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Multi-agent systems are everywhere

Agent-based computing addresses the challenges in managing
distributed computing systems and networks through
monitoring, communication, consensus-based decision-making
and coordinated actuation.

Multi-agent systems have demonstrated the capability to use
intelligence, knowledge representation and reasoning, and
other social metaphors like ’trust’, ’game’ and ’institution’.

Transformative impact in many application domains, planning,
logistics, manufacturing, e-commerce, robotics, decision
support, transportation, entertainment, emergency relief &
disaster management, and data mining & analytics.

As one of the largest and still growing research fields of Computer
Science, agent-based computing today remains a unique enabler of
inter-, multi- and trans-disciplinary research.
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Developing logics for MAS

A challenging field where one should design

Syntax and Semantics
+

Model-checking and Models Synthesis
(effective methods)

In classical books on logic

Syntax then Semantics

In formal methods, it is rather

Semantics then Syntax
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Time: Computation trees Knowledge: Epistemic models Knowledge and time: ETL frames

Part I: Models for Time,
Knowledge, and both
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Content

1 Time: Computation trees

2 Knowledge: Epistemic models

3 Knowledge and time: ETL frames
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What do we mean by “time”?

We talk here about logical time, instants

Nothing quantified like 3 seconds

The state-transition models are very well adapted
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State-transition models

States = configurations
Transitions from states to states, triggered by an event/action.

You know many of those.

Example (Finite automata, pushdown automata, Turing ma-
chines)

q0start

q1

q2

q3

0

1

1

0

0

1
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Physical systems

Example (A digicode whose code is ABA)

[BBF+99, Sec. 1.1]

1start 2 3 4

B,C

A

C

A

B

B,C

A

Example (Nuclear plant + its environment)

Normal

HPLP

Shutdown Explosion

Steam -

Steam +

Steam +

Steam -
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Physical systems

Example (A digicode whose code is ABA)

1start 2 3 4

B,C

A

C

A

B

B,C

A

Example (Nuclear plant + its environment)

Normal

HPLP

Shutdown Explosion

Steam -

Steam +

Steam +

Steam -
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Distributed systems/Multi-player games

Example (Rock/Paper/Scissors)

Exercise

How would you model Rock/Paper/Scissors?

Read Section 2 of [AHK02], very easy to access on-line.

12 / 115



Time: Computation trees Knowledge: Epistemic models Knowledge and time: ETL frames

Transition systems

Example

1 2 3 4
F

B,C

A

C

A

B

B,C

A

Prop = {F} and Ev = {A,B,C}
S = {1, 2, 3, 4}
`(s) = ∅ for s ∈ {1, 2, 3}
`(4) = {F}

Fix a set Prop of atomic propositions and a set Ev of events.

Definition

A transition system over Prop and Ev is a structure S = 〈S, δ, `〉
where

S is a set of state, and sometimes S0 ⊆ S a set if initial states

δ ⊆ S × Ev × S is the transition relation

` : S → 2Prop

Write s
e→ s′ for (s, e, s′) ∈ δ, as in pictures.
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Paths, traces of transition systems

Definition (Paths, Executions, Traces)

A finite path is a finite sequence ρ = s1
e2→ s2 . . .

en→ sn, and a
execution is as a path where only states are recorded s1s2s3 . . .
We can also define infinite paths, with typical element π, and initial
(finite and infinite) paths that start from a some of the distinguished
states
The trace of a path π = s1

e2→ s2 . . . is the sequence `(s1)e2`(s2) . . .

Example

1 2 3 4
F

B,C

A

C

A

B

B,C

A

1A2A2B3A4 is an initial path
1.2.2.3.4 is an execution
∅A∅A∅B∅A{F} is a trace.
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Combining state-transition models

Product of finite automata for language intersection

Parallel composition for distributed systems

Definition

Given two transition systems S1 = 〈S1, δ1, `1〉 and S2 = 〈S2, δ2, `2〉,
over Prop1 and Ev1, and Prop2 and Ev2, respectively.
Assume Prop1 ∩ Prop2 = ∅.
Let a partial function f : Ev1 × Ev2 → Ev be called a synchro-
nization table [Arn92]. We let S1 |f S2 = 〈S1 × S2, δ, `〉 be the
transition system over Prop1 ∪ Prop2 and Ev such that:

(s1, s2)
f(e1,e2)→ (s′1, s

′
2) whenever f(e1, e2) is defined, and

s1
e1→ s′1 and s2

e1→ s′2.

`((s1, s2)) = `1(s1) ∪ `2(s2).
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Classic parallel compositions

Truly parallel composition
s1

s′1

e1

s2

s′2

e2

s3

s′3

e3 Ev1 Ev2 Ev3 Ev1 × Ev2 × Ev3
e1 e2 e3 (e1, e2, e3)

Exercise

Do you think Rock/Paper/Scissors is of this kind?

Interleaving parallel composition

s1

s′1

e1

s2

−

s3

−

Ev1 Ev2 Ev3 Ev1 ∪ Ev2 ∪ Ev3
e1 − − e1
− e2 − e2
− − e3 e3
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Example of parallel composition

Regarding truly and interleaving parallel composition of
previous slide

Exercise

Define them formally.

Synchronization over shared actions, of the kind:

s1

s′1

e

s2

s′2

e

s3

s′3

e but also

s1

s′1

e

s2

s′2

e

s3

−

6e

. . .

Exercise

Define it formally.

Take a look at [BBF+99, Part I, Sec. 1] for examples of use of
parallel composition.
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Unfolding transition systems

1 2 3 4
F

B,C

A

C

A

B

B,C

A

1

1.1

1.1.1

B

1.1.1

C

B

1.1

1.1.1

B

1.1.1

C

C

1.2

1.2.1

C

1.2.3

1.2.3.1

B

1.2.3.1

C

1.2.3.4 F

A

B

1.2.2

A

A
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Computation trees (1/2)

for the “branching-time” behavior of transition systems

They are infinite objects.

They serve as models for temporal logics, as well as an inputs
to infinite-tree automata [Tho90].

Definition (Trees)

Given (finite) subset D ⊆ IN, a (D)-tree τ is a set of words τ ⊆ D+

such that:

1 the root is ε

2 if x · d ∈ τ , then x ∈ τ , and

3 if x ∈ τ then there exists d ∈ D such that x · d ∈ τ .

The nodes can be labelled over some set Σ according to ` : τ → Σ,
and we denote by t a labelled tree, that is some pair (τ, `).
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Computation Trees (2/2)

Definition (Computation tree over Prop and Ev)

They basically are trees whose nodes are labelled over 2Prop and
whose edges are labelled over Ev.

Definition (Computation tree of a transition system)

Let S = 〈S, δ, `〉 be a transition system over Prop and Ev, and let
s0 ∈ S be a distinguished state.
The computation tree of S from state s0 is the infinite labelled
tree tS,s0 whose nodes are the initial executions of S etc. and whose

labelling is `(s0s1 . . . sn) = `(sn) and s0s1 . . . sn
e→ s0s1 . . . snsn+1

whenever sn
e→ sn+1 in S.

Remark

The computation tree tS,s0 itself is a transition system

The branches of tS,s0 are the paths of S
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Behaviors: Two Beverage Vending Machines

[BK08]

Exercise

Draw the computation trees of each machine, and check they
are intrinsically different.

Check that they share the same set of traces
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An abstraction of behaviors: Bisimulation

Introduced by [Par81, Mil83]

Definition (Bisimulation)

Let S1 = 〈S1, δ1, `1〉 and S2 = 〈S2, δ2, `2〉 and Ev.
Distinguish two state s01 ∈ S1 and s02 ∈ S2.
We say that 〈S1, s01〉 and 〈S2, s02〉 are bisimilar if there exists binary
relation B ⊆ S1 × S2 s.t.

(initial) (s01, s
0
2) ∈ B, and

for every (s1, s2) ∈ B
(atoms) `1(s1) = `2(s2)

(forth) for any s1
e→ s′1 there exists s2

e→ s′2 s.t. (s′1, s
′
2) ∈ B

(back) for any s2
e→ s′2 there exists s1

e→ s′1 s.t. (s′1, s
′
2) ∈ B

B is a bisimulation between 〈S1, s01〉 and 〈S2, s02〉.

Remark

Bisimilarity is an equivalence relation. 22 / 115
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Bisimilar transition systems

Exercise

Check that the two machines are bisimilar.

Exercise

Prove that whenever two transition systems are bisimilar, they share
the same set of traces.
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Non-bisimilar transition systems

Exercise

Argue that the two machines are not bisimilar.

Check that the machines share the same set of traces.
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Transition systems and their computation trees

A transition system and its computation tree are bisimilar:

Theorem

Let S = 〈S, δ, `〉 be a transition system and let s0 ∈ S.
Then 〈tS,s0 , s0〉 and 〈S, s0〉 are bisimilar.

Proof.

Write ExecS for the set of executions of S.
Define B ⊆ ExecS × S by: for every execution s0 . . . s of S,

(s0 . . . s, s) ∈ B

and check that B is a bisimulation.

Exercise

Finish the proof.
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Computation trees will be our main objects

Prop = {p, q . . .} and Ev = {e, e′}

p, q

p q

p, q p q
q

. . .

e e′

e e e′ e

Remark

Computation trees are infinite Kripke structures.
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(Finite) forests of computation trees

Definition

A forest over Prop and Ev is a finite set F = {tj}j∈J of computa-
tion trees over Prop and Ev

Example

{p}

{p, q}
e

{q}

∅

{p}

...

e
...

e′

ee

{q, r}

...

e′

e

{q, r}

...

e

e′

e

{r}
e′

e′

{p}

{p, q}
e

{q}

∅

{p}

...

e
...

e′

ee

{q, r}

...

e′

e

{q, r}

...

e

e′

e

{r}
e′

e′
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Content

1 Time: Computation trees

2 Knowledge: Epistemic models

3 Knowledge and time: ETL frames
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What do we mean by “knowledge”?

[vDvdHK07]

We regard information as something that is relative
to a subject who has a certain perspective on the
world, called an agent, and the kind of information
we have in mind is meaningful as a whole, not just
loose bits and pieces.
This makes us call it knowledge (and, to a lesser
extent, belief). This conception of information is due
to the fields known as epistemic and doxastic logic.

The clearest source is the book of Hintikka (12 January 1929
– 12 August 2015) Knowledge and Belief: An Introduction to
the Logic of the Two Notions [Hin62].

A reference is the book of Fagin, Halpern, Moses, and Vardi
Reasoning About Knowledge [FMHV03].
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Representing knowledge

Knowledge of agents is modelled by using Kripke models,
called epistemic models in this context.

Two notions are of main importance: that of state and that of
indistinguishability.

We will denote by Ag a finite set of agents, with typical
elements a, b, . . .
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An introductory example: the GLO-scenario
[vDvdHK07, p. 16]

An agent, say b, lives in Groningen and builds a theory about the
weather conditions in both Groningen and Liverpool. In Groningen
(resp. Liverpool) it is either sunny, denoted by the atom g (resp.
atom l), or not ¬g (resp. atom ¬l).

A priori, there are 4 possible situations.

〈g, l〉 〈¬g, l〉

〈g,¬l〉 〈¬g,¬l〉
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An introductory example: the GLO-scenario
[vDvdHK07, p. 16]

An agent, say b, lives in Groningen and builds a theory about the
weather conditions in both Groningen and Liverpool. In Groningen
(resp. Liverpool) it is either sunny, denoted by the atom g (resp.
atom l), or not ¬g (resp. atom ¬l).

Since agent b cannot observe property l, it cannot e.g. distinguish
between 〈g, l〉 and 〈g,¬l〉

〈g, l〉 〈¬g, l〉

b b

〈g,¬l〉 〈¬g,¬l〉
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An introductory example: the GLO-scenario
[vDvdHK07, p. 16]

An agent, say b, lives in Groningen and builds a theory about the
weather conditions in both Groningen and Liverpool. In Groningen
(resp. Liverpool) it is either sunny, denoted by the atom g (resp.
atom l), or not ¬g (resp. atom ¬l).

A second agent, say a, is situated in Liverpool and knows about
the weather there.

〈g, l〉 a 〈¬g, l〉

b b

〈g,¬l〉 a 〈¬g,¬l〉
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Epistemic models

〈g, l〉 a 〈¬g, l〉

b b

〈g,¬l〉 a 〈¬g,¬l〉

 

w0

w1

w2

w3

b

a

a

b

{g, l}

{g} ∅

{l}

Definition (Epistemic model)

An epistemic model over atomic propositions Prop and agent set
Ag is a structure M = 〈W,R, `〉 where

W is a set of possible words

R = {Ra}a∈Ag where Ra ⊆W ×W
` : W → 2Prop is a labelling
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Epistemic models

w0

w1

w2

w3

b

a

a

b

{g, l}

{g} ∅

{l}

Definition (Epistemic model)

An epistemic model over atomic propositions Prop and agent set
Ag is a structure M = 〈W,R, `〉 where

W is a set of possible words

R = {Ra}a∈Ag where Ra ⊆W ×W
` : W → 2Prop is a labelling
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Epistemic models

Definition (Epistemic model)

An epistemic model over atomic propositions Prop and agent set
Ag is a structure M = 〈W,R, `〉 where

W is a set of possible words

R = {Ra}a∈Ag where Ra ⊆W ×W
` : W → 2Prop is a labelling

Remark

As in the GLO-scenario, relations Ra are very often equivalence
relations, but still we keep it general (and it is so for the “more
plausible” relations in doxastic logic).

We write w
a
À w′ whenever (w,w′) ∈ Ra.

36 / 115



Time: Computation trees Knowledge: Epistemic models Knowledge and time: ETL frames

Where is knowledge?

Indistinguishability gives rise to a natural notion of knowledge:
in an actual world w, agent a knows a fact/property (here just
think of Boolean combinations of atomic propositions) if in

any possible world w′ such that w
a
À w′, the fact holds.

This will be the semantics of the knowledge modality in
Epistemic Logic K.
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Knowledge for the GLO-scenario

Example

〈g, l〉 a 〈¬g, l〉

b b

〈g,¬l〉 a 〈¬g,¬l〉

In world w0:

Agent b knows that g but does not know that l.

Agent b neither knows that l, nor that ¬l.
Agent b considers both l and ¬l possible.

Agent b knows that agent a does not know that g.

Agent a knows that agent b knows that agent a does not
know that g.
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More on Knowledge

Common knowledge arises from the indistinguishability
relation induced by

the transitive closure of
⋃
a∈Ag

a
À

w ÀCK w′ whenever w = w0
a1
À w1

a2
À . . .

ak
À wk = w′

A fact is common knowledge if agent a knows that agent b
knows that agent a knows that ... at any depth.

Distributed knowledge arises from the indistinguishability
relation ⋂

a∈Ag
a
À

The models have some defects: agents are omniscient since
they then know all validities.

We point to [FMHV03] for full details.
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Bisimulation over epistemic models

Exercise (Bisimulation between epistemic models)

Write down a clean definition.
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The Muddy Children Puzzle

A group of children has been playing outside and are called back
into the house by their father. The children gather round him.
As one may imagine, some of them have become dirty from the
play and in particular: they may have mud on their forehead.
Children can only see whether other children are muddy, and not if
there is any mud on their own forehead. All this is commonly
known, and the children are, obviously, perfect logicians.
Father now says: “At least one of you has mud on his or her
forehead.” And then: “Will those who know whether they are
muddy step forward.”
If nobody steps forward, father keeps repeating the request.

What happens?
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Content

1 Time: Computation trees

2 Knowledge: Epistemic models

3 Knowledge and time: ETL frames
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Enriching Computation Trees to attain Knowledge

Computation trees give us evolution of a system over time.
A node denotes a particular history: the finite branch leading
to that node.
Agents with their own perception abilities might consider the
actual history indistinguishable from some others. Histories
play the role of possible worlds, yielding an infinite epistemic
model.

Computation tree can be enriched with “transverse”
indistinguishability relations between nodes.

p, q

p q

p, q p q
q

. . .

e e′

e e e′ e How do we get these
transverse relations?
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Two main approaches

From time to knowledge: Interpreted Systems
[HF89, FMHV03]

They are natural models for distributed systems (each
sub-system is an agent)
Global states are vectors of the local states of each sub-system
Indistinguishably results from the local view of each
sub-system (it is a grounded semantics).

From knowledge to time: Dynamic Epistemic Logic models
[vDvdHK07]

Indistinguishably/knowledge is inherent to the initial epistemic
configuration
Indistinguishably/knowledge evolves according to the
occurrences of legitimate epistemic events/actions.

Both approaches meet when considering abstract models:

the Epistemic Temporal Logic frames.
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Interpreted systems over Prop and Ev [HF89]

Definition

Ag = {1, . . . , n} (n components of a distributed system)

Each agent i is associated a transition system Si = 〈Si, δi, `i〉
over Prop and Ev: local states of agent i range over Si.

Global states are those of S1 | S2 | . . . | Sn (for some notion
of parallel composition |), that is of the form
〈s1, s2, . . . , sn〉 ∈ S1 × S2 × . . .× Sn.

For each agent i ∈ Ag we let
i
À be:

〈s1, s2, . . . , sn〉
i
À 〈s′1, s′2, . . . , s′n〉 iff si = s′i

Extending relations
i
À onto histories, depends on agents’ abilities:

1 how they perceive time evolution, and

2 what they remember from the past.
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A zoology of knowledge semantics [HV86]

Interpreted systems are essentially identified with their
computation trees.

Classic semantics for knowledge are classified according:

synchronous vs. asynchronous (time evolution perception)
imperfect recall such as memoryless, bounded memory, etc.,
vs. perfect recall (memory capabilities)

Epistemic Temporal Logic (ETL), where one can mix temporal
and knowledge modalities, is then studied (axiomatization,
computational perspective, etc.)

We defer the definition of the different knowledge semantics to the
more abstract setting of ETL frames.
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Epistemic Temporal Logic frames

They abstract from the internal structure of global states
hence from the means to obtain the global transitions.

They have binary relations
a
À between nodes, for each a ∈ Ag.

They serve as models for Epistemic Temporal Logics.

Definition

An ETL frame over propositions Prop, events Ev and (finite) set

of agents Ag is a structure 〈F , { aÀ}a∈Ag〉, where F is a forest over

Prop and Ev, and
a
À are binary relations between nodes of the

forest F .

Definition

Given an ETL frame 〈F , { aÀ}a∈Ag〉 and a node x ∈ F , we write t(x)
for the unique computation tree of F node x belongs to.
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ETL frames (are forests)

p, q

p q

p, q p q
q

. . .

e e′

e e e′ e

p, q

p q

p, q p q
p, q

. . .

e e′

e e e′ e

a

a a

a

a

a
a a

a

a

a

a sees p, e and e′, hears the ticks and has perfect recall
(arrows are missing)
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Various Knowledge semantics

Definition

Synchronicity: x À x′ implies |x| = |x′|
where |x| is the height of node x in his tree
(we count from 0 from the root).

Perfect recall/not forgetting: x 6À x′ implies y 6À y′

for each child y (resp. y′) of x (resp. x′)
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p, q

p q

p, q p q
q

. . .

e e′

e e e′ e

p, q

p q

p, q p q
p, q

. . .

e e′

e e e′ e

Exercise

Draw the tranverse relations if agent a is memoryless.

Exercise

Think of other cases.
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PDEL models

PDEL means Propositional Dynamic Epitemic Logic

We start with epistemic models M = 〈W,R, `〉.
We consider event models E that are epistemic strutures where
elements of E are concrete events with preconditions,and
epistemic relations express what agents do not distinguish.

Definition (non ontic version)

An event model is a tuple E = (E, {Ra}a∈Ag, pre) where:

E is a non-empty finite set of possible events,

Ra ⊆ E× E is an accessibility relation on E for agent a,

pre : E→ 2Prop is a precondition function and

When E occurs, M⊗E is the new epistemic situation.
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An example

An initial epistemic situation M

w

h

w′

t

A,B A,B

A,B

Alice and Bob: where Alice places a coin in a cup, shakes the cup
and puts it upside down on a table. Assume that Alice and Bob
are interested in knowing whether the upside of the coin is heads
or tails. In the initial situation we described, neither Alice nor Bob
knows it. Atomic propositions h and t mean respectively heads and
tails. The doubly circled world, w, is the actual world, the coin is
actually on heads.
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An event model E

Imagine that Alice looks under the cup. Bob sees her doing so, but
does not manage to see if it is heads or tails.

e

h

e′

t

A,B A,B

B

Event e is Alice seeing heads, so pre(e) = h, and e′ is Alice seeing
tails, so pre(e′) = t.
Alice knows what she observes, so that she distinguishes between
the events, while Bob does whether e or e′ occurs.
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Updating M⊗E

w

h

w′

t

A,B A,B

A,B

⊗

e

h

e′

t

A,B A,B

B

= (w, e)

h

(w′, e′)

t

A,B A,B

B
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Update product

Definition

Given an epistemic model M = 〈W,R, `〉 and an event model E =
(E, {Ra}a∈Ag, pre), the update product ofM and E is the epistemic
model M⊗E = (W⊗,R⊗, `⊗) where:

W⊗ = {(w, e) ∈W × E | M, w |= pre(e)},
Ra⊗(w, e) = {(w′, e′) ∈W⊗ | w′ ∈ Ra(w) and e′ ∈ Ri(e)},
`⊗((w, e)) = `((w, e))

Remark

We will simply write we instead of (w, e)
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Where is time?

[vBL04] show how an iterative application of event models to
an initial epistemic model yields a structure that can be seen
as an ETL frame, and conversely how ETL frames that verify
certain properties can be seen as “DEL-generated”.

Also [AMP14] reconsider this setting and apply the
correspondance to show the decidability of a general epistemic
protocol problem.
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PDEL-generated models

For an epistemic model M = (W, {Ra}a∈Ag, `) and an event
model E = (E, {Ra}a∈Ag, pre).

Definition

We define the family of epistemic models {MEn}n≥0 by letting
ME0 =M and MEn+1 =MEn ⊗ E .

w1ME0

w1eME1 w1e
′

e e′

w2

w2e w2e
′′

e e′′
a

a
a

a

aa a
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PDEL-generated models

Let M be an epitemic model and E be an event model.
For each n, let MEn = (Wn, {Ran}a∈Ag, `n).

Definition (very tedious ... so not that rigorous here)

The PDEL-generated model from M and E is the ETL frame
ME∗ = 〈{tw}w∈W , {

a
À}a∈Ag, `〉, where:⋃

w∈W tw =
⋃
n≥0Wn,

Nodes of ME∗ are of the form x = we1 . . . en

x
a
À x′ if there is some n such that x, x′ ∈Mn and xRanx′

Theorem

PDEL-generated models are ETL frames where the transverse rela-
tions are synchronous perfect recall.
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Propositional DEL with ontic events

Now Alice can flip the coin without watching it, and Bob sees her
manipulating the cup but does not know whether she flipped the
coin of not.
We add postconditions to events like h→ t.

true

e2

h→ t
t→ h

true

e′2

id

A,B A,B

B
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Applying the ontic event

h

w

t

w′

A,B A,B

A,B

⊗

true

e

h→ t
t→ h

true

e′

id

A,B A,B

B

= t

(w, e)

h

(w′, e)

A,B A,B

A,B
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Time + Knowledge = Knowledge + Time?

Interpreted
systems

PDEL-generated
models
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Part II: Logics for Time,
Knowledge, and both
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Modal logic

Kripke structures are the models the logic talks about

Formulas are extension of classical propositional logic with
new operator � (necessity) and its dual ♦ (possibly)

Definition (Modal logic)

M, w |= �ϕ iff M, w′ |= ϕ for all w′ neighbor of w
M, w |= ♦ϕ iff M, w′ |= ϕ for some w′ neighbor of w′

The actual accessibility relation neighbor of can capture various
dimensions of the reality, and therefore gives rise to different kinds
of modal logics: knowledge (epistemic logic), beliefs (doxastic
logic), obligations (deontic logic), actions(dynamic logic), time
(temporal logic), etc. [BdRV01]

In particular, various aspects of agents (and agent systems) can be
naturally captured within this generic framework.
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Multi-modal logic

Kripke structures are the models the logic talks about

Formulas are extension of classical propositional logic with
new operator �i (necessity) and its dual ♦i (possibly)

Definition (Multi-modal logic)

M, w |= �iϕ iff M, w′ |= ϕ for all w′ i-neighbor of w
M, w |= ♦iϕ iff M, w′ |= ϕ for some w′ i-neighbor of w′

The actual accessibility relation neighbor of can capture various
dimensions of the reality, and therefore gives rise to different kinds
of modal logics: knowledge (epistemic logic), beliefs (doxastic
logic), obligations (deontic logic), actions(dynamic logic), time
(temporal logic), etc. [BdRV01]

In particular, various aspects of agents (and agent systems) can be
naturally captured within this generic framework.
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Modal logic

Kripke structures are the models the logic talks about

Formulas are extension of classical propositional logic with
new operator � (necessity) and its dual ♦ (possibly)

Definition ( logic)

M, w |= �ϕ iff M, w′ |= ϕ for all w′ neighbor of w
M, w |= ♦ϕ iff M, w′ |= ϕ for some w′ neighbor of w′

The actual accessibility relation neighbor of can capture various
dimensions of the reality, and therefore gives rise to different kinds
of modal logics: knowledge (epistemic logic), beliefs (doxastic
logic), obligations (deontic logic), actions(dynamic logic), time
(temporal logic), etc. [BdRV01]

In particular, various aspects of agents (and agent systems) can be
naturally captured within this generic framework.
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Classic decision problems in logic

Definition

Given a logic L, the model-checking problem for L is, given an input
model N of L and an input formula ϕ ∈ L, to answer the question

“N |= ϕ?”

Definition

Given a logic L, the satisfiability problem for L is, given an input
formula ϕ ∈ L, to answer the question

“Does there exist a model N such that N |= ϕ?”

Remark

The validity problem can be rephrased as a satifiability problem for
the negated formula.
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Temporal logics

Classic temporal logics:

(Propositional) Linear Time Logic LTL [Pnu77]
Computation Tree Logic CTL [CE81, EH82]
CTL∗ [EH86]
(Propositional) µ-calculus Lµ [Koz83]

They split into two families:

Linear-time temporal logics (e.g. LTL, linear-time µ-calculus)
Branching-time temporal logics (e.g. CTL,CTL∗, Lµ)

Read the Handbook Chapter by [Eme90].

Differences are:

The former refers to a fixed path/branch in the transition
system/computation tree
The latter refers to a state/node in the transition
system/computation tree
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Temporal logics

Classic temporal logics:

(Propositional) Linear Time Logic LTL [Pnu77]
Computation Tree Logic CTL [CE81, EH82]
CTL∗ [EH86]
(Propositional) µ-calculus Lµ [Koz83]

They split into two families:

Linear-time temporal logics (e.g. LTL, linear-time µ-calculus)
Branching-time temporal logics (e.g. CTL,CTL∗, Lµ)

Read the Handbook Chapter by [Eme90].

Differences are:

The former refers to a fixed path/branch in the transition
system/computation tree
The latter refers to a state/node in the transition
system/computation tree
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Linear-time logic: LTL

Definition

Syntax

ψ,ψ1, ψ2 (∈ LTL) ::= p |ψ1 ∧ ψ2 | ¬ψ |Xψ |ψ1Uψ2

where p ∈ Prop
Semantics: let t be a computation tree and π be a path in t.

t, π |= p iff p ∈ `(x)
t, π |= ψ1 ∧ ψ2 iff t, π |= ψ1 and t, π |= ψ2

t, π |= ¬ψ1 iff t, π 6|= ψ1

t, π |= Xψ iff t, π[1 . . .] |= ψ

t, π |= ψ1Uψ2 iff
∃j ∈ IN, t, π[j . . .] |= ψ2 and
∀0 ≤ i < j, t, π[i . . .] |= ψ1

Use Fϕ for trueUϕ and Gϕ for ¬F¬ϕ.
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LTL expressiveness

We refer to [EH86, Eme90] for a study of LTL expressiveness.

Theorem ([Kam68])

LTL ≡ FOLLO (the firt order logic of linear orders).

LTL can also be interpreted over computation trees:

Definition (LTL interpretation over computation trees)

Let ϕ ∈ LTL, t |= ϕ if formula ϕ holds for every path in t.

Example

Writing
∞
Fϕ for GFϕ, the formula

∞
Fp expresses that p occurs

infintely often.

The property that all even times (0, 2, 4, 6, . . .), p is true is
not expressible in LTL.
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Branching-time logic: CTL

Definition

Syntax (p ∈ Prop)

ϕ,ϕ1, ϕ2(∈ CTL) ::= p |ϕ1∧ϕ2 | ¬ϕ |AXϕ |Aϕ1Uϕ2 |Eϕ1Uϕ2

Semantics: let t be a computation tree over Prop and Ev,
and let x ∈ t be a node.

t, x |= p iff p ∈ `(x)
t, x |= ϕ1 ∧ ϕ2 iff t, x |= ϕ1 and t, x |= ϕ2

t, x |= ¬ϕ iff t, x 6|= ϕ
t, x |= AXϕ iff t, x′ |= ϕ, for all x′ s.t. x→ x′

t, x |= Aϕ1Uϕ2 iff t|x, π |= ϕ1Uϕ2

for all path π of t that starts in x
t, x |= Eϕ1Uϕ2 iff t|x, π |= ϕ1Uϕ2

for some path π of t that starts in x

where t|x is the subtree of t at node x.
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More on CTL

Notations:

EXϕ := ¬AX¬ϕ,
EFϕ := E trueUϕ,

AGϕ := ¬EF¬ϕ,
AFϕ := A trueUϕ,

EGϕ := ¬AF¬ϕ

Example

The CTL formula AFAG p is not expressible in LTL.

The LTL formula
∞
Fp is not expressible in CTL.
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CTL∗ merges CTL and LTL

Syntax

State formulas: ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Aψ
Path formulas: ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψUψ,

Semantics

t, x |= p iff p ∈ `(x)
t, x |= ϕ1 ∧ ϕ2 iff t, x |= ϕ1 and t, x |= ϕ2

t, x |= ¬ϕ1 iff t, x 6|= ϕ1

t, x |= Aψ iff t, π |= ψ

t, π |= ϕ iff t, π[0] |= ϕ
t, π |= ψ1 ∧ ψ2 iff t, π |= ψ1 and t, π |= ψ2

t, π |= ¬ψ1 iff t, π 6|= ψ1

t, π |= Xψ iff t, π[1 . . .] |= ψ

t, π |= ψ1Uψ2 iff
∃j ∈ IN, t, π[j . . .] |= ψ2 and
∀0 ≤ i < j, t, π[i . . .] |= ψ1 75 / 115
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Linear-time vs. Branching-time: expressiveness

Theorem ([EH86])

LTL and CTL are expressively incomparable.

As intended, CTL∗ subsumes LTL and CTL, as they are fragments.

Theorem ([EH86])

CTL∗ is strictly more expressive than LTL and CTL, by considering
for example formula (AFGp) ∨ (AGEF q).
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Temporal logics and bisimulation

Fix some logic L interpreted over transtion systems.

Definition

L is bisimulation invariant if any two bisimlar pointed transtion sys-
tems satisfy the same formulas of L.

Write S1, s01 ≡L S2, s02 if S1, s01 |= ϕ iff S2, s02 |= ϕ, ∀ϕ ∈ L.

Theorem

For every L ∈ {LTL,CTL,CTL∗}, and every pair of pointed transi-
tion systems S1, s01 and S2, s02,

S1, s01 and S2, s02 are bisimilar implies S1, s01 ≡L S2, s02

Remark

If moreover S1, s01 and S2, s02 are finitely branching, then the converse
also holds for L ∈ {CTL,CTL∗}. See for example [Sti98].
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Temporal logics and bisimulation

Exercise

Find a CTL formula which distinguishes the two models.

Exercise

Find out which theorem holds for ≡LTL.

Justify why the two models above have the same LTL theory.
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Decision problems

Theorem

[SC85] Satisfiability of LTL is PSPACE-complete.

[FL79] Satisfiability of CTL is EXPTIME-complete.

[VS85] Satisfiability of CTL∗ is 2EXPTIME-complete.

Regarding model-checking issues, we recommend [Sch02].

Theorem

The Model-Checking problem for LTL is PSPACE-complete.

The Model-Checking problem for CTL is PTIME-complete..

The Model-Checking problem for CTL∗ is PSPACE-complete.
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Recall on complexity classes
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Epistemic logic

Definition

Syntax

ϕ,ϕ1, ϕ2(∈ K) ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Kaϕ

where p ∈ Prop and a ∈ Ag.

Semantics: let M = 〈W,R, `〉 be an epistemic model over
Prop and Ag, and let w ∈W .

M, w |= p iff p ∈ `(w)
M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= Kaϕ iff M, w′ |= ϕ, for every w
a
À w′
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The GLO-scenario

M = 〈W,R, `〉 w0

w1

w2

w3

b

a

a

b

{g, l}

{g} ∅

{l}

Example

M, w0 |= Kbg ∧ ¬Kbl ∧ ¬Kb¬l, that is agent b knows that it
is sunny in Groningen, but does not know whether it is sunny
in Liverpool or not. This is also the case in every other world.

M, w0 |= Kb¬Kbl. Agent b knows about his ignorance.

M, w0 |= ¬Kag ∧ ¬Ka¬g ∧Ka(Kbg ∨Kb¬g)
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More on epistemic logic

Remark

The logical omniscience “problem”: agents know all validities (see
for example [vDvdHK07, p. 23]

Theorem ([BdRV01])

Logic K is bisimulation invariant.

Remark

On finite image epitemic models, ≡K coincides with bisimilarity, with
the same proof as for temporal logic.
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On the GLO-scenario, formalize the following claims:

1 In state w0, agent b considers it possible that it is sunny in
Groningen, and also that it is sunny in Liverpool, and also
that it is not sunny in Liverpool.

2 In w2, agent b knows it is not sunny in Groningen, although
he does not know it is sunny in Liverpool.

3 In state w0, agent b knows both that he knows that it is
sunny in Groningen and that he does not know that it is
sunny in Liverpool.

4 It is true that agent b knows whether it is sunny in Groningen,
but he does not know whether it is sunny in Liverpool.

5 In any world, any agent knows that any fact or its negation
holds.

6 It is not a validity that an agent always knows either a fact, or
that he knows its negation. 85 / 115
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Decision problems in epistemic logic

Theorem

Satisfiability of K is PSPACE-complete.

See [BdRV01], [vDvdHK07, Chap. 2]

Theorem

The Model-Checking problem for K is in PTIME-complete.

See [Sch02, Sec. 3.2.1] which is the only proof I know.
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Epistemic Temporal Logic

Definition

Syntax

State formulas

ϕ,ϕ1, ϕ2 (∈ ETL) ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Aψ |Kaϕ

where p ∈ Prop and a ∈ Ag.

Path formulas (as for CTL∗)

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψUψ,

Semantics

Exercise

Your job! Combine the semantics of CTL∗ and K.

89 / 115



A quick glance at modal logic Logics for time: Temporal Logic(s) LTL, CTL, CTL∗ Logics for knowledge: Epistemic Logic K Logics for knowledge and time: ETL and PDEL

Practicing

Example

Formula AG (p ⇒ Kap) being true at the root of some computa-
tion tree t of the forest means that:

for every node x of t where p holds, all the nodes in the forest that
are

a
À-related to x are also labelled p.

Exercise

Draw a picture for formula AG (p ⇒ Kap).
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Results for ETL

[HVDMV04] considers

CKLm for LTL + all knowledge operators including common
knowledge and fragment KLm of ETL

where Cm is the class of Interpreted Systems with |Ag| = m,

and superscript means nl, pr, sync, and uis to no learning,
perfect recall, synchronous, unique initial state (one tree in
the forest) respectively.
Many scattered results on model-checking:
[vdMS99],[VDHW02],[MP13] . . .
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Transducer

Definition

A transducer over an alphabet Σ = {α, β, . . . } is a (non-
deterministic) finite state machine with two tapes . . .

q1 q2
u′/v′

u

v

accept/reject

L(T ) = {(u, v) |T has an accepting run with input pair (u, v)}

Exercise

Take a look at [Ber79, Sec. 6] and also [Eil74] to complete the
definition of a transducer.
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An example of transducer

Example

q

α/α

β/ε

ε/β

α β α α

α β α α β

accept/reject

{(αk, αk) | k ∈ IN} ⊆ L(T ), (βαβα, βααβ) ∈ L(T )
(α2, α) 6∈ L(T )

Exercise

Show that L(T ) = {(u, v) | |u|α = |v|α}
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Exercises on transducers

Exercise

What does this one
recognizes?
(i.e. what is L(T )?)

q α/α, β/β, β/γ, γ/γ, γ/β

Exercise

Can you find a transducer for the language below?

{(u, v) | |u|α = |v|α and |u| = |v|}

Exercise

Would you say that L(T ) from previous slide is synchronous? perfect
recall? Justify.

94 / 115



A quick glance at modal logic Logics for time: Temporal Logic(s) LTL, CTL, CTL∗ Logics for knowledge: Epistemic Logic K Logics for knowledge and time: ETL and PDEL

Some decision problems on rational relations

Theorem

Given two rational relations R,R′ ⊆ Σ∗ × Σ∗ .

Decidable problems

R = ∅ ?
Is R finite?

Undecidable problems

R∩R′ = ∅?
R ⊆ R′?
R = R′?
R = Σ∗ × Σ∗?
Is Σ∗ × Σ∗ \ R finite?

We recommend to read [Ber79, Chap. 8].
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Closure properties of rational relations

Theorem

The class of rational relations is closed under union but not
closed under intersection.

The class of rational relations is closed under composition.

Equivalence of rational relations is undecidable, but
equivalence of deterministic rational relations is decidable.

See for example [CDG+97, Ber79]
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Transducers for Knowledge semantics

In an ETL frame 〈F , { aÀ}a∈Ag〉, we associate to a node/history x
is a sequence/word over alphabet 2Prop.(Ev × 2Prop)∗, called the
word of x and written w(x).

p, q

p q

p, q px q
q

. . .

e e′

e e e′ e

w(x) = {p, q}e{p}e{p, q}

From this abstract information, we derive a binary relation between
nodes according to

x
a
Ày if w(x)

a
Àw(y)
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Rational ETL frames

Definition

An ETL frame 〈{tj}j∈J , {
a
À}a∈Ag〉 is rational if each

a
À is a rational

relation.

Exercise

What do you think of the following decision problems, where R
rational relation?

Is R perfect recall?

Is R synchronous?

Is R perfect recall?

Exercise

From theorem above, try to understand why distributed knowledge
might cause severe problems from a computational point of view.
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Dynamic epistemc logics

Introduced by Baltag, Moss and Solecki, Slawomirin in “The logic
of public announcements, common knowledge, and private
suspicions [BMS98]”.

It contains a modility for epitemic event models.

It contains more that we will not discuss.

The logic of Public Announcement is a fragment.

It is not more expressive than K
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Definition of DEL

Definition

Syntax

ϕ,ϕ1, ϕ2 (∈ DEL) ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Kaϕ | [E , e]ϕ

where p ∈ Prop, a ∈ Ag and E , e is a (finite) epistemic event.

Semantics: let M = 〈W,R, `〉 be an epitemic model over
Prop and Ag.

M, w |= p iff `(w)
M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= Kaϕ iff M, w |= ϕ, for every w
a
À w′

M, w |= [E , e]ϕ iff M⊗E , we |= ϕ
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Public Announcement Logic PAL [Pla07]

Definition

Syntax

ϕ,ψ, ϕ1, ϕ2 (∈ PAL) ::= p | ¬ϕ |ϕ1 ∧ ϕ2 | [ψ!]ϕ

where p ∈ Prop.

Semantics: let M = 〈W,R, `〉 be an epitemic model over
Prop and Ag.

M, w |= p iff
M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= [ψ!]ϕ iff M, w |= ψ and Mψ, w |= ϕ

where Mψ is the restriction of M to the set of worlds that
satisfy ψ
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PAL ↪→ DEL

What do you think?

Lemma

M, w |= [ψ!]ϕ iff M, w |= [Eψ, eψ]ϕ

where Eψ is

eψ

ψ

Ag
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PAL ↪→ DEL

What do you think?

Lemma

M, w |= [ψ!]ϕ iff M, w |= [Eψ, eψ]ϕ

where Eψ is

eψ

ψ

Ag
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Muddy children

Exercise

Try to formalize the muddy children puzzle in PAL or DEL.
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Results on DEL and PAL

Expressiveness

Theorem ([Pla07],[Lut06])

PAL is not more expressive than K (but it is exponentially more
succinct).
DEL is not more expressive than K (but it is exponentially more
succinct).

Satisfiability

Theorem ([Lut06],[AS13])

The satisfiability in single-agent PAL is NPTIME-complete.
The satisfiability problem for PAL is PSPACE-complete.
The satisfiability problem for DEL is in NEXPTIME-complete.
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Model-checking DEL and PAL

Theorem ([KvB04])

The model-checking problem for PAL is in PTIME.

Theorem ([AS13])

The model-checking for DEL is PSPACE-complete.
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