Observation

liveness properties are often violated although we expect them to hold

light 1 || light 2 $\not\models$ "infinitely often $green_1$ "

light 1 || light 2 $\not\models$ "infinitely often $green_1$ "

light 1 || light 2 $\not\models$ "infinitely often $green_1$ "

interleaving is completely time abstract!

Mutual exclusion (semaphore)

liveness = "each waiting process will eventually enter its critical section"

 $\mathcal{T}_{sem} \not\models$

"each waiting process will eventually enter its critical section"

$$\mathcal{T}_{sem} \not\models$$

"each waiting process will eventually enter its critical section"

level of abstraction is too coarse!

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 ...

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... P_1 P_1 P_2 P_1 ... P_1 P_2 P_1 ...

possible interleavings:

```
P_1 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_2 P_1 P_1 ... fair P_1 P_1 P_2 P_1 ... fair P_1 P_2 ... unfair
```


possible interleavings:

```
P_1 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_2 P_1 P_1 ... fair P_1 P_1 P_2 P_1 ... fair P_1 P_2 ... unfair
```

process fairness assumes an appropriate resolution of the nondeterminism resulting from interleaving and competitions

• unconditional fairness

strong fairness

weak fairness

unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.

strong fairness

weak fairness

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness, e.g.,
 every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.

we will provide conditions for

- unconditional **A**-fairness of **p**
- strong A-fairness of ρ
- weak A-fairness of ρ

we will provide conditions for

- unconditional A-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \{\beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$

we will provide conditions for

- unconditional A-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \}$$

$$\stackrel{\infty}{\exists} \widehat{=} \text{ "there exists infinitely many ..."}$$

we will provide conditions for

- unconditional **A**-fairness of **p**
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \}$$

$$\stackrel{\infty}{\exists} \stackrel{\cong}{=} \text{"there exists infinitely many ..."}$$

$$\stackrel{\infty}{\forall} \stackrel{\cong}{=} \text{"for all, but finitely many ..."}$$

• ρ is unconditionally **A**-fair, if

• ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$

"actions in A will be taken infinitely many times"

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

"If infinitely many times some action in **A** is enabled, then actions in **A** will be taken infinitely many times."

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly A-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \quad \Longrightarrow \quad \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

"If from some moment, actions in **A** are enabled, then actions in **A** will be taken infinitely many times."

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

unconditionally
$$A$$
-fair \implies strongly A -fair \implies weakly A -fair

- ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

unconditionally A-fair \implies strongly A-fair \implies weakly A-fair

Strong and weak action fairness

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

Strong and weak action fairness

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

weak A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are continuously enabled from some moment on

LF2.6-10

Unconditional, strongly or weakly fair?

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \operatorname{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

Unconditional, strongly or weakly fair?

LF2.6-10

fairness for action set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \operatorname{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: yes
- strong A-fairness: yes ← unconditionally fair
- weak A-fairness: yes ← unconditionally fair

94 / 189

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle\right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

$$\left(\langle n_1, u, n_2 \rangle \longrightarrow \langle n_1, u, w_2 \rangle \longrightarrow \langle n_1, I, \operatorname{crit}_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: no
- strong A-fairness: yes \leftarrow A never enabled
- weak A-fairness: **yes** \leftarrow strongly A-fair

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: no
- strong **A**-fairness: **no**
- weak A-fairness: yes

fairness for action set $A = \{enter_1, enter_2\}$:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle\right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

fairness for action set $A = \{enter_1, enter_2\}$:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: yes
- strong **A**-fairness: **yes**
- weak A-fairness: yes

Action-based fairness assumptions

Action-based fairness assumptions

Let T be a transition system with action-set Act. A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

Action-based fairness assumptions

Let T be a transition system with action-set Act. A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly A-fair for all $A \in \mathcal{F}_{weak}$

Let T be a transition system with action-set Act. A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly A-fair for all $A \in \mathcal{F}_{weak}$

 $FairTraces_{\mathcal{F}}(T) \stackrel{\mathsf{def}}{=} \{trace(\rho) : \rho \text{ is a } \mathcal{F}\text{-fair execution of } T\}$

Fair satisfaction relation

Fair satisfaction relation

A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where
$$\mathcal{F}_{ucond}$$
, \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly A-fair for all $A \in \mathcal{F}_{weak}$

If T is a TS and E a LT property over AP then:

$$T \models_{\mathcal{F}} E \iff FairTraces_{\mathcal{F}}(T) \subseteq E$$

- no unconditional fairness condition
- strong fairness for $\{\alpha, \beta\}$
- no weak fairness condition

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = 9$

 $T \models_{\mathcal{F}}$ "infinitely often b"?

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \mathcal{Q}$

$$T \models_{\mathcal{F}}$$
 "infinitely often b "?

answer: **no**

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \mathcal{Q}$

 $T \models_{\mathcal{F}}$ "infinitely often b"?

answer: **no**

fairness assumption ${\mathcal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition $\leftarrow \mathcal{F}_{weak} = \varnothing$

actions in $\{\alpha, \beta\}$ are executed infinitely many times

fairness assumption F

- ullet strong fairness for lpha
- weak fairness for *β*

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$$

$$\leftarrow \mathcal{F}_{weak} = \{\{eta\}\}$$

no unconditional fairness assumption

 $T \models_{\mathcal{F}}$ "infinitely often b"?

fairness assumption ${\mathcal F}$

- ullet strong fairness for $oldsymbol{lpha}$
- weak fairness for *β*

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

no unconditional fairness assumption

 $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b"?

answer: no

fairness assumption ${\mathcal F}$

- ullet strong fairness for lpha
- weak fairness for *β*

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

no unconditional fairness assumption

 $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b"?

answer: no

- ullet strong fairness for $oldsymbol{lpha}$
- weak fairness for *β*

- $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$
 - $\leftarrow \mathcal{F}_{\textit{weak}} = \{\{\beta\}\}$
- no unconditional fairness assumption

$$T \models_{\mathcal{F}}$$
 "infinitely often b "

fairness assumption ${\mathcal F}$

 \bullet strong fairness for β

$$\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$$

- no weak fairness assumption
- no unconditional fairness assumption

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b "

fairness assumption ${\mathcal F}$

 \bullet strong fairness for β

$$\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$$

- no weak fairness assumption
- no unconditional fairness assumption

Which type of fairness?

Which type of fairness?

fairness assumptions should be as weak as possible

green green

green red

red green

light 1 ||| light 2
$$\models_{\mathcal{F}} E$$

$$\mathcal{F}_{ucond} = ?$$

$$\mathcal{F}_{strong} = ?$$
 $\mathcal{F}_{weak} = ?$

$$\mathcal{F}_{weak} = ?$$

$$A_1$$
 = actions of light 1

$$A_2$$
 = actions of light 2

$$\mathcal{F}_{ucond} = ?$$

$$\mathcal{F}_{strong} = ?$$

$$\mathcal{F}_{\mathsf{weak}} = ?$$

light 1 | | | light 2
$$\models_{\mathcal{F}} E$$

$$A_1$$
 = actions of light 1

$$A_2$$
 = actions of light 2

$$\mathcal{F}_{ucond} = \emptyset$$

$$\mathcal{F}_{strong} = \varnothing$$

$$\mathcal{F}_{weak} = \{A_1, A_2\}$$

light 1 | | | light 2
$$\models_{\mathcal{F}} E$$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

 T_1 and T_2 compete to communicate with the arbiter by means of the actions *enter*₁ and *enter*₂, respectively

LT property *E*: each waiting process eventually enters its critical section

$$T \not\models E$$

LT property **E**: each waiting process eventually enters its critical section

fairness assumption ${\cal F}$

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \varnothing$$
 $\mathcal{F}_{weak} = \{\{enter_1\}, \{enter_2\}\}$

does $T \models_{\mathcal{F}} E$ hold ?

LT property *E*: each waiting process eventually enters its critical section

fairness assumption ${\cal F}$

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \varnothing$$
 $\mathcal{F}_{weak} = \{\{enter_1\}, \{enter_2\}\}$

does $T \models_{\mathcal{F}} E$ hold ? answer: **no**

LF2.6-15

LT property **E**: each waiting process eventually enters its critical section

fairness assumption ${\cal F}$

$$\mathcal{F}_{\textit{ucond}} = \mathcal{F}_{\textit{strong}} = \varnothing$$
 $\mathcal{F}_{\textit{weak}} = \{\{\textit{enter}_1\}, \{\textit{enter}_2\}\}$

 $T \not\models_{\mathcal{F}} E$ as *enter*₂ is not enabled in $\langle \operatorname{crit}_1, I, w_2 \rangle$

E: each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = ?$$
 $\mathcal{F}_{strong} = ?$
 $\mathcal{F}_{weak} = ?$

$$T \not\models E$$
, but $T \models_{\mathcal{F}} E$

E: each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \varnothing$

$$T \not\models E$$
, but $T \models_{\mathcal{F}} E$

E: each waiting process eventually enters its crit. section

D: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \emptyset$

$$T \models_{\mathcal{F}} E$$
, $T \not\models_{\mathcal{F}} D$

E: each waiting process eventually enters its crit. section

D: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \emptyset$

$$T \models_{\mathcal{F}} E$$
, $T \not\models_{\mathcal{F}} D$

E: each waiting process eventually enters its crit. section

D: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \{\{req_1\}, \{req_2\}\}$

$$\begin{array}{c|c}
\mathcal{T} \models_{\mathcal{F}} E, \\
\mathcal{T} \models_{\mathcal{F}} D
\end{array}$$

Process fairness

For asynchronous systems:

```
parallelism = interleaving + fairness
```

Process fairness

For asynchronous systems:

```
parallelism = interleaving + fairness

†
should be as weak as possible
```

For asynchronous systems:

```
parallelism = interleaving + fairness
```

should be as weak as possible

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - * resolution of competitions

For asynchronous systems:

```
parallelism = interleaving + fairness

the should be as weak as possible
```

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions

For asynchronous systems:

```
parallelism = interleaving + fairness
```

should be as weak as possible

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions
- unconditional fairness: only of theoretical interest

Purpose of fairness conditions

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler
 or requirements for environment
- can be verifiable system properties

Purpose of fairness conditions

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler
 or requirements for environment
- can be verifiable system properties

liveness properties: fairness can be essential

safety properties: fairness is irrelevant

Fairness

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ "infinitely often a" hold ?

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Fairness LF2.6-22

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Realizability requires that each initial finite path fragment can be extended to a \mathcal{F} -fair path

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Fairness assumption \mathcal{F} is said to be realizable for a transition system \mathcal{T} if for each reachable state s in \mathcal{T} there exists a \mathcal{F} -fair path starting in s

fairness assumption
$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$
 for TS \mathcal{T}

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

• unconditional fairness for $A \in \mathcal{F}_{ucond}$

- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{ucond}$ \leadsto might not be realizable
- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{ucond}$ \leadsto might not be realizable
- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

can always be guaranteed by a scheduler, i.e., an instance that resolves the nondeterminism in \mathcal{T}

Realizable fairness assumptions are irrelevant for safety properties

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

E = invariant "always a"

$$T \not\models E$$
, but $T \models_{\mathcal{F}} E$