OverView OVERVIEW4.3

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
regular safety properties
w-regular properties
model checking with Buchi automata «+—
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

1/192

Verifyi ng U)- regu Iar prop erties LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system 7
w-regular property E
question: does T |= E hold ?

2/192

Verifyi ng U)— regu Iar prop erties LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system 7
w-regular property E
question: does T |= E hold ?

(1) construct an NBA A for the bad behaviors, i.e.,
Lo(A) = 2¥)°\E

3/192

Verifyi ng U)— regu Iar prop erties LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system 7
w-regular property E
question: does T |= E hold ?
(1) construct an NBA A for the bad behaviors, i.e.,
L,(A) = (2*)°\E
(2) check whether Traces(T) N L,(A) = @

4/192

Verifying w-regular properties T T
given: finite transition system 7
w-regular property E
question: does T |= E hold ?
(1) construct an NBA A for the bad behaviors, i.e.,
Lo(A) = (*)"\E
(2) check whether Traces(T) N L,(A) = @

(3) build the product transition system 7 ® A and
check whether

T ® A |= "never acceptance condition of A"

5/192

Verifyi ng U)— regu Iar prop erties LTLMC3.2-MC-OMEGA-REG-PERSISTENCE

given: finite transition system 7
w-regular property E
question: does T |= E hold ?
(1) construct an NBA A for the bad behaviors, i.e.,
L,(A) = (2*)°\E
(2) check whether Traces(T) N L,(A) = @

(3) build the product transition system 7 ® A and
check whether

T ® A |= "never acceptance condition of A"

requires techniques for checking
persistence properties in finite TS

6/192

Pe rs i Ste n Ce pro p e rty LTLMC3.2-PERSISTENCE-PROP.TEX

7/192

Pe rSiSten Ce pro p e rty LTLMC3.2-PERSISTENCE-PROP .TEX

Let E be an LT-property, i.e., E C (2AP)w

E is called a persistence property if there exists a
propositional formula ® over AP such that

set of all infinite words Ag A1 Ay ... € (2AP)w
st. Vi>0 Ao

o0

VvV i>0.... = dj>0Vi>j. ... “for all but finitely many”

8/192

Pe rSiSten Ce pro p e rty LTLMC3.2-PERSISTENCE-PROP .TEX

Let E be an LT-property, i.e., E C (2AP)w

E is called a persistence property if there exists a
propositional formula ® over AP such that

set of all infinite words Ag A1 Ay ... € (2AP)w
- st. Vi>0 Ao

1

“from some moment on ®”
“eventually forever ®”

o0

VvV i>0.... = dj>0Vi>j. ... “for all but finitely many”

9/192

Checking w-regular properties LTLAC3.2-0MEGA

finite transition w-regular
system T property E

N/

model checking

does T |= E hold ?

~ SN

yes no + error indication

10/192

Checking w-regular properties LTLAC3.2-0MEGA

finite transition w-regular
system T property E
l
NBA A for

the bad behaviors, i.e.,

for (24P)“\ E
/

model checking

does T |= E hold ?

~ SN

yes no + error indication

11/192

Checking w-regular properties LTLAC3.2-0MEGA

finite transition w-regular
system T property E
l
NBA A for

the bad behaviors, i.e.,
for (24P)“\ E

/

persistence checking

T ® A | "eventually forever =F"

~ SN

yes no + error indication

12/192

Recall: product of a TS and an NFA

finite transition system NFA for bad prefixes

T = (S,Act,~,%,AP,1) A=(Q,2",6,Q,F)

SRT DU B

|

Sn

path
fragment T

13/192

Recall: product of a TS and an NFA

finite transition system NFA for bad prefixes
T=(51ACt7_)1501AP7L) A=(Qa2AP76a Q07 F)

Slo L(s0)=Ao

511 L(s1)=A

O L(s2)=A2

|

|

Sn L(sp)=An

path

fragment T trace

14 /192

Recall: product of a TS and an NFA

finite transition system

T = (S, Act,—, Sp, AP, L)

S0 L(s0)=Ao
511 L(51)=A1
|

Sn L(Sn)zAn

path
fragment T trace

NFA for bad prefixes
A=(Q,2"",8, Qo, F)

run for trace(T)

15/192

Recall: product of a TS and an NFA

finite transition

T = (S, Act,—, Sp, AP, L)

path
fragment 7

system

LTLMC3.2-PROD

NFA for bad prefixes

A=(Q,2%",6,Q0, F)
90 € QO
______ (50, 91) Ao
[)}
______ (s1, 2) A
R - q
______ (?%zlfl?) A2
I
{5n, Gn1) VAn
-------- qn+1

path fragm.
in product

run for trace(T)

16/192

Product transition system

recall: definition of the product of a TS and NFA

17 /192

Product transition system

T = (S, Act,—, Sy, AP, L) transition system
A= (Q,2°7,6, Q, F) NFA

def

product-TST ® A = (5xQ, Act,—', S5, AP', L")

18/192

Product transition system
T = (S, Act,—, Sy, AP, L) transition system
A= (Q,2°7,6, Q, F) NFA

product-TS7 ® A & (5xQ,Act,—', Sg, AP', L")

s—s A g €edqLs)
(s,q) —'(s',q)
initial states: S§j = {(so, q) : s € S,q€ 5(Q0, L(SO)) }

19/192

Product transition system

T = (S, Act,—, Sy, AP, L) transition system
A= (Q,2°7,6, Q, F) NFA

product-TS7 ® A & (5xQ,Act,—', Sg, AP', L")

s—s A g €edqLs)
(s,q) —'(s',q)
initial states: S§j = {(so, q) : s € S,q€ 5(Q0, L(SO)) }

set of atomic propositions: AP’ = Q

labeling function: L'({s,q)) = {q}

20/192

Product transition system

T = (S, Act,—, Sy, AP, L) transition system

A = (Q,2%7,4, Qo, F) NFA «| same definition
for NBA

(SxQ, Act,—', S, AP, L")

product-TS7 ® A &

s5¢ A ¢ edql(s)
(s,q) —'(s',q)
initial states: 6 = {(so, q) : 50 € 5,9 € 5(Q0, L(SO)) }

set of atomic propositions: AP’ = Q

labeling function: L'({s,q)) = {q}

21/192

Product of a TS and NBA

T = (S,Act,—,S),AP,L) transition system
A = (Q,2"7,8, Q,F) NFA or NBA

product-TS7 ® A def (5xQ, Act,—', Sg, AP', L")

s5¢ A ¢ ebal(s)
(s,q) —'(s',q")
initial states: S§j = {(so, q) : s € S,q€ 5(Q0, L(SO)) }

set of atomic propositions: AP’ = Q

labeling function: L'({s,q)) ={q}

22/192

w-regular model checking

given:

finite TS T
w-regular LT property E

question: does T |= E hold ?

LTLMC3.2-RED

23/192

w-regular model checking

given:

finite TS T
w-regular LT property E

question: does T |= E hold ?

algorithm uses an NBA for the bad behaviors for E

LTLMC3.2-RED

24 /192

w-regular model checking

given:

finite TS T
w-regular LT property E

question: does T |= E hold ?

algorithm uses an NBA for the bad behaviors for E

LTLMC3.2-RED

relies on a reduction to the persistence checking problem

25/192

w-regular model checking
T = (S, Act,—, So, AP, L) finite transition system
without terminal states

A = (Q,2%7,6, Q, F) non-blocking NBA
representing the bad behaviors of an w-regular
LT-property E

26 /192

w-regular model checking

T = (S, Act,—, So, AP, L) finite transition system
without terminal states
A = (Q,2%7,6, Q, F) non-blocking NBA
representing the bad behaviors of an w-regular
LT-property E, i.e., £,(A) = (24P)“\ E

27 /192

w-regular model checking

T = (S, Act,—, So, AP, L) finite transition system
without terminal states
A = (Q,2%7,6, Q, F) non-blocking NBA
representing the bad behaviors of an w-regular
LT-property E, i.e., £,(A) = (24P)“\ E

The following statements are equivalent:
(1) TEE
(2) Traces(T)NL,(A) =2

28 /192

w-regular model checking

T = (S, Act,—, So, AP, L) finite transition system
without terminal states
A = (Q,2%7,6, Q, F) non-blocking NBA
representing the bad behaviors of an w-regular
LT-property E, i.e., £,(A) = (24P)“\ E

The following statements are equivalent:
(1) TEE
(2) Traces(T)NL,(A) =2
(3) T ® A | “eventually forever =F"

29/192

Example: w-regular model checking

TS T LT property: “infinitely often green”

red

green

30/192

Example: w-regular model checking

TS T LT property: “infinitely often green”

NBA A for the complement
“from some moment on —green”
. —green green
/1] qr q1

true —green true

31/192

Example: w-regular model checking

TS T LT property: “infinitely often green”

NBA A for the complement
“from some moment on —green”
. —green green
/1] qr q1

true —green true

reachable fragment of the
product TS7T ® A

(dq) @=ra

32/192

Example: w-regular model checking

LTLMC3.2-8-OMEGA

TS T LT property: “infinitely often green”
NBA A for the complement
red “from some moment on —green”

qaF

([green
U

true —green

U

ee
grn@

true

initial states:
(red, @) where

q € 4(qo, L(red))

= (90, 2)
— {0, 9}

33/192

Example: w-regular model checking

TS T LT property: “infinitely often green”

(dq) @E=ia

NBA A for the complement
“from some moment on —green”

________ ,ZS

—green true

transition
<greena qO) - (red, q)
q € 6(qo, L(red))
= J(qu g)
= {qo0, ar}

34/192

Example: w-regular model checking

TS T LT property: “infinitely often green”

NBA A for the complement
“from some moment on —green”
. —green green
qo0 qF Q1

true —green true

atomic propositions

AP" = {qo, qr, q1}
obvious labeling function

Gdq) @=ia

35/192

Example: w-regular model checking

TS T LT property: “infinitely often green”
NBA A for the complement
“from some moment on —green”
. 5 —green green
o qr 01

true —green true

atomic propositions

AP' = {qo, 9, q1}
obvious labeling function

reen Q1 TRAE
“eventually forever ~F"

36/192

Example: w-regular model checking

ST

try_to_send

(lost) (delivered)

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

LTLMC3.2-9-OMEGA

37/192

Example: w-regular model checking

ST

_.{try_to_send

(Iost') (delivered)

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

TWE

LTLMC3.2-9-OMEGA

38/192

Example: w-regular model checking

TS T NBA A for the bad behaviors

gt A—del
g IYATdel T del @
U

[Iost] [delivered] true —del true

try_to_send

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

complement of E, i.e., LT property for the bad behaviors:
“never delivered after some trial”

39/192

Example: w-regular model checking

TS T NBA A for the bad behaviors

tryA—del
Q0 ry € ar del @
E 3 U

[Iost] [delivered] true —del true

try_to_send

reachable fragment of the product-TS

40/192

Example: w-regular model checking

TS T NBA A for the bad behaviors

tryA—del
\@ ryA~del) del @
U

[Iost] [delivered] true —del true

try_to_send

set of atomic propositions AP' = {qo, 1, qr}

41/192

Example: w-regular model checking

TS T NBA A for the bad behaviors

.

Py Adel T el @
0' 1 ‘I

(Uost) (delivered) true ﬁdel true

T ® A [£ “eventually forever =F”

42/192

Checking safety and w-regular properties

43 /192

Checking safety and w-regular properties

for regular safety property E
TEE
iff Tracesf,(T) N BadPref = &

44 /192

Checking safety and w-regular properties

for regular safety property E
TEE
iff Tracesfi,(T) N BadPref = &

for w-regular property E
TEE
iff Traces(T)NL,(A) =92

A is an NBA
for the bad
behaviors of E

45/192

Checking safety and w-regular properties

for regular safety property E
TEE
iff Tracessi,(T)N L(A) =@

for w-regular property E
TEE
iff Traces(T)NL,(A) =92

A is an NFA
for the bad
prefixes of E

A is an NBA
for the bad
behaviors of E

46 /192

Checking safety and w-regular properties

for regular safety property E
TEE

iff Tracessi,(T)N L(A) =@

iff T® Al “forever =F"

for w-regular property E
TEE
iff Traces(T)NL,(A) =92

iff T ® A “eventually forever =F"

F = set of final states in A

A is an NFA
for the bad
prefixes of E

A is an NBA
for the bad
behaviors of E

47/192

Checking safety and w-regular properties

for regular safety property E
TEE

iff Tracessi,(T)N L(A) =@
iff T® Al “forever =F"

invariant
checking

for w-regular property E
TEE
iff Traces(T)NL,(A) =92

iff 7T ® A “eventually forever =F"«

persistence
checking

F = set of final states in A

48 /192

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

49 /192

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

T £ “eventually forever a"

iff there is a path 9515 853...in 7 s.t.
s; £ a for infinitely many i >0

50/192

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

T £ “eventually forever a"

iff there is a path 9515 853...in 7 s.t.
s; £ a for infinitely many i >0

iff there exists a reachable state s with s [£ a
and acycles...s

51/192

Persistence checking

given: finite transition system 7 over AP

question: does T |= “eventually forever a" hold ?

persistence condition a € AP

iff

iff

iff

T £ “eventually forever a"

there is a path sps1583...in T s.t.
s; £ a for infinitely many i >0

there exists a reachable state s with s [~ a
and acycles...s

there exists a non-trivial reachable SCC C
with CN{seS:slta} £

52/192

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

T [~ “eventually forever a"

iff there exists a reachable state s with s [£ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:slta} £ 1

SCC: strongly connected component, i.e., maximal
set of states that are reachable from each other

537192

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

T £ “eventually forever a"

iff there exists a reachable state s with s [£ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:slta} £

A SCC is called non-trivial if it has at least one edge.
“either 1 state with a self-loop or 2 or more states”

Persistence checking

given: finite transition system 7 over AP
persistence condition a € AP

question: does T |= “eventually forever a" hold ?

T £ “eventually forever a"

iff there exists a reachable state s with s [£ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:slta} £

method: calculate and analyze the SCCs

55/192

Example: w-regular model checking

ST

try_to_send

(lost) (delivered)

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

LTLMC3.2-9-OMEGA-COPY

56 /192

Example: w-regular model checking

TS T NBA A for the bad behaviors

gt A—del
g IYATdel T del @
U

[Iost] [delivered] true —del true

try_to_send

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

57 /192

Example: w-regular model checking

TS T NBA A for the bad behaviors

tryA—del
Q0 ry € ar del @
E 3 U

[Iost] [delivered] true —del true

try_to_send

w-regular LT property E:
“each (repeatedly) sent message will
eventually be delivered”

. analysis of the SCCs in product 7 ® A...

58 /192

Example: persistence checking 7 ® A LTLMG3.2-12

[)@)

persistence property: “eventually forever ~gg”

59/192

Example: persistence checking 7 ® A LTLMG3.2-12

(Start go)

®) |/

€l qo

G

persistence property: “eventually forever ~gg”

3 reachable SCCs: G, G, G3

60 /192

Example: persistence checking 7 ® A LTLMG3.2-12

G

persistence property: “eventually forever ~gg”
3 reachable SCCs: G, G, G3

C> non-trivial, and contains two states s with s & —qg

61/192

Example: persistence checking 7 ® A LTLMG3.2-12

G

persistence property: “eventually forever ~gg”
3 reachable SCCs: G, G, G3
C> non-trivial, and contains two states s with s & —qg

T Q® A £ “eventually forever ~gg”

62/192

Persistence checking algorithms based on

T £ “eventually forever a”

iff there exists a reachable state s with s [~ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:sla} £

63/192

Persistence checking algorithms based on

T £ “eventually forever a”

iff there exists a reachable state s with s [~ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:sla} £

method 1: calculation and analysis of the SCCs

64 /192

Persistence checking algorithms based on

T £ “eventually forever a”

iff there exists a reachable state s with s [~ a
and acycles...s

iff there exists a non-trivial reachable SCC C
with CN{seS:sla} £

method 1: calculation and analysis of the SCCs

e algorithm to compute the SCCs rely on
an exploration of the full (reachable) state space
e not adequate for on-the-fly analysis

65 /192

Persistence checking algorithms based on

T [~ “eventually forever a"

iff there exists a reachable state s with s [~ a
and acycles...s

iff there exists a non-trivial reachable SCC C

with CN{seS:slfa} £

method 1: calculation and analysis of the SCCs

e algorithm to compute the SCCs rely on
an exploration of the full (reachable) state space
e not adequate for on-the-fly analysis

method 2: DFS-based search for backward edges

66 /192

DFS-based cycle check LTLMCB 2134

75/192

DFS-based cycle check LTLMCB 2134

Let G be a finite directed graph and s a node in G.

The following statements are equivalent:
(1) G is cyclic
(2) The DFS in G finds some backward edge.

76 /192

DFS-based cycle check LTLMCB 2134

Let G be a finite directed graph and s a node in G.

The following statements are equivalent:
(1) G is cyclic
(2) The DFS in G finds some backward edge.

Cycle check in digraphs:
e perform by a DFS (with arbitrary starting node)

e check whether there is a backward edge

77/192

DFS-based cycle check LTLMCB 2134

Let G be a finite directed graph and s a node in G.

The following statements are equivalent:
(1) G is cyclic
(2) The DFS in G finds some backward edge.

Cycle check in digraphs:
e perform by a DFS (with arbitrary starting node)

e check whether there is a backward edge

complexity: O(size(G))

78/192

DFS-based cycle check LTLMCB 2134

Let G be a finite directed graph and s a node in G.

The following statements are equivalent:

(1) s belongs to a cycle ss;sy...s¢s

(2) The DFS started with s finds a
backward edge s’ — s.

Cycle check for fixed node: “does s belong to a cycle?”
e perform by a DFS with starting node s

e check whether there is a backward edge s’ — s

complexity: O(size(G))

79/192

DFS-based persistence checking

given: finite TS 7, persistence condition a
question: does T = “eventually forever a” hold?

80/192

DFS-based persistence checking

given: finite TS 7, persistence condition a
question: does T = “eventually forever a” hold?

initially all states are unmarked

REPEAT
choose an unmarked reachable state s with s [a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no”
FI

UNTIL all reachable states s with s [~ a are marked;
return “yes”

DFS-based persistence checking

given: finite TS 7, persistence condition a
question: does T = “eventually forever a” hold?

initially all states are unmarked
1. DFS: visits all reachable states

REPEAT
choose an unmarked reachable state s with s [a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no”
FI

UNTIL all reachable states s with s [~ a are marked;
return “yes”

DFS-based persistence checking

given: finite TS 7, persistence condition a
question: does T = “eventually forever a” hold?

initially all states are unmarked
1. DFS: visits all reachable states

REPEAT
choose an unmarked reachable state s with s [a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [~ a are marked;
return “yes”

Persistence checking «— Nested DFS|

given: finite TS 7, persistence condition a
question: does T = “eventually forever a” hold?

initially all states are unmarked
1. DFS: visits all reachable states

REPEAT
choose an unmarked reachable state s with s £ a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [= a are marked;
return “yes”

84/192

Time complexity of nested DFS LTLME3.2-14

85/192

Time complexity of nested DFS LTLME3.2-14

REPFAT 1. DFS: visits all reachable states
choose an unmarked reachable state s with s £ a;
mark s;

IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [~ a are marked;
return “yes”

worst case: ©O(|S]| - (|S| + #edges)) naive approach

86 /192

Time complexity of nested DFS LTLME3.2-14

1. DFS: visits all reachable states

REPEAT
choose an unmarked reachable state s with s £ a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [~ a are marked;
return “yes”

worst case: ©O(|S]| - (|S| + #edges)) naive approach

cost of CYCLE_CHECK (s)
caused by each state s [~ a

87 /192

Time complexity of nested DFS LTLME3.2-14

1. DFS: visits all reachable states

REPEAT
choose an unmarked reachable state s with s £ a;
mark s;
IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [~ a are marked;
return “yes”

worst case: ©O(|S]| - (|S| + #edges)) naive approach

/ VO
O(|S|) states cost of CYCLE CHECK((s)
with's £ a caused by each state s [~ a

88/192

Time complexity of nested DFS LTLME3.2-14

REPFAT 1. DFS: visits all reachable states
choose an unmarked reachable state s with s £ a;
mark s;

IF CYCLE_CHECK(s) THEN
return “no” 2. DFS: searches for a
FI backward edge s’ — s

UNTIL all reachable states s with s [~ a are marked;
return “yes”

complexity: ©(PSK(|S| + #edges)) “tricky” variant

89/192

