Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

transition system
$$T = (S, Act, \longrightarrow, S_0, AP, L)$$

abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

Act for modeling interactions/communication and specifying fairness assumptions

AP, L for specifying properties

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$ abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

use standard notations for graphs, e.g.,

$$Post(s) = \{t \in S : s \to t\}$$

$$Pre(s) = \{u \in S : u \to s\}$$

execution fragment: sequence of consecutive transitions $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \qquad \text{infinite} \qquad \text{or}$ $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n \quad \text{finite}$

path fragment: sequence of states arising from the projection of an execution fragment to the states
$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in a terminal state

path fragment: sequence of states

$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite s.t. $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in terminal state

path of TS T $\stackrel{\frown}{=}$ initial, maximal path fragment path of state s $\stackrel{\frown}{=}$ maximal path fragment starting in state s

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths(s_1) = set of all maximal paths fragments starting in s_1 = $\{s_1^{\omega}\}$ where $s_1^{\omega} = s_1 s_1 s_1 s_1 \dots$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

```
Paths(s_1) = set of all maximal paths fragments
starting in s_1
= \{s_1^{\omega}\} where s_1^{\omega} = s_1 s_1 s_1 s_1 ...
```

$$Paths_{fin}(s_1) = \text{set of all finite path fragments}$$

$$starting in s_1$$

$$= \{s_1^n : n \in \mathbb{N}, n \ge 1\}$$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Linear-time vs branching-time

LTB2.4-1

transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$

transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
abstraction from actions
$$\begin{array}{c} \text{state graph} \\ + \text{labeling} \end{array}$$

Example: vending machine

vending machine with

1 coin deposit

select drink after
having paid

Example: vending machine

vending machine with

1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

vending machine with

1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

e.g.,
$$L(coke) = \{coke\}, L(pay) = \emptyset$$

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

linear time: all observable behaviors are of the form

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$ linear & branching time:

all observable behaviors have the form

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states $s_0 s_1 s_2 \dots s_n$ finite

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \dots$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states + actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \ldots \in (2^{AP})^{\omega} \cup (2^{AP})^+$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{+}$$

for simplicity: we often assume that the given TS has

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or } \text{inite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{\omega}$$

for simplicity: we often assume that the given TS has

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} \text{set of states that are reachable} \\ \text{from some initial state} \end{cases}$$

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state: perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

• if **s** stands for system fault, e.g., deadlock then correct the design before checking further properties

Let T be a TS

$$Traces(\mathcal{T}) \stackrel{\mathsf{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\}$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\mathsf{def}}{=} \{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \}$$

Let T be a TS

$$Traces(T) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(T) \right\}$$

initial, maximal path fragment

Let T be a TS \longleftarrow without terminal states

$$\begin{array}{ll} \textit{Traces}(\mathcal{T}) & \stackrel{\mathsf{def}}{=} \big\{ \textit{trace}(\pi) : \pi \in \textit{Paths}(\mathcal{T}) \big\} \\ & \uparrow \\ & \mathsf{initial, infinite path fragment} \end{array}$$

Let T be a TS \longleftarrow without terminal states

Traces(
$$\mathcal{T}$$
) $\stackrel{\text{def}}{=}$ $\{trace(\pi) : \pi \in Paths(\mathcal{T})\}$ $\subseteq (2^{AP})^{\omega}$ initial, infinite path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$
initial, finite path fragment

Let T be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^{*}$$

TS T with a single atomic proposition a

Let T be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$

TS *T* with a single atomic proposition *a*

$$Traces(T) = \{\{a\}\varnothing^{\omega}, \varnothing^{\omega}\}$$

$$Traces_{fin}(\mathcal{T}) = \{\{a\}\varnothing^n : n \ge 0\} \cup \{\varnothing^m : m \ge 1\}$$

transition system $T_{\mathcal{P}_1||\mathcal{P}_2}$ arises by unfolding the composite program graph $\mathcal{P}_1||\mathcal{P}_2$

set of atomic propositions $AP = \{crit_1, crit_2\}$

Mutual exclusion with semaphore $T_{P_1||P_2}$

LTB2.4-8

set of atomic propositions
$$AP = \{crit_1, crit_2\}$$

e.g.,
$$L(\langle \text{noncrit}_1, \text{noncrit}_2, y=1 \rangle) = L(\langle \text{wait}_1, \text{noncrit}_2, y=1 \rangle) = \emptyset$$

LTB2.4-8

set of atomic propositions $AP = \{ crit_1, crit_2 \}$ traces, e.g., $\varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} ...$

LTB2.4-8

set of propositions $AP = \{wait_1, crit_1, wait_2, crit_2\}$

e.g.,
$$L(\langle \mathsf{noncrit}_1, \mathsf{noncrit}_2, y = 1 \rangle) = \emptyset$$

 $L(\langle \mathsf{wait}_1, \mathsf{crit}_2, y = 1 \rangle) = \{ \mathsf{wait}_1, \mathsf{crit}_2 \}$

traces, e.g.,

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$

traces, e.g.,

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view

definition of linear time properties

invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Linear-time properties (LT properties)

LТВ2.4-14

Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

```
E.g., for mutual exclusion problems and AP = \{crit_1, crit_2, ...\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

```
\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

$$\emptyset \{ wait_1 \} \{ crit_1 \} \emptyset \{ wait_1 \} \{ crit_1 \} \dots \in MUTEX$$

```
\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

```
\varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} \varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} ... \in MUTEX \varnothing {wait<sub>1</sub>} {crit<sub>1</sub>} {crit<sub>1</sub>, wait<sub>2</sub>} {crit<sub>1</sub>, crit<sub>2</sub>} ... \not\in MUTEX
```

```
\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}
```

```
safety:

set of all infinite words A_0 A_1 A_2 ...

MUTEX = over 2^{AP} such that for all i \in \mathbb{N}:

\operatorname{crit}_1 \not\in A_i or \operatorname{crit}_2 \not\in A_i
```

$$\varnothing$$
 {wait₁} {crit₁} \varnothing {wait₁} {crit₁} ... \in *MUTEX* \varnothing {wait₁} {crit₁} {crit₁, wait₂} {crit₁, crit₂} ... $\not\in$ *MUTEX* \varnothing \varnothing {wait₁, crit₁, crit₂} ... $\not\in$ *MUTEX*

$$\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}$$

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

liveness (starvation freedom):

set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$$LIVE = \exists i \in \mathbb{N}.wait_1 \in A_i \implies \exists i \in \mathbb{N}.crit_1 \in A_i$$

$$\land \exists i \in \mathbb{N}.wait_2 \in A_i \implies \exists i \in \mathbb{N}.crit_2 \in A_i$$

Satisfaction relation \models for TS:

If T is a TS (without terminal states) over AP and E an LT property over AP then

$$\mathcal{T} \models \mathbf{E}$$
 iff $\mathit{Traces}(\mathcal{T}) \subseteq \mathbf{E}$

Satisfaction relation \models for TS and states:

If T is a TS (without terminal states) over AP and E an LT property over AP then $T \models E \quad \text{iff} \quad Traces(T) \subseteq E$ If s is a state in T then $s \models E \quad \text{iff} \quad Traces(s) \subseteq E$

$$T_{Sem} \models MUTEX$$
, $T_{Sem} \models LIVE$?

$$T_{Sem} \models MUTEX$$
, $T_{Sem} \not\models LIVE$

$$\emptyset$$
 {wait₁} ({wait₁, wait₂} {crit₁, wait₂} {wait₂}) $^{\omega} \notin LIVE$

$$T_{Sem} \models MUTEX, T_{Sem} \not\models LIVE$$

$$\emptyset$$
 {wait₁} ({wait₁, wait₂} {crit₁, wait₂} {wait₂}) $^{\omega} \notin LIVE$

$$T_{Sem} \models MUTEX, T_{Sem} \not\models LIVE$$

Peterson's mutual exclusion algorithm

for competing processes \mathcal{P}_1 and \mathcal{P}_2 , using three additional shared variables $b_1, b_2 \in \{0,1\}, x \in \{1,2\}$

for competing processes \mathcal{P}_1 and \mathcal{P}_2 , using three additional shared variables

$$b_1, b_2 \in \{0, 1\}, x \in \{1, 2\}$$

$$T_{Pet} \models MUTEX$$

$$T_{Pet} \models MUTEX$$
 and $T_{Pet} \models LIVE$

$$\mathcal{T}_{Pet} \models MUTEX$$
 and $\mathcal{T}_{Pet} \models LIVE$

 $T_{Pet} \models MUTEX$ and $T_{Pet} \models LIVE$

$$T_{Pet} \models MUTEX$$
 and $T_{Pet} \models LIVE$

$$T_{Pet} \models MUTEX$$
 and $T_{Pet} \models LIVE$

LT properties and trace inclusion

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

Consequence of these definitions:

If T_1 and T_2 are TS over AP then for all LT properties E over AP:

$$Traces(T_1) \subseteq Traces(T_2) \land T_2 \models E \Longrightarrow T_1 \models E$$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

Consequence of these definitions:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then for all LT properties E over AP:

$$Traces(T_1) \subseteq Traces(T_2) \land T_2 \models E \Longrightarrow T_1 \models E$$

note: $Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2) \subseteq E$

LTB2.4-LT-TRACE

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- $(1) \quad Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(1) \Longrightarrow (2)$: \checkmark

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(2) \Longrightarrow (1)$: consider $E = Traces(T_2)$

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions


```
implementation/refinement relation \sqsubseteq:
\mathcal{T}_{i+1} \sqsubseteq \mathcal{T}_i \quad \text{iff} \quad \text{``}\mathcal{T}_{i+1} \text{ correctly implements } \mathcal{T}_i \text{''}
```


implementation/refinement relation □: $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "

implementation/refinement relation □: $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "

resolve the nondeterminism by giving priority to process *P*₁

 $Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$ for any AP

 $Traces(T_{Sem}) \models E$ implies $Traces(T'_{Sem}) \models E$ for any E

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

e.g.,
$$Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$$

• in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

whenever T' results from T by a scheduling policy for resolving nondeterministic choices in T then

$$Traces(T') \subseteq Traces(T)$$

• in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions


```
:

x:=7; y:=5;

WHILE x>0 DO

x:=x-1;

y:=y+1

OD

:
```

```
does \ell_2 \wedge odd(y) never hold?
```

Trace inclusion and data abstraction

```
LTB2.4-21
```

does $\ell_2 \wedge odd(y)$ never hold?


```
:
\( \ell_0 \quad x:=7; \quad y:=5; \\
\ell_1 \quad \text{WHILE } x>0 \quad DO \\
\quad x:=x-1; \quad y:=y+1 \\
\ell_2 \quad \text{:}
```

does
$$\ell_2 \wedge odd(y)$$
never hold?

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 0
 $x:=7$
 $y:=5$
 $x>0$
 $x:=x-1$;
 $y:=y+1$
 $x\le 0$

let T be the associated TS

$$\leftarrow$$
 $\mathcal{T} \models$ "never $\ell_2 \land odd(y)$ "?

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 ℓ_0
 $x:=7$
 $y:=5$

does $\ell_2 \wedge odd(y)$ never hold?

$$\leftarrow \mathcal{T} \models \text{"never } \ell_2 \land odd(y)$$
"?

let T be the associated TS

data abstraction w.r.t. the predicates x>0, x=0, $x \equiv_2 y$

program
$$x>0$$
:
graph $x:=x-1$;
 $y:=y+1$
 ℓ_0
 $x:=7$
 $y:=5$

let T be the associated TS

does
$$\ell_2 \wedge odd(y)$$
 never hold?

$$\leftarrow$$
 $\mathcal{T} \models$ "never $\ell_2 \land odd(y)$ " ?

data abstraction w.r.t. the predicates

$$x>0$$
, $x=0$, $x \equiv_2 y \leftarrow$ i.e., $x-y$ is even

does $\ell_2 \wedge odd(y)$ never hold?

data abstraction w.r.t. the predicates x>0, x=0, $x \equiv_2 y$

let T be the associated TS

abstract transition system T'

Trace inclusion and data abstraction

LTB2.4-21

does $\ell_2 \wedge odd(y)$ never hold?

data abstraction w.r.t. the predicates x>0, x=0, $x \equiv_2 y$

let T be the associated TS

does $\ell_2 \wedge odd(y)$ never hold ?

data abstraction w.r.t. the predicates

x>0, x=0, $x\equiv_2 y$

program x>0:
graph x:=x-1; y:=y+1 ℓ_1 $x\leq 0$ ℓ_2 y:=5

let T be the associated TS

 $Traces(T) \subseteq Traces(T')$

x := x - 1:

x > 0:

let T be the associated TS

program

graph

does $\ell_2 \wedge odd(y)$ never hold?

 $\mathcal{T} \models \text{``never } \ell_2 \land odd(y)$ ''

Transition systems T_1 and T_2 over the same set AP of atomic propositions are called trace equivalent iff

$$Traces(T_1) = Traces(T_2)$$

i.e., trace equivalence requires trace inclusion in both directions

Trace equivalent TS satisfy the same LT properties

Let T_1 and T_2 be TS over AP.

The following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties $E: \mathcal{T}_2 \models E \Longrightarrow \mathcal{T}_1 \models E$

The following statements are equivalent:

- (1) $Traces(T_1) = Traces(T_2)$
- (2) for all LT-properties $E: T_1 \models E$ iff $T_2 \models E$

set of atomic propositions $AP = \{pay, coke, sprite\}$

set of atomic propositions $AP = \{pay, coke, sprite\}$


```
set of atomic propositions AP = \{pay, coke, sprite\}
Traces(T_1) = Traces(T_2) = \text{ set of all infinite words}
\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots
where drink_1, drink_2, \dots \in \{coke, sprite\}
```


set of atomic propositions
$$AP = \{pay, coke, sprite\}$$

 $Traces(T_1) = Traces(T_2) =$ set of all infinite words
 $\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots$

 T_1 and T_2 satisfy the same LT-properties over AP

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

safety properties "nothing bad will happen"

liveness properties "something good will happen"

safety properties "nothing bad will happen" examples:

- mutual exclusion
- deadlock freedom
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen"

safety properties "nothing bad will happen" examples:

- mutual exclusion
- deadlock freedom
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

safety properties "nothing bad will happen" examples:

- mutual exclusion \ special case: invariants
- deadlock freedom \ "no bad state will be reached"
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

$$\Phi ::= true \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \end{vmatrix} \dots$$
atomic proposition, i.e., $a \in AP$

semantics: interpretation over a subsets of AP

$$\Phi ::= true \begin{vmatrix} a \\ \uparrow \end{vmatrix} \Phi_1 \wedge \Phi_2 \begin{vmatrix} \neg \Phi \\ \uparrow \end{vmatrix} \Phi_1 \vee \Phi_2 \begin{vmatrix} \Phi_1 \rightarrow \Phi_2 \\ \downarrow \end{bmatrix} \dots$$
atomic proposition, i.e., $a \in AP$

semantics: Let $A \subseteq AP$

$$A \models true$$
 $A \models a$ iff $a \in A$
 $A \models \Phi_1 \land \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$
 $A \models \neg \Phi$ iff $A \not\models \Phi$

$$\Phi ::= true \begin{vmatrix} a \\ \uparrow \end{vmatrix} \Phi_1 \wedge \Phi_2 \begin{vmatrix} \neg \Phi \\ \uparrow \end{vmatrix} \Phi_1 \vee \Phi_2 \begin{vmatrix} \Phi_1 \rightarrow \Phi_2 \\ \downarrow \end{bmatrix} \dots$$
atomic proposition, i.e., $a \in AP$

semantics: Let $A \subseteq AP$

$$A \models true$$
 $A \models a$ iff $a \in A$
 $A \models \Phi_1 \land \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$
 $A \models \neg \Phi$ iff $A \not\models \Phi$

e.g.,
$$\{a,b\} \not\models (a \rightarrow \neg b) \lor c \quad \{a,b\} \not\models a \lor c$$

$$\Phi ::= \textit{true} \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \\ \hline \text{atomic proposition, i.e., } a \in AP \end{vmatrix} \dots$$

semantics: Let $A \subseteq AP$

$$A \models true$$
 $A \models a$ iff $a \in A$
 $A \models \Phi_1 \land \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$
 $A \models \neg \Phi$ iff $A \not\models \Phi$

for state **s** of a TS over **AP**: $\mathbf{s} \models \Phi$ iff $L(\mathbf{s}) \models \Phi$

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

 Φ is called the invariant condition of E.

```
mutual exclusion (safety):
```

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \not\in A_i \text{ or } \operatorname{crit}_2 \not\in A_i \end{cases}$$

here: $AP = \{ crit_1, crit_2, \ldots \}$

 $\forall i \in \mathbb{N}$. $\operatorname{crit}_1 \notin A_i$ or $\operatorname{crit}_2 \notin A_i$

```
mutual exclusion (safety):

set of all infinite words A_0 A_1 A_2 ... s.t.
```

invariant condition: $\phi = \neg crit_1 \lor \neg crit_2$

here: $AP = \{ crit_1, crit_2, \ldots \}$

mutual exclusion (safety):

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \notin A_i \text{ or } \operatorname{crit}_2 \notin A_i \end{cases}$$

invariant condition: $\phi = \neg crit_1 \lor \neg crit_2$

deadlock freedom for 5 dining philosophers:

$$DF = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N} \exists j \in \{0, 1, 2, 3, 4\}. \text{ wait}_j \notin A_i \end{cases}$$

$$\Phi = \neg wait_0 \lor \neg wait_1 \lor \neg wait_2 \lor \neg wait_3 \lor \neg wait_4$$

here:
$$AP = \{ wait_j : 0 \le j \le 4 \} \cup \{ ... \}$$

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let **T** be a TS over **AP** without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$ iff $s \models \Phi$ for all states s on a path of T

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$
iff $s \models \Phi$ for all states s on a path of T
iff $s \models \Phi$ for all states $s \in Reach(T)$

set of reachable states in T

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$
iff $s \models \Phi$ for all states s on a path of T
iff $s \models \Phi$ for all states $s \in Reach(T)$

i.e., Φ holds in all initial states and is invariant under all transitions

perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in Reach(T)$

perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in Reach(T)$

such that $s_i \models \Phi$ for $0 \le i < n$ and $s_n \not\models \Phi$

DFS-based invariant checking

input: finite transition system T, invariant condition Φ

LTProp/is2.5-7

input: finite transition system T, invariant condition Φ

```
FOR ALL s_0 \in S_0 DO

IF DFS(s_0, \Phi) THEN

return "no"

FI

OD

return "yes"
```

input: finite transition system T, invariant condition Φ

```
FOR ALL s_0 \in S_0 DO

IF DFS(s_0, \Phi) THEN

return "no"

FI

OD

return "yes"
```

LTProp/is2.5-7

DFS-based invariant checking

input: finite transition system T, invariant condition Φ

```
\pi := \emptyset \longleftarrow stack for error indication
FOR ALL s_0 \in S_0 DO
       IF DFS(s_0, \Phi) THEN
           return "no" and reverse (\pi)
       FT
UD
return "yes"
```

input: finite transition system T, invariant condition Φ

```
\pi := \varnothing \longleftarrow stack for error indication
FOR ALL s_0 \in S_0 DO
       IF DFS(s_0, \Phi) THEN
           return "no" and reverse (\pi)
       FΙ
UD
return "yes"
```

input: finite transition system T, invariant condition Φ

$$U := \varnothing \longleftarrow$$
 stores the "processed" states

 $\pi := \varnothing \longleftarrow$ stack for error indication

FOR ALL $s_0 \in S_0$ DO

IF $DFS(s_0, \Phi)$ THEN

return "no" and $reverse(\pi)$

FI

OD

return "yes"

 $s_n = t$
 $s_n = t$
 $s_n = t$

```
IF s \notin U THEN
      IF s \not\models \Phi THEN return "true" FI
      IF s \models \Phi THEN
      FΙ
FΙ
return "false"
```

```
IF s \notin U THEN

IF s \not\models \Phi THEN return "true" FI

IF s \models \Phi THEN

insert s in U;
```

FI FI return "false"

```
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
     FΙ
FT
return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                 IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
     FΙ
Pop(\pi); return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF DFS(s', \Phi) THEN
                       return "true" FI
            OD
                                                initial
     FΙ
FT
                                                state
Pop(\pi); return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
FT
                                                 state
Pop(\pi); return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
                                                 state
Pop(\pi); return "false"
```

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
                                                 state
Pop(\pi); return "false"
```


$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

Example: invariant checking

IS2.5-9

stack π

*S*₀

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

stack π

*s*₁

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

$$DFS(s_0, a)$$

$$DFS(s_1, a)$$

$$DFS(s_1, a)$$

stack π

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

stack π

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

Example: invariant checking

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

Example: invariant checking

invariant condition a

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

Example: invariant checking

152.5-9

invariant condition a

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

$$s_0$$
 $\not\models$ "always a "

Example: invariant checking

invariant condition a

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

stack π

error indication: **s**₀ **s**₂ **t**

Introduction

Modelling parallel systems

Linear Time Properties

liveness and fairness

state-based and linear time view definition of linear time properties invariants and safety

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

invariants:

- mutual exclusion: never crit₁ ∧ crit₂

other safety properties:

- German traffic lights:
 every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

invariants: ← "no **bad state** will be reached"

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;
 0≤i<n

other safety properties:

- German traffic lights:
 every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

```
invariants: ← "no bad state will be reached"
```

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: $never \bigwedge_{0 \le i < n} wait_i$

```
other safety properties: ← "no bad prefix"

• German traffic lights:
```

- every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

e.g.,
$$\dots$$
 { \bullet } { \bullet }

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., ... $\{\bullet\}$

• beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., $\{pay\}\{drink\}\{drink\}$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

E = set of all infinite words that do *not* have a bad prefix

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=} set of bad prefixes for E$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$ briefly: BadPref

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

minimal bad prefixes: any word $A_0 \dots A_i \dots A_n \in BadPref$ s.t. no proper prefix $A_0 \dots A_i$ is a bad prefix for E

$$AP = \{red, yellow\}$$

hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```


hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```


hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...

over 2^{AP} such that for all i \in \mathbb{N}:

red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```


"there is a red phase that is not preceded by a yellow phase"

hence: $T \models E$

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
 $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

"there is a red phase that is not preceded by a yellow phase"

hence: $T \not\models E$

hence: $T \models E$

$$E = \text{ set of all infinite words } A_0 A_1 A_2 ...$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
 $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

 $T \not\models E$ bad prefix, e.g., $\emptyset \{ red \} \emptyset \{ yellow \}$

hence: $T \models E$

```
E= set of all infinite words A_0 A_1 A_2 ... over 2^{AP} such that for all i\in\mathbb{N}: red\in A_i\implies i\geq 1 and yellow\in A_{i-1}
```


 $\mathcal{T} \not\models \mathcal{E}$

minimal bad prefix:

 \emptyset { red }

hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```

is a safety property over $AP = \{red, yellow\}$ with

BadPref = set of all finite words
$$A_0 A_1 ... A_n$$

over 2^{AP} s.t. for some $i \in \{0, ..., n\}$:
red $\in A_i \land (i=0 \lor yellow \notin A_{i-1})$

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$\mathcal{T} \models E$$
 iff $\mathit{Traces}(\mathcal{T}) \subseteq E$

$$Traces(T)$$
 = set of traces of T

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$T \models E$$
 iff $Traces(T) \subseteq E$ iff $Traces_{fin}(T) \cap BadPref = \emptyset$

BadPref = set of all bad prefixes of
$$E$$

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$T \models E$$
 iff $Traces(T) \subseteq E$
iff $Traces_{fin}(T) \cap BadPref = \emptyset$
iff $Traces_{fin}(T) \cap MinBadPref = \emptyset$

```
BadPref= set of all bad prefixes of EMinBadPref= set of all minimal bad prefixes of ETraces(T)= set of traces of TTraces<sub>fin</sub>(T)= set of finite traces of T= { trace(\hat{\pi}) : \hat{\pi} is an initial, finite path fragment of T}
```

correct.

correct.

Let E be an invariant with invariant condition Φ .

correct.

Let E be an invariant with invariant condition Φ .

• bad prefixes for E: finite words $A_0 \dots A_i \dots A_n$ s.t.

$$A_i \not\models \Phi$$
 for some $i \in \{0, 1, ..., n\}$

correct.

Let E be an invariant with invariant condition Φ .

- bad prefixes for E: finite words $A_0 ... A_i ... A_n$ s.t. $A_i \not\models \Phi$ for some $i \in \{0, 1, ..., n\}$
- minimal bad prefixes for E: finite words $A_0 A_1 ... A_{n-1} A_n$ such that $A_i \models \Phi$ for i = 0, 1, ..., n-1, and $A_n \not\models \Phi$

 \varnothing is a safety property

correct

correct

• all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

$$(2^{AP})^{\omega}$$
 is a safety property

correct

"For all words
$$\in \underbrace{(2^{AP})^{\omega} \setminus (2^{AP})^{\omega}}_{=\varnothing} \dots$$
"

Prefix closure

is2.5-prefix-closure

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$pref(\sigma) \stackrel{\text{def}}{=}$$
 set of all nonempty, finite prefixes of σ

$$= \{A_0 A_1 \dots A_n : n \ge 0\}$$

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let $\operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set}$ of all nonempty, finite prefixes of σ $= \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\}$ For $E \subseteq (2^{AP})^{\omega}$, let $\operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in E} \operatorname{\textit{pref}}(\sigma)$

```
For a given infinite word \sigma = A_0 A_1 A_2 \dots, let \operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set} of all nonempty, finite prefixes of \sigma = \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\} For E \subseteq (2^{AP})^{\omega}, let \operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in F} \operatorname{\textit{pref}}(\sigma)
```

Given an LT property \boldsymbol{E} , the prefix closure of \boldsymbol{E} is:

$$cl(E) \stackrel{\text{def}}{=} \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

Theorem:

E is a safety property iff cl(E) = E

remind: LT properties and trace inclusion:

If T_1 and T_2 are TS over AP then:

$$Traces(T_1) \subseteq Traces(T_2)$$

iff for all LT properties E: $\mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

remind: LT properties and trace inclusion:

safety properties and finite trace inclusion:

If
$$\mathcal{T}_1$$
 and \mathcal{T}_2 are TS over AP then:
$$\mathcal{T}_{races_{fin}}(\mathcal{T}_1) \subseteq \mathcal{T}_{races_{fin}}(\mathcal{T}_2)$$
 iff for all safety properties $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof " \Longrightarrow ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

 $\mathit{Traces_{fin}}(\mathcal{T}_1) \subseteq \mathit{Traces_{fin}}(\mathcal{T}_2)$ iff for all safety properties $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof " \Longrightarrow ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$

Hence:

If
$$T_2 \models E$$
 and $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

Proof " \Longrightarrow ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$

Hence:

If
$$T_2 \models E$$
 and $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ then:

$$Traces_{fin}(T_1) \cap BadPref$$

$$Traces_{fin}(T_1) \cap BadPref$$

$$\subseteq Traces_{fin}(T_2) \cap BadPref = \emptyset$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof " \Longrightarrow ": obvious, as for safety property E:

$$\mathcal{T} \models E$$
 iff $\mathit{Traces_{fin}}(\mathcal{T}) \cap \mathit{BadPref} = \emptyset$

Hence:

If
$$T_2 \models E$$
 and $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ then:

$$Traces_{fin}(T_1) \cap BadPref$$

$$\subseteq Traces_{fin}(T_2) \cap BadPref = \emptyset$$

and therefore $T_1 \models E$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "\(\lefta \)": consider the LT property $E = cl(Traces(T_2))$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

 $\mathit{Traces_{fin}}(\mathcal{T}_1) \subseteq \mathit{Traces_{fin}}(\mathcal{T}_2)$ iff for all safety properties $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof " \Leftarrow ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof " \Leftarrow ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

for each transition system T:

$$pref\left(Traces(\mathcal{T})\right) = Traces_{fin}(\mathcal{T})$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

Proof " \Leftarrow ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof " \Leftarrow ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

as
$$cl(E) = E$$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

Proof "← ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, *E* is a safety property

as
$$cl(E) = E$$

set of bad prefixes: $(2^{AP})^+ \setminus Traces_{fin}(T_2)$

$$Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$$

 $\mathit{Traces_{fin}}(\mathcal{T}_1) \subseteq \mathit{Traces_{fin}}(\mathcal{T}_2)$ iff for all safety properties $E \colon \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof " \Leftarrow ": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, **E** is a safety property and $T_2 \models E$.

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

By assumption: $T_1 \models E$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

By assumption: $T_1 \models E$ and therefore $Traces(T_1) \subseteq E$.

Hence: $Traces_{fin}(T_1) = pref(Traces(T_1))$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

Hence:
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$

 $\subseteq pref(E)$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

Hence:
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$

 $\subseteq pref(E) = pref(cl(Traces(T_2)))$

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

Proof "←": consider the LT property

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property and $T_2 \models E$.

Hence:
$$Traces_{fin}(T_1) = pref(Traces(T_1))$$

 $\subseteq pref(E) = pref(cl(Traces(T_2)))$
 $= Traces_{fin}(T_2)$

Safety and finite trace equivalence

Safety and finite trace equivalence

safety properties and finite trace inclusion:

If T_1 and T_2 are TS over AP then:

$$Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

safety properties and finite trace inclusion:

safety properties and finite trace equivalence:

trace inclusion

$$Traces(T) \subseteq Traces(T')$$
 iff

for all LT properties $E: T' \models E \Longrightarrow T \models E$

finite trace inclusion

$$Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$$
 iff

for all safety properties $E: T' \models E \Longrightarrow T \models E$

Summary: trace relations and properties

trace equivalence

$$Traces(T) = Traces(T')$$
 iff

T and T' satisfy the same LT properties

finite trace equivalence

$$Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$$
 iff

T and T' satisfy the same safety properties

If $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ then $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$.

```
If Traces(T) \subseteq Traces(T')
then Traces_{fin}(T) \subseteq Traces_{fin}(T').
```

correct, since

```
Traces_{fin}(T) = set of all finite nonempty prefixes of words in Traces(T) = pref(Traces(T))
```

If
$$Traces(T) \subseteq Traces(T')$$

then $Traces_{fin}(T) \subseteq Traces_{fin}(T')$.

correct, since

$$Traces_{fin}(T) = \text{ set of all finite nonempty prefixes}$$
of words in $Traces(T)$

$$= pref(Traces(T))$$

is trace equivalence the same as finite trace equivalence ?

is trace equivalence the same as finite trace equivalence ?

answer: no

$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions $AP = \{b\}$

$$Traces(T) = \{\emptyset^{\omega}\}$$

$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions $AP = \{b\}$

$$\frac{\mathsf{Traces}(\mathcal{T})}{\mathsf{Traces}_{\mathsf{fin}}(\mathcal{T})} = \{\varnothing^{\omega}\}$$

set of propositions $AP = \{b\}$

$$\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$$

set of propositions
$$AP = \{b\}$$

$$T$$

$$Traces(T) = \{\varnothing^{\omega}\}$$

$$Traces_{fin}(T) = \{\varnothing^{n} : n \ge 0\}$$

$$Traces(T') = \{\varnothing^{n}\{b\}^{\omega} : n \ge 2\}$$

$$Traces_{fin}(T') = \{\varnothing^{n} : n \ge 0\} \cup \{\varnothing^{n}\{b\}^{m} : n \ge 2 \land m \ge 1\}$$

$$Traces(\mathcal{T}) \not\subseteq Traces(\mathcal{T}')$$
, but $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

$$T$$

$$Traces(T) = \{\varnothing^{\omega}\}$$

$$Traces_{fin}(T) = \{\varnothing^{n} : n \ge 0\}$$

$$Traces(T') = \{\varnothing^{n}\{b\}^{\omega} : n \ge 2\}$$

$$Traces_{fin}(T') = \{\varnothing^{n} : n \ge 0\} \cup \{\varnothing^{n}\{b\}^{m} : n \ge 2 \land m \ge 1\}$$

 $Traces(T) \not\subseteq Traces(T')$, but $Traces_{fin}(T) \subseteq Traces_{fin}(T')$

LT property $E \triangleq$ "eventually **b**" $T \not\models E, T' \models E$

- (1) T has no terminal states,
- (2) T' is finite.

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

```
Then: Traces(T) \subseteq Traces(T')

iff Traces_{fin}(T) \subseteq Traces_{fin}(T')
```

- (1) T has no terminal states,i.e., all paths of T are infinite
- (2) T' is finite.

```
Then: \mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}') iff \mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \subseteq \mathit{Traces}_{\mathit{fin}}(\mathcal{T}')
```

"⇒": holds for all transition systems, no matter whether (1) and (2) hold

- (1) **T** has no terminal states, i.e., all paths of **T** are infinite
- (2) T' is finite.

```
Then: \mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}') iff \mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \subseteq \mathit{Traces}_{\mathit{fin}}(\mathcal{T}')
```

- "⇒": holds for all transition systems
- " \Leftarrow ": suppose that (1) and (2) hold and that
 - $(3) \quad Traces_{fin}(T) \subseteq Traces_{fin}(T')$

Show that $Traces(T) \subseteq Traces(T')$

- (1) **T** has no terminal states
- (2) T' is finite
- $(3) \quad Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then $Traces(T) \subseteq Traces(T')$

Proof:

- (1) **T** has no terminal states
- (2) T' is finite
- $(3) \quad Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$

Then $Traces(T) \subseteq Traces(T')$

Proof: Pick some path $\pi = s_0 s_1 s_2 ...$ in T and show that there exists a path

$$\pi'=t_0\,t_1\,t_2...$$
 in \mathcal{T}'

such that $trace(\pi) = trace(\pi')$

finite TS T'paths from state t_0 (unfolded into a tree)

finite TS T'paths from state t_0 (unfolded into a tree)

finite TS T' paths from state t_0 (unfolded into a tree)

contains all path fragments with trace $A_0 A_1 \dots A_n$

finite until depth $\leq n$

contains all path fragments finite TS T' with trace $A_0 A_1 \dots A_n$ paths from state to in particular: $t_0 t_1 \dots t_n$ (unfolded into a tree) finite until $depth \leq n$

finite TS T'

paths from state to

(unfolded into a tree)

contains infinitely many path fragments $t_n S_{n+1}^m \dots S_m^m$

contains all path fragments with trace $A_0 A_1 ... A_n$ in particular: $t_0 t_1 ... t_n$

finite until depth $\leq n$

there exists $t_{n+1} \in Post(t_n)$ s.t. $t_{n+1} = s_{n+1}^m$ for infinitely many m Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite \longleftrightarrow image-finiteness is sufficient

(3) $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then $Traces(T) \subseteq Traces(T')$

Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite \longleftarrow image-finiteness is sufficient

(3) $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then $Traces(T) \subseteq Traces(T')$

image-finiteness of $T' = (S', Act, \rightarrow, S'_0, AP, L')$:

```
Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite \longleftarrow image-finiteness is sufficient

(3) Traces_{fin}(T) \subseteq Traces_{fin}(T')

Then Traces(T) \subseteq Traces(T')
```

```
image-finiteness of T' = (S', Act, \rightarrow, S'_0, AP, L'):
```

• for each $A \in 2^{AP}$ and state $s \in S'$:

$$\{t \in Post(s) : L'(t) = A\}$$
 is finite

Suppose that T and T' are TS over AP such that

(1) T has no terminal states

(2) T' is finite \longleftarrow image-finiteness is sufficient

(3) $Traces_{fin}(T) \subseteq Traces_{fin}(T')$ Then $Traces(T) \subseteq Traces(T')$

image-finiteness of
$$T' = (S', Act, \rightarrow, S'_0, AP, L')$$
:

- for each $A \in 2^{AP}$ and state $s \in S'$: $\{t \in Post(s) : L'(t) = A\}$ is finite
- for each $A \in 2^{AP}$: $\{s_0 \in S'_0 : L'(s_0) = A\}$ is finite

Whenever
$$Traces(T) = Traces(T')$$
 then $Traces_{fin}(T) = Traces_{fin}(T')$

Trace equivalence vs. finite trace equivalence

Whenever
$$Traces(T) = Traces(T')$$
 then $Traces_{fin}(T) = Traces_{fin}(T')$

while the reverse direction does not hold in general (even not for finite transition systems)

Trace equivalence vs. finite trace equivalence

Whenever
$$Traces(T) = Traces(T')$$
 then $Traces_{fin}(T) = Traces_{fin}(T')$

while the reverse direction does not hold in general (even not for finite transition systems)

Whenever
$$Traces(T) = Traces(T')$$
 then $Traces_{fin}(T) = Traces_{fin}(T')$

while the reverse direction does not hold in general (even not for finite transition systems)

finite trace equivalent, but *not* trace equivalent

Trace equivalence vs. finite trace equivalence

Whenever
$$Traces(T) = Traces(T')$$
 then $Traces_{fin}(T) = Traces_{fin}(T')$

The reverse implication holds under additional assumptions, e.g.,

- if T and T' are finite and have no terminal states
- or, if *T* and *T'* are *AP*-deterministic

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

"liveness: something good will happen."

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

e.g., every waiting process enters eventually its critical section

liveness

liveness

• Two philosophers next to each other never eat at the same time.

liveness

• Two philosophers next to each other never eat at the same time.

liveness

• Two philosophers next to each other never eat at the same time.

invariant

• Whenever a philosopher eats then he has been thinking at some time before.

liveness

• Two philosophers next to each other never eat at the same time.

invariant

 Whenever a philosopher eats then he has been thinking at some time before.

safety

liveness

• Two philosophers next to each other never eat at the same time.

invariant

- Whenever a philosopher eats then he has been thinking at some time before.

 safety
- Whenever a philosopher eats then he will think some time afterwards.

liveness

 Two philosophers next to each other never eat at the same time

invariant

• Whenever a philosopher eats then he has been thinking at some time before. safety

 Whenever a philosopher eats then he will think some time afterwards liveness

131 / 174

liveness

• Two philosophers next to each other never eat at the same time.

invariant

 Whenever a philosopher eats then he has been thinking at some time before.

safety

 Whenever a philosopher eats then he will think some time afterwards.

liveness

 Between two eating phases of philosopher i lies at least one eating phase of philosopher i+1.

liveness

• Two philosophers next to each other never eat at the same time.

 Whenever a philosopher eats then he has been thinking at some time before.

safety

 Whenever a philosopher eats then he will think some time afterwards.

liveness

 Between two eating phases of philosopher i lies at least one eating phase of philosopher i+1. many different formal definitions of liveness have been suggested in the literature

many different formal definitions of liveness have been suggested in the literature

here: one just example for a formal definition of liveness

Definition of liveness properties

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over **AP** can be extended to an infinite word in **E**

Definition of liveness properties

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over **AP** can be extended to an infinite word in **E**, i.e., if

$$pref(E) = (2^{AP})^+$$

recall: pref(E) = set of all finite, nonempty prefixes of words in E

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

 \boldsymbol{E} is called a liveness property if each finite word over \boldsymbol{AP} can be extended to an infinite word in \boldsymbol{E} , i.e., if

$$pref(E) = (2^{AP})^+$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

• each process will eventually enter its critical section

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

• each process will eventually enter its critical section

 $E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$ $\forall i \in \{1, \dots, n\} \ \exists k \geq 0. \ \textit{crit}_i \in A_k$

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \stackrel{\infty}{\exists} k \geq 0. \text{ } crit_i \in A_k$$

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \ \forall j \geq 0. \ \textit{wait}_i \in A_j \\ \longrightarrow \exists k > j. \ \textit{crit}_i \in A_k$$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property iff $\forall \sigma \in (2^{AP})^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in pref(\sigma)$ s.t. $\{\sigma' \in E : A_0 \ A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property iff $\forall \sigma \in (2^{AP})^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in pref(\sigma)$ s.t. $\{\sigma' \in E : A_0 \ A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

remind:

$$pref(\sigma)$$
 = set of all finite, nonempty prefixes of σ

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property
$$\forall \sigma \in \left(2^{AP}\right)^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in \mathit{pref}(\sigma) \ \text{s.t.}$$

$$\left\{\sigma' \in E : A_0 \ A_1 \dots A_n \in \mathit{pref}(\sigma')\right\} = \varnothing$$
 iff $\mathit{cl}(E) = E$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

Proof:

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

LF2.6-DECOMP-THM

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE$
- **SAFE** is a safety property
- LIVE is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

LIVE $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$

- $E = SAFE \cap LIVE$
- **SAFE** is a safety property
- LIVE is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE \qquad \checkmark$
- SAFE is a safety property as cl(SAFE) = SAFE
- **LIVE** is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE \qquad \checkmark$
- **SAFE** is a safety property as **cl(SAFE)** = **SAFE**
- LIVE is a liveness property, i.e., $pref(LIVE) = (2^{AP})^+$

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

• $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^+$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E.

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E. Hence $E = cl(E) = (2^{AP})^{\omega}$.