier space when they join the system. Identi-
fiers (denoted ID) are derived by using the standard MD5
hash function[[18], on the peers’ network address. We take
the value ofm large enough to make the probability of
identifers collision negligible. Each application-sgaxbb-

2 Related Work ject, or data-item, of the system is assigned a unigue iden-
tifier, calledkey, selected from the same-bit identifier

In the following, we first review related work that fo- space. Each pegrowns a fraction of all the data items
cuses on robustness against malicious peers and then exanef the system. Regarding timing assumption, we assume an
ine policies to handle high churn. asynchronous model. Rational of this assumption is that it

Regarding robustness to malicious behaviour, different makes difficult for malicious peers to devise strategies tha
approaches have been proposed, each one focusing on a pagould have been exploited in a synchronous timing model,
ticular adversary strategy. Regarding eclipse attackery v such as DoS attacks [15].
common technique, callezbnstrained routing tablerelies
on the uniqueness and impossibility of forging peers’ iden- 3.2 Adversary Model
tifiers. It consists in selecting as neighbours only the peer
whose identifiers are closer to some particular points in the Some peers try to manipulate the system by not follow-
identifier spacel]3]. Such an approach has been successng the prescribed protocols and by exhibiting undesirable
fully implemented into several overlays (e.g., CAN, Chord, behaviours. Such peers are caliedlicious Malicious
Pastry). More generally, to prevent messages from beingpeers can drop messages or forward requests to illegitimate
misrouted or dropped, the seminal works on DHT routing peers. Malicious peers may act independently or may be
security by Castro et al.][3] and Sit and Morfis[22] combine part of acollusion group A peer which always follows the
routing failure tests and redundant routing as a solution to prescribed protocols is said to berrect We assume that
ensure robust routing. Ravoaja and Anceaume extended thishere exists a fractiop, (0 < p < 1), of malicious peers
approach to cope with colluders by constraining the redult o in the whole system. Malicious peers are controlled by a
a query, which guarantees to reach the legitimate recipientstrong adversary. The adversary can issue join requests for
with high probability [17]. However, in both approaches, its malicious peers in an arbitrary manner. At any time it
the topological properties of their overlay do not guarante can inspect the whole system and make its malicious peers
that redundant paths are independent. Fiat etlal. [7] use thee-join the system as often as it wishes. We assume the exis-
wide paths technique initially proposed by Hildrum and Ku- tence of a public key cryptography scheme that allows each
biatowicz [10]. All these solutions require all DHT nodes peer to verify the signature of each other peer. We also as-
to maintainO(log?N) links to other nodes, and require for sume that correct peers never reveal their private keyssPee
each operatio(log® N) messages. IDs and keys are part of their hard coded state, and are ac-

With regard to churn, Li and all'[12] show through a quired via a central authorit{[5]. When describing the pro-
comprehensive performance evaluation that structured ove tocols, we ignore the fact that messages are signed and re-
lays (such as Tapestry, Chord, or Kademlia) can achievecipients of a message ignore any message that is not signed

properly. We also use cryptographic techniques to prevent
a malicious peer from observing or unnoticeably modify-

obtained by crossing successively the vertices whosedabel
are obtained by modifying one by omés bits to transform

ing a message sent by a correct peer. However a malicious:’s label intom’s one. Suppose thét(n, m) = b. Then

peer has complete control over the messages it sends an

tlindependent paths betweerandm can be found as fol-

receives. Note that messages physically sent between anjows: pathi is obtained by successively correcting hibit

two correct peers are neither lost nor duplicated.

4 Architecture Description

As discussed before, our architecture is based on a hy
percubic topology. The hypercube is a popular intercon-
nection scheme due to its attractive topological propgrtie
namely, low node degree and low network diameter. Be-
yond these properties, a hypercube offers two important
topological features, namely recursive construction @Ad i
dependent paths.

4.1 Background

This section presents some preliminaries related to the
hypercubic topology. For more details the reader is invited
to read Saad and Schuliz[20].AAdimensional hypercube,
or d-hypercube for short, consists f vertices, where each
vertexn is labelled by itsd-bits representation. Dimension

i+1,...,bit(i+b—1) mod bamong the different bits
betweenn andm. Note that thesé paths are of optimal
length(n, m). In addition to these pathd,— b paths of
lengthH(n, m) + 2 can be constructed as follows: path
of lengthH(n,m) + 2 is obtained by modifying first bij

on whichn andm agree, and then by correcting thelif-
ferent bits according to one of tliepossibilities described
previously, and finally by re-modifying bit

4.2 PeerCube in a Nutshell

We now present an overview of PeerCube features. Ba-
sically, our architecture has two main characteristicgrpe
sharing a common prefix gather together iokasters and
clusters self-organise into a hypercubic topology.

4.2.1 Clusters

As stated before, each joining peer is assigned a unique ran-

d is a fundamental parameter since it characterises both th€!om 1D from anm-bit identifier space. Assigning unique

diameter and the degree ofdahypercube. Two vertices
ng...ng—1 andm = mg...my_1 are connected by an
edge if they share the same bits but iHe one for some
i, 0 < i < d, i.e. if their Hamming distanc@{(n, m) is
equal tol. In the following, the notatiom = m? stands for
two verticesn andm whose labels differ only by their bit

Property 1 (Recursive Constructioh [2Q])A d-hypercube
can be constructed from lower dimensional hypercubes.

The construction consists in joining each vertex of a
(d — 1)-hypercube to the vertex of the othéd — 1)-
hypercube that is equally labelled, and by suffixing all the
labels of the vertices of the firgtl — 1)-hypercube with)
and those of the second one withThe obtained graph is a
d-hypercube. From this construction, we can derive a sim-
ple distributed algorithm for building &hypercube from a
(d—1) one which involves onlg messages per link updated

random IDs to peers prevents the adversary from control-
ling a portion of the network, since peers are spread wide
over the network according to their identifier. Peers whose
ID share a common prefiyather together within the same
cluster. Each cluster is uniquely identified withl@bel that
characterises the position of the cluster in the overall hy-
percubic topologﬂ/. The label of a cluster is defined as the
shortest common prefix shared by all the peers of that clus-
ter such that theon-inclusionproperty is satisfied. The
non-inclusion property guarantees that a cluster labetmev
matches the prefix of another cluster label, and thus ensures
that each peer in PeerCube belongs to at most one cluster.

Property 3 (Non-Inclusion) If a clusterC labelled with
bg ...bg_1 exists then no clust&l withC’ # C whose label
is prefixed withbg . . . by_1 exists.

The length of a cluster label, i.e. the number of bits of

whatever the dimension of the considered system, and thughat label, is called thdimensiorof the cluster. In the fol-

has a message complexity©fd) per peer.

Property 2 (Independent Routes [20]).etn andm be any
two vertices of a-hypercube. Then there aindependent
paths betweem and m, and their length is less than or
equal toH(n, m) + 2.

Two paths are independent if they do not share any com-

lowing, notationd-cluster denotes a cluster of dimension
d. Dimension determines an upper bound on the number of
links a cluster has with other clusters of the overlay, he. t
number of its neighbours. Peers oflalusterC maintain

a routing tableRT such that entryRT'[i], with 0 < ¢ < d,
points to peers belonging to one of theclosest clusters

to C. (Distance notion is detailed in Sectibn 412.2.) Ref-
erences to clusters that point towafdare maintained by

mon vertex other than the source and the destination ver-

tices. In ad-hypercube, a path from vertexto vertexm is

IHenceforth, a cluster will refer to both the cluster andatsdl.

C’s members in a predecessor talf?d. Note that main- table. LetC = by...bg—; andC? = by...b;...bs—1. Then,
taining such a data structure is not mandatory, i.e. thoseC’s i** neighbour in PeerCube is clust&rwhose label is
clusters can be easily found by the topological propertiesthe closest t@*.

of PeerCube. However, keeping this information makes the

maintenance operations more efficient. Regarding data, allPToPerty 4. LetC be ad-cluster. Thenyi,0 < i < d,
the peers of a cluster are responsible for the same data key&try ¢ of the routing table of is clusterC’ such that for
and their associated data. As for most existing overlays, aéach clusteC” # C’, D(C*,C’) < D(C*,C") holds.

data key is placed on the closest cluster to this key. Placing
a data key on all the peers of a cluster naturally improves
fault tolerance since this increases the probability thist t
key remains available even if some of the peers fail. To
keep this probability high, the size of a cluster must not un-
dershoot a certain predefined valtig;,, which dependson Lemma 1. LetC = by . ..bs_1 be ad-cluster. Thervi, 0 <
the probability of peers’ failures. Finally, for scalabjlrea- i < d,C'si*" neighbouris cluste€’ such that’’ is prefixed
sons, each cluster size is upper bounded by a constant valugith b, . . . b; if such a cluster exists. Otherwis&, = C.
Smaz SPecified later on.

By the distanceéD definition, it is easy to see that if for
each cluste€ in PeerCube the distance betwa®nand its
it" neighbour is equal to (with 0 < i < d), then PeerCube
maps a perfeaf-hypercube. From Propeffy 4, we have:

This can be seen by observing that, by definitiorDof
C’ shares the longest prefix with, that is at least the prefix
by . ..b;. Otherwis& would be the closest cluster@. We
Clusters self-organise into a hypercubic topology, suah th exploit this property to construct a simple lookup protocol
the position of a cluster into the hypercube is determined by which basically consists in correcting the bits of the seurc
its label. Ideally the dimension of each clusteshould be towards the destination from the left to the right.
equal to some valué to conform to a perfeci-hypercube.
However, due to churn and random identifier assignment,4.3 Leveraging the Power of Clustering
dimensions may differ from one cluster to another. Indeed,
as peers may join and leave the system asynchronouslyDimensions Disparity As described before, clusters di-
clusterC may grow or shrink more rapidly than others. In mensions are not necessarily equal to each other. By sim-
the meantime, bounds on the size of clusters require thatply setting S, > log2N, we can make the dimensions
whenever the size of exceedsS,,.., C splits into clus- disparity small and constant. Indeed, observe that the di-
ters of higher dimensions, and that, whenever the size of mension of a cluster is necessarily greater than or equal to
falls unders,,.;,,, C merges with other clusters into a single 10925N This follows from the fact that the minimum
new cluster of lower dimension. Finally, since peers IDs, number of clusters i&V/S,,.q., Which determines the min-
and thus cluster labels, are randomly assigned, some of thémum number of bits needed to code the label of a clus-
labels may initially not be represented at all. For all these ter. Furthermore, by setting, ... > logN, we can show
reasons dimensions of clusters may not be homogeneoushy using Chernoff's bounds that the dimension of a clus-
To keep the structure as close as possible to a perfect hypeter is W.h.rﬂ lower thanlogs SN + 3. Indeed, since la-
cube and thus to benefit from its topological properties, we bels are uniformly randomly ‘assigned, settifig.. to a
need adistancefunctionD that allows to uniquely charac- higher value decreases clusters dimension. Thus distance
terise the closest cluster of a given label. This is obtabyed § between any two clusters dimensions is w.h.p. less than
computing the numerical value of the “exclusive or” (XOR) or equal to3f Furthermore the number of non-represented
of cluster labels[14]. To preventtwo labels to be at the sameprefixes is at most, which is very small with regard to the
distance from a given bit string, labels are suffixed with as total number of clusterd’/S,,..... Consequently, by setting
many bits “0” as needed to equalise their sizerto Smaz > logaN, PeerCube is very close to a)@SL -

4.2.2 Hypercubic Topology

Definition 1 (DistanceD). LetC = ap...aq-1 and

C' = bg...bgs_1 be any twod (resp. d') -clusters:

D(C7C/) = D(ap. --ad—lom_d,bo.. ~bd/_10m_d/) _
m—1 m—1
Zi:o,ai;ﬁbi 2

DistanceD is such that for any point and distance\
there is exactly one point such thatD(p, q) = A (which

does not hold for the Hamming distance). Finally, labels

hypercube, which guarantees PeerCube to enjoy the attrac-
tive topological properties of a perfect hypercube of diame
terlogs . HenceforthS, .. is in ©(logN).

Smax

Limiting the Impact of Churn We have just shown that
by having peers self-organised in a hypercube of clusters
we get w.h.p. an overlay of diametkrgs . We now

Smaz

2|n the following, with high probability (w.h.p.) means wigitobability

that have longer prefix in common are closer to each other.greater than — =y

We are now ready to detail the content of a cluster’s routing

3Note that for a pure hypercube, the dimension disparitygs V.

describe how peers take advantage of that clustering to limi of a cluster exceeds,,....., this clustersplitsinto two new
the impact of churn on the overall system. Specifically, clusters; when the size of a cluster goes bekyy,,, this
peers within a cluster are classified into two categodese clustermergeswith other clusters to guarantee the cluster
andsparemembers. Only core members are in charge of resiliency; finally, when a peer cannot join any existingselu
PeerCube operations (i.e. inter clusters message forwardter because none of them matches the peer identifier prefix,
ing, routing table maintenance, computation of clustewvie then a new cluster isreated For robustness reasons, a clus-
membership, and keys caching). Size of the core set is equaler may have to temporarily exceed its maximal s$zg, ..
to the minimal size of a cluster, i.e. constéhy;,. Core before being able to split into two new clusters. This guar-
members form a clique, i.e., they point to each other. View antees that resiliency of both new clusters is met, i.e both
of the core set is denotdd.. In contrast to core members, clusters sizes are at least equabtg;,,. A similar argument
spare members are temporarily inactive, in the sense thaapplies to thecr eat e operation. For this specific opera-
they are notinvolved in any of the overlay operations. They tion, peers whose identifiers do not match any cluster label,
only maintain links to a subset of core members of their temporarily join the closest cluster to their identifierdan
cluster and cache the set of keys and associated data as comheneverS,,;;; > Snin temporary peers share the same
members do. Within a cluster, apart from the core membersprefix then they create their new cluster. Thresh®Jgl,
that maintain the view/, of the spares set, no other peer is discussed in Sectidi’Z}.2. These three additional op-
in the system is aware of the presence of a particular sparegrations exploit the recursive construction property of hy
not even the other spares of the cluster. As a consequenceercubes to minimise topology changes, and rely on the
routing tables only point to core members, thafjs;,, ref- Byzantine-consensus building block to achieve high censis
erences per entry are needed. tency among routing tables. For space reasons, description
of these operations are not presented in the paper. However,

Achieving High Consistency By keeping the size of the ~€ach of them is detailed in the companion paper [1].
core set to a small and constant value, we can afford to rely

on the powgrful consensus building block to guarantee CoN-, 4 gy ookup Operation

sistent routing tables among correct core members despite

the presence of a fractignof Byzantine peers among them. | this section we describe how peek C locates a given

Briefly, in the consensus problem, each process Proposegey i through thel ookup operation. Basically, locating
a value: and all _the. non-faulty processes have to eventu-. -onsists in walking in the overlay by correcting one by
ally decide (termination property) on the same output value one and from left to right the bits gfs identifier to match

(agreement property), this value having been proposed by;. By Lemmall and by distanc®, this simply consists
at least one process (validity property). Various Byzaatin i recursively contacting the closest clusterktoln a fail-
consensus algorithms have been proposed in the literaturgyre free environment, this operation would be similar to a
(good surveys can be found inl [8, 4]). In PeerCube, we ynical lookup operation, except that if the originajoof
use the solution proposed by Kotla et LI[11] essentially be ihe | ookup was a spare member, thenwould forward
cause it provides optimal resiliency, i.e. tolerates uéigté its request to a randomly chosen core membeg.oThen

Byzantine processes in a groupfprocesses, and guar- e request would be propagated until finding either a peer
antees that a value proposed only by Byzantine processegy 5 cluster labeled with a prefix df, or no cluster closer

is never decided by correct ones. Moreover, message COMyg, 1. than the current one. The last contacted peer would

plexity is in O(n®) in the worst case, an@(n) in €XeCU- retym to the originating peer either the requested data if
tions where Byzantine processes are not present. Note thag exists, or null otherwise. Now, suppose that malicious
in our contextyr = Spin. peers may drop or misroute requests they receive to pre-

vent them from reaching their legitimate destination. We
4.4 PeerCube Operations adapt the ookup operation by using thevidth pathap-

proach, commonly used in fault tolerant algorithms, which

From the application point of view, three key opera- consists in forwarding a request to sufficiently enoughpeer
tions are provided by the system: theokup(k) operation so that at least one correct peer receives it. This is de-
which enables to search for kéythej oi n operation that scribed in Figur€ll. Specifically, a request is forwarded to

enables a peer to join the system, and lteave opera- | (Smin — 1)/3] + 1 randomly chosen core members of the
tion, indicating that some peer left the system. Note that th closest cluster to the request destination, instead ofamdy
put (x) operation, that enables to insert datén the sys- randomly chosen core member as in the basiokup op-
tem, is not described since itis very similar to theok up() eration. In addition, in the last contacted clusferwhen

operation. From the topology structure point of view, three a core membep € C receives the request, jf has not al-
events may result in a topology modification: when the size ready sent it to all core members 6fthen it does so and

Upon | ookup(k) from the applicatiordo
if (p.t ype # {core}) then
{90---9((8,,:,—1)/3] } < p.cor eRandonPeer ();
p sends (LOOKUPk,p) to {qo - - - 4| (s,,;,—1)/3] }
else
C «— pfindC osestC uster(k);
p sends(LOOKUPE,p) to a random subset of
[(Smin —1)/3| + 1 peersirC.cor eSet ;
enddo
Upon receiving (LOOKUP,q) from the networkdo
C «— pfindd osestd uster(k);
if (p.cl uster. | abel =C)then
p sends (LOOKUPE,q) to core members i@
if not already done;
data< k's data if cached otherwise null;

sends k,C,datg) to the originatingg by using the reverse path;

else
p sends (LOOKUPE,q) to a random subset of
[(Smin —1)/3| + 1 peersirC.cor eSet ;
enddo
findd osest d uster (k)
if (p.di m=0 orp.cl uster. prefix(k))then
C«—pcluster;
else
C.| abel «— RT,(0).| abel ;
for (i = 0 to p.di m— 1) do
if (D(k,RT},(z).l abel) < (D(k,C.I abel)))then
C.l abel «— RTy (7).l abel ;
return C;

Figure 1.1 ookup Operation at Peer p

Uponj oi n(p) from the applicatiordo
{90---9|(5nin—1)/3]} < findBoot strap();
psends (JOIN)tog € {q0---9|(s,,;,~1)/3) }}

enddg

Upon receiving (JOINg) from the networldo;

C «—pfindd osestCl uster(gq.id);
if (p.cl ust er=C) then
if (p.cl uster. prefix(gq.id))then
p broadcasts (JOINSPARE() to p’s core set;
else
p broadcasts (JOINSTEMPy) to p’s core set;
else
p sends (JOIN;) to a random subset of
[(Smin —1)/3] + 1 peers inC's core set;
enddg

Upon delivering (JOINSPARE,q) from the networldo;
Vs —VsUgq;
if (p.clusterlsSplit)thenpsplit();
N=p.findC osestCluster(gqg.id);

p sends (JOINACKN ,state to g;

enddg

Upon delivering (JOINSTEMR;,q) from the networkdo;
ptenp—ptenpUg;
if (p.t enpl sSplit)thenp.create(p.t enp);

'=p.fi ndCl osest Cl uster(q.id);
p sends (JOINACK) ,state to q;
enddg

Figure 2. j oi n Operation at Peer p

returns the response through the reverse path. Hence, eacq|pje: eitherC’s label matches the prefix gfs ID or the
peer that forwarded the request waits for a quorum of re- ¢yster A7 should be inserted into does not already exist
sponses (i.e},(Smin — 1)/3] + 1) before propagatingthe (¢ is only the closest cluster w). In the former casep
response back in the reverse path. When the originator s inserted intaC as a spare member. Inserting newcom-
of thel ookup request receive(Smin — 1)/3] +18imi- g5 45 spare members prevent malicious peers from design-
lar responsesi(dataC) issued from peers whose ID prefix jg geterministic strategies to increase their probapbitit
matches_ the oneinitially cpntactgd, therq_ can §afe|y US€ act as core member. In the latter casés temporarily in-
the receiveddata Otherwise,q discards it. Itis €asy 10 gerted inter until creation of is possible, i.e., predicate
see that if there are no more thg(b,.i, —1)/3] malicious ¢ epp| sSpl it () in Figurel2 holds. This predicate holds
core members per cluster crossed, then_ a lookup operationk ihere existS,,.;; temporary peers id that share a com-
invoked by a correct peer returns the legitimate response. ,on prefix. Note that temporary peers do not participate
in the cluster life (they do not even cache data, contrary
to spares), and only core members are aware of their pres-
ence. Threshold,,,;: is introduced to prevent the adver-
sary from triggering a “split-merge” cyclic phenomenon.
For space limitations, proofs of lemmata are omitted Indeed, a strong adversary can inspect the system and lo-
from the paper. However, they are availablelin [1]. cate the clusters that are small enough so that the departure
of malicious peers from that cluster triggers a merge op-
eration with other clusters, and their re-joining actigase
split operation of the newly created cluster. Thus by sgttin
Recall that by construction each clustecontains all the Sspiit — Spin > L%J with L%J the expected
core and spare membersuch thatC’s label is a prefix of ~ number of malicious peers in a cluster, probability of this
p’'s ID, and that each peerbelongs to a unique cluster. To phenomenon is negligible. In both cases, i.e. whether
join the system, peer sends g oi n request to a correct is inserted as spare or temporary peeiICop’s insertion
peer it knows in the system. The request is forwarded until is broadcast to all core members. Ttmeadcastprimitive
finding the closest clustet to p’s ID. Two cases are pos- guarantees that if a correct sender broadcasts some message

Lemma 2. Thel ookup(k) operation returns the data as-
sociated tok if it exists, null otherwise. This is achieved in
O(logN) hops and require®(logN) messages.

4.4.2 j oi n Operation

| eave(p) /* run by core membep upong’s departure*/
Upon (¢'s failure detectiondo
if (g € Vs)then Vs «— Vi \ {q};

else
p choosesS,,;, random peer®® = {r1,...,r;}in Vs UV,;
{s1,...,5j} < run consensus oR amongV, members;

p.l eavePredTabl e() ;
Vs = Vs UV {s1,...,8;}
Ve — {317) Smin};
p sends (LEAVEV,) to all spare members V;
p.l eaveRout i ngTabl e() ;
enddg

Figure 3. | eave Operation at Peer p

m, then all correct recipients eventually deliver oncd.
Peerp’s insertion in a cluster is acknowledgedjdoy all
correct core members @fs new cluster via a JOINACK
message which carries informatiostdte) thatp needs to
join its cluster (whethep is spare or temporary, and the re-
quired data structures, if any). In all cases, a constantnum
ber of messages are needed. Thus message complexity of
j 0i niis O(logN) which is the cost of the lookup fat.

Lemma 3. Thej oi n operation is insensitive to collusion.
That is if before a join operation i@ the expected number
of malicious peers i€ is .S, then after a join inC the
expected number of malicious peers is still equal, ;. .

4.4.3 | eave Operation

The | eave operation is executed when a peewishes

to leave a cluster or wheg's failure has been detected.
Note that in both caseg)s departure has to be detected by
[(2Smin+1)/3] + 1 core members so that a malicious peer
cannot abusively pretend that some peéeft the system.
Thus, when core members detect thaeft, two scenarios
are possible. Eitheg belonged to the spare set, in which

illustrated in Sectiof]5. Thus each core member chooses
Smin random peers among both core and spare members,
and proposes this subset to the consensus. By the consensus
properties, a single decision is delivered to all core mem-
bers, and this decision has been proposed by at least one
correct core member. Thus core members agree on a unique
subset which becomes the new core set. Note that in addi-
tion to preventing collusion, refreshing the whole core set
guarantees that the expected number of malicious peers in
core sets, and thus the number of corrupted entries in rout-
ing tables is bounded hysS,,.;» which is minimal:

Lemma 4. After a core member’s departure, the expected
number of malicious peers in that core is at mps$t,,;,.

Lemma 5. Upon a core member’s departure, for any ran-
domized algorithm, there exists an adversarial strategjsu
that the expected number of malicious peers in the core is
atleastuS,,in.

Remark that because of the asynchrony of the system,
some of the agreed peersmay still belong to some views
while having been detected as failed or left by others, or
may belong to only some views because of their recent join.
In the former case, all the correct core members eventually
deliver the consensus decision notifyisngs departure, and
new consensus is run to replace it. Note that for efficiency
reason, each core member can ping the peers it proposes
before invoking the consensus. In the latter cass, re-
cent arrival is eventually notified at all correct core mem-
bers by properties of the broadcast primitive (see n op-
eration), and thus they insestin V. Then each core mem-
ber p notifies all the clusters that point © (i.e. entries
of p's PT table) ofC’'s new core set. Core members of
each such cluster can safely update their entries upon re-
ceipt of L%J + 1 similar notifications. This is encap-
sulated into thé eavePr edTabl e() procedure in Fig-
urel3. Similarly, all the peer§sy, .. ., smin } are safely no-

case, core members simply update their spare view to redified about their new state, and locally handle the received

flect¢’s departure, of belonged to the core set. In the lat-
ter caseq’'s departure has to be immediately followed by the

data structures (invocation dfeaveRout i ngTabl e()
procedure). Former core members only keep their keys and

core view maintenance to ensure its resiliency (and thus thethe associated data. In all cases a constant number of mes-

cluster resiliency). To prevent the adversary from degisin
collusive scenario to pollute the core set, the whole compo-

sages are exchanged for aave.

sition of the core set has to be refreshed. Indeed, replacingg Handling Collusion

the peer that left by a single one (even randomly chosen

within the spare set) does not prevent the adversary froms.1 Thwarting Eclipse Attacks

ineluctably corrupting the core set: once malicious peers

succeed in joining the core set, they maximise the benefit

of their insertion by staying in place; this way, core sets
are eventually populated by more thpefﬁig%*lj malicious

An eclipse attack enables the adversary to control part
of the overlay traffic by coordinating its attack to infilteat
routing tables of correct peers. As shown in the previ-

peers, and thus become — and remain — corrupted. This isus section, PeerCube operations thwart those attacks es-

4PeerCube relies on the asynchronous Byzantine-resistdiatble
broadcast of Brachal[2], whose time complexity is¥i1) and message
complexity is inO(n2). As for consensus, in our cage= Sy, = Cst.

sentially by preventing colluders from devising determin-
istic strategies to join core sets (i.e., nhewcomers are in-
serted as spare members) and by reaching agreement among

core members on any event that affects PeerCube topolfirst observation is that probability of success for the @oli
ogy. Correctness of these operations relies on the hypothwe propose (labelled bwi t h random sati on in the

esis that no more thahsminlJ malicious peers populate Figure) varies lightly withS,,, ., value. This confirms that
core sets, that is the fraction of malicious peers in any coresettingS,,.... > O(logN) does not bring any additional ro-

set is no more thath/4. Probability that such an assump- bustness to PeerCube. The second observation is that for the
tion does not hold is now discussed. Let us first com- second policy (denoted by/ o r andoni sat i on), that

pute the upper bound on the probability to corrupt a core probability drastically decreases with increasing valoes

set. This holds when the clusters number is minimal (i.e. S,,.., even for small values ofi. This corroborates the
equal to——) Denote byX, the random variable de- weakness of such a policy in presence of a strong adversary.
scribing the ‘number of malicious peers in a cluster, and

by Y,, the random variable describing the number of ma-

licious peers in a core. Clearly,, depends onX,,. Since Mo randomisaton mmm

identifiers are randomly chosen, inserting malicious peers T
into clusters can be interpreted as throwjngv balls one

by one and randomly mtgﬁ bins. The probability that

x balls (malicious peers) are inserted into a bin (cluster)

is P(X, =a) = (V) (S%=)" (1 - S%=)"" " By
thel eave operation, each departure from a core set is fol-
lowed by the rebuilding of this set with},,;,, randomly cho-

sen peers among th&,, .. peers of the cluster. This can

of success of requests

0.001

Lower bound on the probal
(log
o
2 °
2 2
]
]
—
/L' 1
—
oe»

be interpreted as picking simultaneously;;,, balls among DI I I e e,
. . S oy RNy ey, BBy,
Smaz balls among whichr are black (malicious peers) and e mel | melsw meoh o mors

Smaz — T are white (correct ones). Thus, the probability

of havingy malicious peers inserted in the core, knowing Figure 4. Probability of success of requests W.6tq.
the number of malicious peessin the cluster, is given by

x Smax—2T
PY,=y|lX,=2) = w Finally, the tight up-

per bound onthe corruption probab|I|ty is equapto= 1 5.2 Robust Routing through Independent

Smip=1 | Routes
Z Z P (Y, =ylXy=2)P (X, =2). By
proceedrng as above the tight Iower bound on the corrup- e have just seen that because identifiers are randomly
tion probability isp; = 1 — Zz o° Ip (X; =), with assigned, the ratio of malicious peers in some clusters may
P(X =z)= (MIN) (S"T")z (1- S"T)H N-z exceed the assumed ratiof malicious peers in the system,

and thus may impact the resilience of PeerCube. Since pol-
We can now derive upper and lower bounds on the |ytion decreases witl§,,;,, a possible solution to increase
probability that a request reaches its legitimate destina-ihe resilience is to augmest,;, according toS,,qz, i.€. to
tion. The probability that the number of hops of a re- have S,..n in O(logN). However, because of the Byzan-
quest beh is equal to (7o) (§)™*", with dye. = tine resistant consensus this makes maintenance operation
loga (s -) + 3 the maximal dimension of a cluster. Such cost in O(log®N) or in O(log>N) because of the broad-
a request is successful if none of theclusters crossed cast primitive. To circumvent this issue, we extend Castro
by this request are corrupted. Thus its probability of et al. [3] approach by sending a request over independent
success is at |ea§3226: (d"i{”) (%)dmw (1-p,)", and routes. We adap_t the independent routes construction algo-
at most Y dmin b (dmin) (l)dmm (1= p)*, with o rithm presented in Secum.l to matcn PeerCube features.
h= h /A2 e Essentially, the search is adapted to find the closest clus-
log?(smaz)- ter to the theoretical one when this latter one does not ex-
Recall that the policy we propose to replace a left core ist. Denote by the number of bit differences betwegis
member is to refresh the whole composition of the core setidentifier, the source of the request, agisl identifier, the
by randomly choosing peers within the cluster. We opposeddestination peer. Recall that thi& route is obtained by
this policy to the one which consists in replacing the core successively correcting bits, i1, - - -, P(i+5—1) mod » fOr
member that left by a single one randomly chosen in the 0 < i < b—1, Withp;, pi11, ..., D(i+5—1) mod » the position
cluster (see Sectidn4.2.3). Figue 4 compares the lowerof theb bits that differ betweep andg. We modify this pro-
bound on the probability of successful requests with thesecedure by invoking the ook up operation on keys obtained
two policies according t®,,,.., for different ratio of mali- by successively correcting bitg, pit1, - - -, P(i+b—1) mod b
cious peers in the system, and considerig- 1,000. The for 0 < i < b— 1. Other independent routes of non-optimal

n M with a sjrigle [oui¢ sesssss eerCul
with utes ——— _ PeerCube without core/spare classification ——t
0.9 1 0 s |

08 - |

0.7

0.6 e 32

05

0.4

0.3

0.2

Lower bound on the probability of success of requests

0.1

. . . .
T P 0 2 Py, s e Py, s Yy, s o 5000 10000 15000 20000 25000 30000

%0, % 0 Y0, % "0 %0, % 0 %0, % "0
BTV B0 B0V B0 0y Simulation tim
N=100 N=1,000 N=10,000 N=100,000 (a)

Figure 5. Probability of success of requests Figure 6. Benefit of hot spares in PeerCube is displayed
through the number of routing tables updates

length are found by modifying first, one bit on whigtand

g both agree (say;), by looking for the closest cluster to

that key, then by finding independent routes from that clus- Churn Impact In these experiments, we study the abil-
ter by proceeding as above, and finally by re-modifying ity of PeerCube to greatly reduce the impact of high dy-

Lemma 6. The independent routes algorithm finds at least "@Mics on peers load. In particular, we analyse the ben-
logzsN independent routes of lengé(log V') w.h.p. efit drawn from appomtmg newcomers as spare members
mazx on the number of routing tables updates. In Fiddre 6, the

number of routing tables updates in a network of up to

We now examine the probabilitysucc for a request 10,000 peers is depicted. Bursts of joins and leave are-cycli
issued by a correct peer to reach its legitimate destinationca|ly generated (every 500 simulation time unit, up to 500
when that requestis sent oveindependentroutes of length peers issue join or leave operationsymaz = 13, and
h, With dinin < 7 < dimas. The request is successful ifat gyin = 4. A failure-free environment is assumed. The
least one route does not contain any corrupted clustep Let dotted curve shows the number of triggered routing tables
denote the exact probability that a cluster is corrupted, i. ypdates in a cluster-based hypercubic topology in which all
pi < p < pu. The probability of success of a request using clusters members actively participate in the overlay oper-
r independent routes of lengthis 1 — (1 - (1= p)h . ations (denoted byeer Cube wi t hout core/ spare
Thus probability pecc is lower bounded ~ by Cclassificationin the figure), while the solid curve

dimast2 (dmazﬁ) (l)dmam-ﬁ-Q (1 _ (1 -)h)7) depicts the number of routing tables updates generated in
h=0 h 2 Pu PeerCube (denoted eer Cube). As expected, using
and upper bounded by newcomers as hot spares drastically reduces the number of

h=0 h 2
dmaz + 2 in the first equation comes from the non-optimal For instance, the burst of joins generated during simutatio

paths of the independent routing algorithm. Fidire 5 showstime 27,000 and 27500 have triggered no routing tables up-
the remarkable increase in PeerCube robustness whedates for PeerCube while it has given rise to 50,400 updates

using independent routes w.r.t. to a single route. Note for PeerCube without core/spare classification.
also that whatever the percentage of malicious peers in
the system the probability of success degrades gracefullyropystness against Collusion In these experiments, we

dmin (dmm) (l)d"”'" (1 - (1 —-(1- pz)h)r). Term routing tables updates for both joins and departures events

(logarithmically) with respect tdv. test the ability of PeerCube to achieve a robust lookup op-
_ _ eration despite the presence of a strong adversary. As de-
6 Simulation scribed in the previous section, robust lookup is realized b

two techniques. First, by preventing malicious peers from

In this section, we present the results of an experimen-strategizing to get inserted within core sets; throughdame r
tal evaluation of PeerCube performed on PeerSim a simu-domization insertion algorithm, we minimize the ratio of
lation platform for P2P protocols. The simulation is event malicious peers into routing tables. Second, by taking ad-
based. The workload is characterised by the number of andvantage of independent and optimal length paths offered by
arrival/departure pattern of peers and by the distributibn the hypercubic topology to guarantee that a request sent by
requests they issue. Each experiment uses a different worka correct peer reaches its legitimate destination with prob
load. ability close to 1. Figur€l7 shows fa¥ = 1,000 peers,

Theoretical lower bound w/o IR

(4]

x i i Simulation results w/o IR +
g i Theoretical lower bound w IR

| Theoretical upper bound w IR ———-
: Simulation results w IR +-----

08 - i ™ i e : R

(5]

X
06 | E N : : : : E

[6]

04 ! I | !]

Probability of successful requests

(7]

02} i -4

I

(8]

£
o 10 20 30 40 50
fraction of malicious peers in the system

Figure 7. Probability of success wrt malicious peers]

the probability of successful requests sent by correctyeer 10
w.r.t. to the ratio of malicious peers in the system. The main
observation is that experiments fully validate theorétiea
sults. Namely, for up ta5% of malicious peers)8% of the [11]
requests issued from correct peers are successful, and for
25% of malicious peers, in averag#)% of the requests are 12]
successful, which clearly emphasises PeerCube robustneés
to co-ordinated malicious behaviour.

[13]

7 Conclusion
(14]
In this paper we have presented PeerCube, a DHT-based
system that is able to handle high churn and collusive be-[15]
havior. Many existing P2P systems exhibit some fault tol-
erance or churn resiliency. The main contribution of Peer-
Cube is to combine existing techniques from classical dis-
tributed computing and open large distributed systems in all6l
new way to efficiently decrease churn impact and to tolerate
collusion of malicious peers as shown analytically and-vali [17]
dated through experimental simulation. For future work, we
are planning to study strategies against a computationally
unbounded adversary, that is an adversary, beyond beingj8]
able to inspect the whole system and issue join and leave19]
requests as often it wishes (as studied in this paper), can
carefully choose the IDs of the Byzantine peers, so that it
can place them at critical locations in the netwark 4, 21].

[20]
References [21]

[1] E. Anceaume, F. Brasiliero, R. Ludinard, and A. Ravo&aercube: [22]
an hypercube-based p2p overlay robust against collusidrchanrn.
Technical Report 1888, IRISA, 2008.

[2] G. Bracha. An asynchronous [(n-1)/3]-resilient corsenprotocol. [23]
In Proc. of the ACM Symposium on Principles of Distributed Com-
puting (PODC) 1984.

[24]

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Sliagh.
Secure routing for structured peer-to-peer overlay nésidn Proc.

of the Symposium on Operating Systems Design and Impletinanta
(OSDI), 2002.

(3]

M. Correia, N. Ferreira Neves, and P. Verissimo. Fromsemsus
to atomic broadcast: Time-free byzantine-resistant paiowithout
signaturesComputer Journal49(1), 2006.

D. Dolev, E. Hoch, and R. van Renesse. Self-stabilizingl a
byzantine-tolerant overlay network. Rroc. of the Int'l Conference
On Principles Of Distributed Systems (OPODIS)NCS 4878, 2007.
J. Douceur. The sybil attack. Froc. of the Int'l Workshop on Peer-
to-Peer Systems (IPTR.S002.

A. Fiat, J. Saia, and M. Young. Making chord robust to hywse
attacks. InProc. of the Annual European Symposium on Algorithms
(ESA) 2005.

J.A. Garay and Y. Moses. Fully polynomial byzantine agnent for
n > 3t processes i + 1 rounds. SIAM Journal on Computing
27(1), 1998.

K. Hildrum, J.Kubiatowicz, S.Rao, and B.Zhao. Distribd data
location in a dynamic network. IRroc. for the ACM Symposium on
Parallel Algorithms and Architectures (SPARD02.

] K. Hildrum and J. Kubiatowicz. Asymptotically efficieapproaches

to fault-tolerance in peer-to-peer networks.Piroc. of the Int'l Sym-
posium on Distributed Computing (DIS@003.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.yZzyva:
speculative byzantine fault tolerance. $iymposium on Operating
Systems Principles (SOSR)ctober 2007.

J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoeko@paring the
performance of distributed hash tables under churrPraz. for the
Int'l Workshop on Peer-to-Peer Systems (IPTR2804.

T. Locher, S. Schmid, and R. Wattenhofer. eQuus: A potweobust
and locality-aware peer-to-peer system Phoc. of the Int'l Confer-
ence on Peer-to-Peer Computing (P22006.

P. Maymounkov and D. Mazieres. Kademlia: A peer-torpaéor-
mation system based on the xor metric.Froc. for the Int'l Work-
shop on Peer-to-Peer Systems (IPTR29D2.

H. Ramasamy and C. Cachin. Parsimonious asynchronous
byzantine-fault-tolerant atomic broadcast.Aroc. of the Int'l Con-
ference On Principles Of Distributed Systems (OPODISNCS
3974, 2005.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni8he A
scalable content-addressable network. Phoc. of the ACM SIG-
COMM, 2001.

A. Ravoaja and E. Anceaume. Storm: A secure overlay 2qr nep-
utation management. IRroc. of the Int'l IEEE conference on Self-
Autonomous and Self-Organizing Systems (SAZM)/.

R. Rivest. The md5 message digest algorithm, 1992.

A. Rowstron and P. Druschel. Pastry: Scalable, digteb object
location and routing for large-scale peer-to-peer systémBroc. of
the Int'l Conference on Distributed Systems Platforms (Mid/are)

2001.

Y. Saad and M. Schultz. Topological properties of hgpées.|EEE
Transactions on Computer37(7), 1988.

C. Scheideler. Robust random number generation for-foepeer
systems. InProc. of the Int'l Conference On Principles Of Dis-
tributed Systems (OPODIS)NCS 4305, 2006.

E. Sit and R. Morris. Security considerations for peepeer dis-
tributed hash tables. IRroc. of the Int'l Workshop on Peer-to-Peer
Systems (IPTPS2002.

M. Srivatsa and L. Liu. Vulnerabilities and securityehts in struc-
tured peer-to-peer systems: A quantitiative analysisPrbt. of the
Annual Computer Security Applications Conference (ACSAM)4.

I. Stoica, D. Liben-Nowell, R. Morris, D. Karger, F. Dak, M. F.
Kaashoek, and H. Balakrishnan. Chord: A scalable peee&s-p
lookup service for internet applications. Rroc. of the ACM SIG-
COMM, 2001.

	Introduction
	Related Work
	Model
	System Model
	Adversary Model

	Architecture Description
	Background
	PeerCube in a Nutshell
	Clusters
	Hypercubic Topology

	Leveraging the Power of Clustering
	PeerCube Operations
	lookup Operation
	join Operation
	leave Operation

	Handling Collusion
	Thwarting Eclipse Attacks
	Robust Routing through Independent Routes

	Simulation
	Conclusion

