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State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

Act  for modeling interactions/communication
and specifying fairness assumptions

AP, L for specifying properties
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State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

use standard notations
for graphs, e.g.,

Post(s) = {t€ S:s—t}
Pre(s) = {u€S:u— s}
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Execution and path fragments §5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite  or
Oéo aq Op—1 -

Sy — S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = 5951 5... infinite or m™=s581...5, finite

such that s;4; € Post(s;) for all i < ||

initial: if sp € Sg = set of initial states

maximal: if infinite or ending in a terminal state
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Notations for paths SBV2.3-21

path fragment: sequence of states
T = Sy S515... infinite or m=s551...5, finite
s.t. sit1 € Post(s;) for all i < ||

initial; if 59 € Sop = set of initial states
maximal: if infinite or ending in terminal state
path of TS T initial, maximal path fragment

I 1

maximal path fragment starting
in state s

path of state s

Paths(7T) = set of all initial, maximal path fragments

Paths(s) = set of all maximal path fragments
starting in state s

15




Paths of a TS

T: S0
o B How many paths are there in 77
51 2
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Paths of a TS

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and 5 5
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Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and 5 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---
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Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and 5 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---

Pathsg,(s1) = set of all finite path fragments
starting in s;
={sf:neN,n>1}
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Linear-time vs branching-time Lrp2.4-1
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Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)
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Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

abstraction from actions

state graph
+ labeling
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Linear-time vs branching-time Lrp2.4-1

T = (S, Act,—, Sp, AP, L)

transition system

abstraction from actions

state graph
+ labeling

linear-time view

/ \ branching-time view
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Linear-time vs branching-time

LTB2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view
path-based
state sequences

irrelevant

branching structure

abstraction from actions

/ \ branching-time view

nondeterministic
branches

state & branches
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Example: vending machine

vending machine with
1 coin deposit
select drink after
having paid

LTB2.4-2
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Example: vending machine Lr2.4-2

(sprite)
vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin
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Example: vending machine Lr2.4-2

take take _
(coke ) coke sprite(sprite

vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin
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Example: vending machine Lr2.4-2

take take
(sprite) (coke ) coke sprite(sprite

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }
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Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

e.g., L(coke) = {coke}, L(pay) = &
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Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

linear time: all observable behaviors are of the form

OO?O0.00.00.
Oor®
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Example: vending machine Lrp2.4-3

(sprite)

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

33/343



Example: vending machine Lrp2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

34/343



Example: vending machine Lrp2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}
linear & branching time:
all observable behaviors have the form

00000000000
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Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

abstraction from actions

AN

branching-time view

state & branches
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Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

Y

traces

abstraction from actions

VAN

on AP

projection | branching-time view

state & branches

J

computation tree
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Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 5951 ... .5, finite
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Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

S0515...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(sp) L(s1) L(sp) - --
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Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

[0 7] a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

SHS15...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(so) L(s1) L(sp) ... € (2*P)u (2*P)*
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Traces A

for TS with labeling function L : § — 24P

execution: states + actions

(87 (% Q . .. -
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S ... infinite or 5951 ... .5, finite

|

traces: sequences of sets of atomic propositions
L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

for simplicity: we often assume that the given TS has
no terminal states
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Traces A

for TS with labeling function L : § — 24P

execution: states 4+ actions
o

Sop —> 5] —> 5p —> ... infinite or “firre_

paths: sequences of states

0515 ... infinite or sgS—=rsy—fiite_

traces: sequences of sets of atomic propositions
L(so) L(s1) L(s2) - .. € (247)* u 289

for simplicity: we often assume that the given TS has
no terminal states
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Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state
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Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:
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Treatment of terminal states L1B2.4-6
perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV
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Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) _ set of states the!t-a-re reachable
from some initial state
for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV

e if s stands for system fault, e.g., deadlock then
correct the design before checking further properties
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Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : m € Paths(T)}

Tracesgn(T) &ef {trace(T) : © € Pathsn(T)}
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Traces of a transition system LrB2.45

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, maximal path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment
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Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment
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Traces of a transition system LrB2.45

Let 7 be a TS «—| without terminal states

Traces(T) def {trace(ﬂ) = Paths(T)} C (24Py”

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : T € Pathss(T)} C (24F)*

initial, finite path fragment
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Example: traces LTB2.4-54

Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*

h m TS T with a single
atomic proposition a

{a} 2
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Example: traces LTB2.4-54
Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Pathsn(T)} C (24F)*
h m TS T with a single
{a} > atomic proposition a
Traces(T) = {{a}e~, 2*}

Tracessn(T) = {{a}2":n>0} U {@™:m>1}

53/343



Mutual exclusion with semaphore

Py (noncrity) P2 (noncrity)

y=y+1, y=y+1,

s,y >0ry=y-1 sy >0:y=y—1

l‘n‘critl ) (.‘Critg )

transition system 7p,|p, arises by unfolding the
composite program graph Py ||| P
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
walt; noncrity noncrit; waity
y=1 ] [ y=1 )
/
crit; noncrity walt; walits noncrity crity
%) %™

crity wal altl crity
0 0

set of atomic propositions AP = {crit, crity }
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; nOhCI’Itg] noncrit; Waltgj
y=1 y=1
/ N
[crltl noncrltg] (noncrltl Cl’ltg]
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crit, crity }

e.g., L({noncrity, noncrity, y=1)) =
L({waity, noncritp, y=1)) = &
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg] [noncrltl Waltg]
y=1 y=1
[
C:rltl noncrltg] (noncrltl Crltg)
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; noncrltgj noncr|t1 Waltgj
y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]

=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj Cnoncrltl cnt
y=0 =1 y=0

p

=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

64 /343



Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

— et
=0 =0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T
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Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crit, crity }
traces, e.g., @@ {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
T
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Mutual exclusion with semaphor 7p,p,

noncrl\t‘l noncrits
y=1
wait; noncrltzj @oncrltl walty
y=1 y=1 )
/
crit; noncrity walt; walty noncrit; crit
™5™ "%

)

set of propositions AP = {waity, crity, waity, crit }
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Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrity
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
~N
[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

crity wa| a|t1 crity

set of propositions AP = {waity, crity, waity, crit }

e.g., L({noncrity, noncrity, y=1)) = &
L({waity, crity, y=1)) = {waity, crit,}

68 /343



Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”
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Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
-~ v=1
wait; noncrﬁé] @oncrltl Waltg)
y=1 _ y=1
[cntl noncntzj [noncntl Cl’ltg)

..............................
=0 =0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”
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Model checking

system Py]|...||Pa requirements
transition specification spec
system T P P

does T satisfy spec ?

—

yes no 4+ error indication

{ model checker J
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Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

l

specification spec

/

state graph of
transition system T

N\

model checker
does 7 satisfy spec ?

~

J

~

yes

no 4+ error indication
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Model checking

syntactic description
of Py]|-..||Pn

requirements

SOS-rules\ abstraction

specification spec

from actions

/

4 )
state graph of
transition system T
N
model checker
does T satisfy spec ?
NS J

~

yes no 4+ error indication
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Model checking

syntactic description
of Py]|-..||Pn

SOS-rules\ abstraction
from actions

LTB2.4-14A

requirements

specification spec,
e.g., LT property

/

f \
state graph of
transition system T

N\

model checker
does T satisfy spec ?

~

J

~

yes

no 4+ error indication

75/343



Linear-time properties (LT properties)
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Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.
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Linear-time properties (LT properties)

for TS over AP without terminal states

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P ie., EC (2AP)w.

E.g., for mutual exclusion problems and
AP = {critl, crity, . . }

safety:
set of all infinite words Ag A1 Ay. ..
MUTEX = over 24P such that for all i € N:
crity € A; or crity € A;
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LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crit ¢ A;

& {waity } {crit; } & {wait; } {crit, } ... € MUTEX
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LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crity ¢ A;

& {waity } {crit; } & {wait; } {crit, } ... € MUTEX
@ {wait; } {crit; } {crity, waity } {crity, crit} ... € MUTEX
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LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crity ¢ A;

& {waity } {crit; } & {wait; } {crit, } ... € MUTEX
@ {wait; } {crit; } {crity, waity } {crity, crit} ... € MUTEX

@ & {waity, crity, crity } ... & MUTEX
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LT properties for mutual exclusion protocols ...

AP = {waitl, crity, waitp, critg}

safety:
Y set of all infinite words Ag A1 As. ..

MUTEX = over 2P such that for all i € N:
crity ¢ A; or crit ¢ A;

liveness (starvation freedom):

set of all infinite words Ag A; As... s.t.
LIVE = 3JieNwait, € A, = 3 i € Ncrit, € A;
A 3i€Nwait, € A = 3 i € Nocrit, € A;
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Satisfaction relation for LT properties LTB2.4-15
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Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

85 /343



Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
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Satisfaction relation for LT properties LTB2.4-15

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e, EC (2AP)w.

Satisfaction relation |= for TS and states:

If 7 is a TS (without terminal states) over AP
and E an LT property over AP then

TEE iff Traces(T)CE
If s is a state in 7 then
sEE iff Traces(s) C E
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltz)
y=0

it; crnity
=0

cnty wa| a

=0

Tsem = MUTEX
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

Tsem = MUTEX, Tsem = LIVE ?
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltg)
y=0

ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[noncrltl Crltg)
y=0

ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

noncr|§c‘1 noncrits
y=1
_
walit; noncrity noncrit; waity
y=1 [ y=1 )

[noncrltl Crltg)
y=0

ity critp
=0

y=0 =1
cnty wa| a

=0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj Goncrltl Waltgj
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Mutual exclusion with semaphore LTB2.4-16

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
[crltl noncrltgj [noncrltl Crltg)
y=0 | =1 y=0

""""
=0 =0

Tsem = MUTEX, Tsem [~ LIVE

@ {wait; } ( {waity, wait, } {crity, wait, } {wait,} )* & LIVE
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Peterson’s mutual exclusion algorithm
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Peterson’s mutual exclusion algorithm

for competing processes Py and P,

using three additional shared variables

by, b, € {0,1}, x € {1,2}
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Peterson’s mutual exclusion algorithm

for competing processes Py and P,

using three additional shared variables

by, b, € {0,1}, x € {1,2}

2 2

by:=0 by:=0
. x=1V-b . x=2V b
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Peterson’s mutual exclusion algorithm

\ \

[noncrltl noncrltz] [noncntl noncrltz]

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waity
x=1

wait; crits
x=2

Tret = MUTEX
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Peterson’s mutual exclusion algorithm

noncrit; noncrity] [noncrit; noncrit,

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waity
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE
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Peterson’s mutual exclusion algorithm

noncrit; noncrity] [noncrit; noncrit,

[waltl noncntz] [noncntl wa |t2]

crit; noncrity noncrit; crit,

x=1

crit; waity
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE
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Peterson’s mutual exclusion algorithm

noncrit; noncrit oncrit; noncrit,

3 f
<

x=2

[waltl noncrltz]

[noncntl wa |t2]

crit; noncrits
x=2

wait; wait,
x=1

crit; wait,
x=1

noncrit; crit
x=1

wait; crits
x=2

Tret |E MUTEX and Tpe |= LIVE

LTB2.4-17
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Peterson’s mutual exclusion algorithm

\

\

LTB2.4-17

[noncrltl noncrltz] [noncntl noncrltz]

x=2

x=1

wait; noncritp
x=2

[noncntl wa |t2]
X=

‘s

crit; noncrits
x=2

wait; wait,
x=1

crit; wait,
x=1

wait; critp
x=2

noncrit; crity
x=1

Tret |E MUTEX and Tpe |= LIVE
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Peterson’s mutual exclusion algorithm

LTB2.4-17

noncrit; noncrita| [noncrit; noncrity
wait; noncritp noncrit; waitp

‘s

crit; noncrits
x=2

noncrit; crity
x=1

.

wait; wait,
x=1

crit; wait,
x=1

%et |: MUTEX and ’Zj’et

.
.
.

/" (wait; waity
x=2

'

.
N '
'

wait; critp
X=

= LIVE
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

Consequence of these definitions:

If 77 and 75 are TS over AP then for all
LT properties E over AP:

Traces(T;) C Traces(B) AL EE= T, EE
N\ /

note: Traces(Ty) C Traces(T;) C E
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(1) = (2): v
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LT properties and trace inclusion 24T -rnace

An LT property over AP is a language E of infinite
words over the alphabet ¥ = 24P e EC (2AP)w.

If 7 is a TS over AP then T |= E iff Traces(T) C E.

If 73 and 75 are TS over AP then the
following statements are equivalent:

(1) Traces(T) C Traces(7Ts)

(2) for all LT-properties E over AP:
whenever 7, |= E then T3 E E

(2) = (1): consider E = Traces(T,)
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Relevance of trace inclusion LTB2.4-19A

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism

e in the context of abstractions
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Software design cycle LT2.4-19

(requirements)
®)

)
o

i specification

design 7;

refinement

design Tiyq
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Software design cycle LT2.4-19

(requirements)
®)

)
o

i specification | «— LT property E

design 7; | «— T, E E

refinement

design Tiyq
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Software design cycle LT2.4-19

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

«— LT property E

<—’]7|=E

— TinC7T;

implementation /refinement relation C:

Tia CT; iff “Tiyq correctly implements T;"
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Trace inclusion as an implementation relation 2419

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

trace inclusion
Tiy1 T T; iff
Traces(7;4+1) C Traces(T;)

<—’]7|=E

—TinLC7T;

implementation /refinement relation C:

T CT; iff

“Tiy1 correctly implements 7;"
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Trace inclusion as an implementation relation 2419

)
o

A

refi

(requirements)
®)

specification

design 7;

nement

design Tiyq

trace inclusion
Tiy1 T T; iff
Traces(7;4+1) C Traces(T;)

<—’]7|=E

— Ti1 C T; implies T4 E E

implementation /refinement relation C:

T CT; iff

“Tiy1 correctly implements 7;"
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Mutual exclusion with semaphore LTB2.4-20

0

wy m YW2 (m w y=1)
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Mutual exclusion with semaphore LTB2.4-20

W1 my
a m y—

competition in state
(wait1 waits y=1)
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Mutual exclusion with semaphore LTB2.4-20

W1 my

(m o y=0)

a m y—

competition in state
(wait1 waits y=1)

resolve the nondeterminism by giving
priority to process Py
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Mutual exclusion with semaphore

Tsem

1

‘.

’

Sem 1
‘ i

1
‘
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Mutual exclusion with semaphore

Tsem

1

‘.

/
Sem

Paths(TZ,,) C Paths(Tsem)
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Mutual exclusion with semaphore

Tsem

1
f

.

Traces(7¢,,,) € Traces(Zsem) for any AP
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Mutual exclusion with semaphore LTB2.4-20

e.g., for AP =
{crity, crity }

Traces(Zsem) |= E implies Traces(74,,,) = E for any E
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Relevance of trace inclusion LTB2.4-20A

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism —
e.g., Traces(73,,,) C Traces(Tsem)

e in the context of abstractions
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Relevance of trace inclusion LTB2.4-20A

Trace inclusion appears naturally

e as an implementation /refinement relation

e when resolving nondeterminism

whenever 77 results from 7 by a scheduling policy
for resolving nondeterministic choices in 7 then

Traces(T") C Traces(T)

e in the context of abstractions
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Relevance of trace inclusion LTB2.4-208

Trace inclusion appears naturally

e as an implementation /refinement relation
e when resolving nondeterminism

e in the context of abstractions
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Trace inclusion and data abstraction LTB2.4-21

x:.=7; y:=b;

WHILE x>0 DO
x:=x—1;
y:=y+1

0D
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Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?
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Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

program x>0:
graph x:=x—1,;
ois
&))@
y:=b
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Trace inclusion and data abstraction

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&))@
y:=b

let 7 be the associated TS

— T |= “never £y A odd(y)" ?
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Trace inclusion and data abstraction

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

x>0:
x:=x—1:
y:=y+1

®

let 7 be the associated TS

program
graph

@ x:=T7

y:=b

o

U x<0

— T |= “never £y A odd(y)" ?
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Trace inclusion and data abstraction LTB2.4-21

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

data abstraction w.r.t.

the predicates

program x>0:
graph x:=x—1,;
ois
&))@
y:=b

let 7 be the associated TS

— T |= “never £y A odd(y)" ?

x>0, x=0, x=py +«— i.e., x—y is even

133/343



Trace inclusion and data abstraction

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&))@
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

abstract transition system 77
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Trace inclusion and data abstraction

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&))@
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

T = “never £ A odd(y)"
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Trace inclusion and data abstraction

{ x:.=7; y:=b;
¢; WHILE x>0 DO
x:=x—1;

=y+1
0D y=y

2

does ¢ A odd(y)
never hold ?

data abstraction w.r.t.
the predicates

x>0, x=0, x=yy

LTB2.4-21

program x>0:
graph x:=x—1,;
ois
&))@
y:=b

let 7 be the associated TS

x>0 x—0
X=Yy X=2Yy

T = “never £ A odd(y)"
Traces(T') C Traces(T")
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Trace inclusion and data abstraction LTB2.4-21

: program x>.0 :
o |
1 xi=x—L; @ PR Y ey @
D y:==y+1 =5
b let 7 be the associated TS
does £, A odd(y)

never hold ?
X>0 x—o
X=2y X=py

T' | “never €3 A odd(y)"
Traces(T') C Traces(T")

T = “never €, A odd(y)" {
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Trace equivalence

Transition systems 7; and 75 over the same set AP
of atomic propositions are called trace equivalent iff

Traces(T;) = Traces(T3)

i.e., trace equivalence requires trace inclusion in
both directions

Trace equivalent TS satisfy the same LT properties
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LT properties and trace relations S p—

Let 7; and 75 be TS over AP.

The following statements are equivalent:
(1) Traces(T1) C Traces(7T3)
(2) for all LT-properties E: ThE E= Th EFE

The following statements are equivalent:
(1) Traces(Ty) = Traces(73)
(2) for all LT-properties E: Ty EEiff Th | E
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Trace equivalent beverage machines LrB2.4-22

select

(sprite)

143 /343



Trace equivalent beverage machines LrB2.4-22

select

(sprite)  (coke )

set of atomic propositions AP = {pay, coke, }

144 /343



Trace equivalent beverage machines LrB2.4-22

pay

select

set of atomic propositions AP = {pay, coke, }
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Trace equivalent beverage machines LrB2.4-22

pay

select

set of atomic propositions AP = {pay, coke, }
Traces(Ty) = Traces(T;) = set of all infinite words
{pay} @ {drink, } {pay} @ {drink:} ...
where drink, drink,, . . . € {coke, }
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Trace equivalent beverage machines LrB2.4-22

pay

select

set of atomic propositions AP = {pay, coke, }

Traces(Ty) = Traces(T;) = set of all infinite words
{pay} @ {drink, } {pay} @ {drink:} ...

T: and 75 satisfy the same LT-properties over AP
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OverView OVERVIEW3.3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties
invariants and safety —
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction
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Classification of LT-properties 152.5-1

safety properties

“nothing bad will happen”

liveness properties

“something good will happen”
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Classification of LT-properties 152.5-1

safety properties
examples:
e mutual exclusion

e deadlock freedom

e ‘“every red phase is preceded by a yellow phase”

“nothing bad will happen”

liveness properties

“something good will happen”

150 /343



Classification of LT-properties 152.5-1

safety properties  “nothing bad will happen”
examples:
e mutual exclusion

e deadlock freedom
e ‘“every red phase is preceded by a yellow phase”

liveness properties  “something good will happen’

examples:

e ‘“each waiting process will eventually enter
its critical section”

e ‘“each philosopher will eat infinitely often”

H

151/343



Classification of LT-properties 152.5-1

safety properties  “nothing bad will happen”

examples:

e mutual exclusion special case: invariants
e deadlock freedom “no bad state will be reached”

e ‘“every red phase is preceded by a yellow phase”

liveness properties  “something good will happen”
examples:

e ‘“each waiting process will eventually enter
its critical section”

e ‘“each philosopher will eat infinitely often”
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Propositional logic 152.5-2

¢ = true’ a|¢1/\¢2|—-¢’¢1V¢2‘¢1—>¢2‘...
T

atomic proposition, i.e., a € AP
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Propositional logic 152.5-2

¢ = true’ a|¢1/\¢2|—-¢’¢1V¢2‘¢1—>¢2‘...
T

atomic proposition, i.e., a € AP

semantics: interpretation over a subsets of AP
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Propositional logic

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.

!

182.5-2

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true
AlEa

Al -0

iff aeA

A|=¢1/\¢2 iff A|:¢1 andA|:<I>2

iff Ao
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Propositional logic 152.5-2

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.
T

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true

Al a iff acA
A|=¢1/\¢2 iff A|:¢1andA|:¢2
Al -0 iff Ao

eg., {a,b} £ (a—-b)vec {ab} | avc
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Propositional logic

® m=tme’a|¢1A¢2|ﬂ¢’¢1v¢2‘¢yﬁd%‘u.

!

182.5-2

atomic proposition, i.e., a € AP

semantics: Let A C AP

A [ true
AlEa

Al -0

iff aeA

A|=¢1/\¢2 iff A|:¢1 andA|:<I>2

iff Ao

for state s of a TS over AP: s |= @ iff L(s) | ®
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I nvaria nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AE®}
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I nvaria nt 182.5-DEF-INVARIANT

Let E be an LT property over AP.

E is called an invariant if there exists a propositional
formula ® over AP such that

E={AAA.. €2®) :Vi20.AE®}

® is called the invariant condition of E.
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Examples for invariants 152.5-3

mutual exclusion (safety):

set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

here: AP = {crity, crity, ...}
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Examples for invariants 152.5-3

mutual exclusion (safety):

set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

invariant condition: ® = —crit; V —crity

here: AP = {crity, crity, ...}
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Examples for invariants 152.5-3

mutual exclusion (safety):

set of all infinite words Ag A1 As>... s.t.

MUTEX = Vi e N. crity € A; or crity € A;

invariant condition: ® = —crit; V —crity

deadlock freedom for 5 dining philosophers:

set of all infinite words Ag A1 A>. .. s.t.

DF = VieNdje {0, 1,2,3, 4}. waitj & A;

invariant condition:
& = —waitg V —wait; V ~waity V ~waitz V —waity

here: AP = {wait; : 0 <j <4} uU{...}
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SatiSfaCtion Of invariants 1S2.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. €2®) :Vi>0AEo}
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SatiSfaCtion Of invariants 1S2.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. €2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
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SatiSfaCtion Of invariants 1S2.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. €2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
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SatiSfaCtion Of invariants 1S2.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. €2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
iff s = ® for all states s € Reach(T)

T

set of reachable states in T
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SatiSfaCtion Of invariants 1S2.5-SAT-INVARIANT

Let E be an LT property over AP. E is called an
invariant if there exists a propositional formula ® s.t.

E={AAA.. €2®) :Vi>0AEo}

Let 7 be a TS over AP without terminal states. Then:

T = E iff trace(w) € E for all w € Paths(T)
iff s = ® for all states s on a path of 7
iff s = ® for all states s € Reach(T)

i.e., ® holds in all initial states and
is invariant under all transitions
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Invariant checking LTPROP/152.5-6

finite transition
system T

invariant E

N\

model checker
does T |= E hold?

yes,Té n\o,\Tl#E
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition ®

N~

model checker
does T |= E hold?

yes,Té n\o,\Tl#E

perform a graph analysis (DFS or BFS) to check
whether s |= ® for all s € Reach(T)
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition ®

N~

model checker
does T |= E hold?

error
yes, T 4 no, T £ E indication

perform a graph analysis (DFS or BFS) to check
whether s |= ® for all s € Reach(T)
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Invariant checking LTPROP/152.5-6

finite transition invariant E with
system T invariant condition ®

N~

model checker
does T |= E hold?

error
yes, T 4 no, T £ E indication

error indication: initial path fragment sy s;...5,-15,
such that s; | ® for0<i < nand s, £ ®
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DFS-based invariant checking LTPror/i2.5.7

input: finite transition system 7, invariant condition ®
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DFS-based invariant checking LTPror/i2.5.7

input: finite transition system 7, invariant condition ®

FOR ALL s € Sp DO
IF DFS(sp, ) THEN

return “no”
FI
0D

return “yes”
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DFS-based invariant checking LTPror/i2.5.7

input: finite transition system 7, invariant condition ®

FOR ALL s € Sp DO
IF DFS(sp, ) THEN

return “no”
FI
0D

return “yes”

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t [~ ®
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DFS-based invariant checking

LTPRroP/152.5-7

input: finite transition system 7, invariant condition ®

7 = & «—| stack for error indication
FOR ALL sy € Sp DO

IF DFS(sp, ®) THEN
return “no” and reverse()

FI
0D

return “yes”

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t £ &
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DFS-based invariant checking

LTPRroP/152.5-7

input: finite transition system 7, invariant condition ®

m := @& «—| stack for error indication
FOR ALL sy € Sp DO pam P
IF DFS(sp, ®) THEN
return “no” and reverse()
0D o 51
return “yes” %0

DFS(sp, @) returns “true” iff depth-first search from
state sp leads to some state t with t £ &
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DFS-based invariant checking LTPror/i2.5.7

input: finite transition system 7, invariant condition ®

U:

& «—| stores the “processed” states

T = & «—| stack for error indication

FOR ALL s5 € Sp DO

IF DFS(sp, ) THEN

- return “no” and reverse()

0D
return “yes”

S1

So

Sp=

DFS(sp, @) returns “true” iff depth-first search from

state sp leads to some state t with t [~ ®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s ...t with t = ®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t £ ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= ® THEN

FI FI

return ‘“false”
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t £ ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= & THEN
insert s in U;

FI FI

return ‘“false”
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...t with t & ®

IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= ® THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF DFS(s’,®) THEN

. 0D return true FI
FI

return “false”
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Recursive algorithm DFS(s, @)

“searches” for a path fragment s...t with t & ®

182.5-8

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI
IF s |= ® THEN
insert s in U;

FOR

0D
FI FI

Pop(); return

ALL s’ € Post(s) DO
IF DFS(s’,®) THEN
return “true” FI

“false”
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t & ®

Push(m, s);
IF s ¢ U THEN
IF s [~ ® THEN return “true” FI
IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO
IF DFS(s’,®) THEN

. 0D return true FI
FI

Pop(); return “false”

So

initial
state
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t & ®

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI

IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF

0D
FI FI

DFS(s', ®)

THEN

return “true” FI

Pop(); return “false”

So

initial
state
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Recursive algorithm DFS(s, @)

182.5-8

“searches” for a path fragment s...t with t & ®

Push(m, s);
IF s ¢ U THEN

IF s [~ ® THEN return “true” FI

IF s |= & THEN
insert s in U;
FOR ALL s’ € Post(s) DO

IF

0D
FI FI

DFS(s', ®)

THEN

return “true” FI

Pop(); return “false”

So

initial

state

sE®
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Recursive algorithm DFS(s, @) 152.5-8

“searches” for a path fragment s...s’...t with t £ ®

Push(m, s);
IF s ¢ U THEN t |[tES
IF s [~ ® THEN return “true” FI :
IF s = ® THEN s |sE®
insert s in U; s

FOR ALL s’ € Post(s) DO
IF |DFS(s’, ®) | THEN

return “true” FI so

FI 0D initial

FI state
Pop(); return “false”
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Example: invariant checking

invariant
condition a

50,51,52 = 4
tF a
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Example: invariant checking

invariant
condition a

50,51,52 = 4
tF a

stack

[0 ]
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Example: invariant checking

DFS(so, a)
DFS(sy, a)

invariant
condition a

50,51,52 = 4
tF a

stack

S1
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Example: invariant checking

DFS(so, a) stack
DFS(sy, a) /\)’(\
s
DFS(s, a) s(l)

invariant
condition a

50,51,52 = 4
tF a
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Example: invariant checking

DFS(so, a) stack m
DFS(sy, a) é
DFS(sy, a) 25:

invariant
condition a

50,51,52 = 4
tF a
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
invariant
condition a

50,51,52 = 4
tF a

stack

&I —&
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Example: invariant checking

DFS(so, a) stack ™
DFS(sy, a) X
DFS(sy, a) Zg
DFS(s,, a)
DFS(t, a) :2
invariant
condition a %0

50,51,52 = 4
tF a
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

50,51,52 = 4
tF a

152.5-9

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

50,51,52 = 4
tF a

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

DFS(so, a)
DFS(sy, a)
DFS(sy, a)
DFS(s,, a)
DFS(t, a)
invariant
condition a

so,sl,si E 3 so £ “always a”

stack 7
e
e

/so\

t
52
S0
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Example: invariant checking

152.5-9

DFS(SOJ a) stack ™
DFS(s1, a) é
DFS(s, a) Zf:
DFS(s,, a)
DFS(t, a) stQ
invariant
condition a S0
S0, 51, a error
y 21, " " T .
r E 3 so F “always " indication:
SS2t
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OverView OVERVIEW3.3

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties
invariants and safety —
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction
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Safety properties 152.5-10

state that “nothing bad will happen”
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Safety properties 152.5-10

state that “nothing bad will happen”

Invariants:

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties:
e German traffic lights:
every red phase is preceded by a yellow phase
e beverage machine:

the total number of entered coins is never less
than the total number of released drinks
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Safety properties 152.5-10

state that “nothing bad will happen”

invariants: «——| "“no bad state will be reached”

e mutual exclusion: never crity A crity

e deadlock freedom: never A wait;
0<i<n

other safety properties: «—— “no bad prefix”
e German traffic lights:
every red phase is preceded by a yellow phase

e beverage machine:
the total number of entered coins is never less
than the total number of released drinks
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}
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Bad prefixes of safety properties 152.5-108

e traffic lights:
every red phase is preceded by a yellow phase
T

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

eg., ... {0}{®}

e beverage machine:

the total number of entered coins is never less
than the total number of released drinks

T
bad prefix, e.g., {pay} {drink} {drink}
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &

18/174



Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 Bn+3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

E = set of all infinite words that
do not have a bad prefix
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefg % set of bad prefixes for E
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

BadPrefe def set of bad prefixes for E C (2AP )+

T
briefly: BadPref
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Definition of safety properties 152.5-11

Let E be a LT property over AP, i.e., E C (24P)~.

E is called a safety property if for all words
o = AAA..e(2*P)\E

there exists a finite prefix Ag A;... A, of o such that
none of the words Ag A;... A, Bn+1 B,,.|.2 B,,.|.3...
belongs to E, i.e.,

En{c’ € (2*")*: Ay... Ay is a prefix of 0’} = &
Such words Ag A ... A, are called bad prefixes for E.

minimal bad prefixes: any word Ag ... A; ... A, € BadPref
s.t. no proper prefix Ag... A; is a bad prefix for E
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Safety property for a traffic light 192,512
AP = {red, }

red /yellow

%]
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Safety property for a traffic light 192,512

“every red phase is
preceded by a
yellow phase”

red /yellow

%]
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Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

“every red phase is
preceded by a
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Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

red /yellow

“every red phase is
preceded by a
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Safety property for a traffic light

red /yellow

%]

1852.5-12

“every red phase is

preceded by a
yellow phase”

hence: T E E

E =

set of all infinite words Ay

over 2P such that for all i € N:

red e Ai — i>1 and

AA...

€ Aia

1%

red /yellow| &

by a yellow phase”

“there is a red phase
that is not preceded

29/174



Safety property for a traffic light

1852.5-12

red /yellow) & yellow phase”
Z hence: T E E

E =

set of all infinite words Ag A; A, .

over 2P such that for all i € N:
red e A = i>1 and

€ Aia

1%

red /yellow| &

“every red phase is
preceded by a

“there is a red phase
that is not preceded
by a yellow phase”

hence: T £ E
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Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow| & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

TWE

bad prefix, e.g.,
o {red} & { }

31/174
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red /yellow



Safety property for a traffic light 192,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

TWE

minimal bad prefix:

o {red}

%]

red /yellow

32/174



Safety property for a traffic light 152,512

“every red phase is
preceded by a

red /yellow) & yellow phase”
Z hence: T E E

E = set of all infinite words Ay A; As ...
over 24P such that for all i € N:
red e A = i>1 and € A

is a safety property over AP = {red, } with

BadPref = set of all finite words AgA; ... A,
over 24P s t. for some i € {0,...,n}:
red € A; A (i=0 \Y ¢ A,'_l)
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Satisfaction of safety properties
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E

Traces(T) = set of traces of T
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

T EE iff Traces(T)C E
iff  Tracesgn(7) N BadPref = &

BadPref = set of all bad prefixes of E
Traces(T) = set of traces of T
Tracesgn(T) = set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Satisfaction of safety properties

Let E C (24P)“ be a safety property, 7 a TS over AP.

Traces(T) C E
Traces;,(T) N BadPref = &
Tracesgin(T) N MinBadPref = &

TEE iff
iff
iff

BadPref =
MinBadPref =
Traces(T) =
Tracesgn(T) =

set of all bad prefixes of E

set of all minimal bad prefixes of E
set of traces of T

set of finite traces of 7

= { trace(T) : T is an initial, finite path fragment of 7'}
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Correct or wrong? 192513

Every invariant is a safety property.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition ®.
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.

e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}
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Correct or wrong? 192513

Every invariant is a safety property.

correct.
Let E be an invariant with invariant condition ®.
e bad prefixes for E: finite words Ay ... A ... A, s.t.
A; £ @ for some i € {0,1,...,n}

e minimal bad prefixes for E:
finite words Ag Ay ...A,—1 A, such that

A E®fori=0,1,...,n—1, and A, £ ®
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Correct or wrong? 152.5-36

J is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct
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Correct or wrong? 152.5-36

J is a safety property

correct
e all finite words Ay ... A, € (24P)* are bad prefixes

e J is even an invariant (invariant condition false)

(24P)« is a safety property

correct

“For all words € £2AP)“’ \ (2AP)“:
=0
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P refix CIOSU re 182.5-PREFIX-CLOSURE
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Prefix closure

182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

def

pref(o) = set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

pref (o) % set of all nonempty, finite prefixes of o

= {AoAl...An:nZO}

For E C (24P)”, let pref(E) U pref(o)
oc€E
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P refix CIOSU re 182.5-PREFIX-CLOSURE

For a given infinite word 0 = Ag A1 A ..., let

pref (o) % set of all nonempty, finite prefixes of o

{AOA1 A,, : n20}

For E C (24P)”, let pref(E) U pref(o)
oc€E

Given an LT property E, the prefix closure of E is:
cl(E) = {a € (24P) : pref (o) C pref(E)}
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Prefix closure and safety S

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of &
For any LT property E C (2Ap)w, let

pref(E) = |J pref(o) and

o€k

cd(E) = {o€ (2%P) : pref(c) C pref(E)}
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Prefix closure and safety S

w
|

For any infinite word o € (2AP) et

pref(o) = set of all nonempty, finite prefixes of &
For any LT property E C (2Ap)w, let
pref(E) = |J pref(o) and

o€k

cd(E) = {o€ (2%P) : pref(c) C pref(E)}

Theorem:

E is a safety property iff cl(E)=E
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE
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safety and finite trace inCIUSion 182.5-SAFETY-TRACEFIN

remind: LT properties and trace inclusion:

If 71 and 75 are TS over AP then:
Traces(Ty) C Traces(T)
iff for all LT properties E: b E = T EE

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEE = T EE
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesgin(7T1) N BadPref
C Tracessn(T2) N BadPref = &
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof “=": obvious, as for safety property E:
T = E iff Tracess,(T) N BadPref = &

Hence:
If T, = E and Tracesg,(T1) C Tracesg,(7T2) then:

Tracesgin(7T1) N BadPref
C Tracessn(T2) N BadPref = &

and therefore 71 = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(73))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
1

for each transition system 7 :
pref (Traces(T)) = Tracessin(T)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property
T

ascl(E)=E
set of bad prefixes: (24P )+\ Tracesgin(7T2)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; = E
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property

E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E)
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))
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s afety a n d fi n ite tra Ce i nCI USion 152.5-SAFETY-TRACEFIN-PROOF

Tracessn(T1) C Tracesgn(732)
iff for all safety properties E: hEE — T EE

Proof "<="": consider the LT property
E = cl(Traces(Tz)) = {o : pref(c) C Tracessn(T2)}
Then, E is a safety property and 7 |= E.
By assumption: 7; |= E and therefore Traces(7;) C E.
Hence: Tracesgn(71) = pref(Traces(Th))
C pref(E) = pref(cl( Traces(712)))
= Tracesfn(T2)
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S afety a n d fi n ite t ra Ce eq Uiva I ence 152.5-SAFETY-TRACEEQUIV
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safety and finite trace equivalence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE
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safety and finite trace equivalence 152.5-SAFETY-TRACEEQUIV

safety properties and finite trace inclusion:

If 71 and 75 are TS over AP then:
Tracessin(T1) C Tracesgin(72)
iff for all safety properties E: ThEFE = T EE

safety properties and finite trace equivalence:
If 7; and 75 are TS over AP then:

Tracessin(T1) = Tracesgn(732)
iff 73 and 75 satisfy the same safety properties

80/174



Summary: trace relations and properties 152.5-30

trace inclusion
Traces(T) C Traces(T") iff
for all LT properties E: T'EE=T [EE

finite trace inclusion
Tracesgin(T) C Tracesg,(T') iff
for all safety properties E: T'"EE=T E E
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Summary: trace relations and properties 152.5-30

trace equivalence
Traces(T) = Traces(T") iff
T and 7' satisfy the same LT properties

finite trace equivalence
Tracesg,(T) = Tracesg,(T") iff
T and 7" satisfy the same safety properties
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))
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correct or wrong? 152.5-31

If Traces(T) C Traces(T")
then Tracesf,(T) C Tracessn(7").

correct, since

Tracesg,(T) = set of all finite nonempty prefixes
of words in Traces(7T)

= pref(Traces(T))

Tracesin(T) = {{a}" : n>1}

Traces(T = al¥
B{a} (T) {{a}}
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7
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Finite trace relations versus trace relations 152.5-32

Is trace equivalence the same as
finite trace equivalence 7

answer: no
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Finite trace relations versus trace relations 152.5-32

T 0

TI

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

O =g @={b}

set of propositions

AP = {b}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}
Tracesin(T) = {@": n> 0}

O =g @={b}

set of propositions

AP = {b}

90/174



Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}
Tracesin(T) = {@": n> 0}
Traces(T') = {@"{b}¥:n>2}

O =g @={b}

set of propositions

AP = {b}

91/174



Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{2"{b}™:n>2Am2>1}
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{2"{b}™:n>2Am2>1}

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")
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Finite trace relations versus trace relations 152.5-32
T ) T

Traces(T) = {o“}

Tracesin(T) = {@": n> 0}

Traces(T') = {@"{b}*:n>2}

Traces;n(T') = {@":n>0} U
{@"{b}™:n>2Am>1}

LT property
E = “eventually b"

TWE TEE

Traces(T) € Traces(T"), but
Tracesgin(T) C Tracessi,(T")
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F i n ite trace a nd trace i n C I USion 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,

(2) T'is finite.
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F i n ite trace a nd trace i n C I USion 182.5-TRACE-VS-TRACEFIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")

“=—=>": holds for all transition systems,
no matter whether (1) and (2) hold
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states,
i.e., all paths of 7 are infinite

(2) T'is finite.

Then: Traces(T) C Traces(T")
iff  Tracesgn(7T) C Tracessn(7T")

“=": holds for all transition systems
“«<=": suppose that (1) and (2) hold and that
(3) Tracessin(T) C Tracessi,(T")
Show that Traces(7) C Traces(7T")
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof:
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Finite trace and trace inclusion

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T'is finite
(3) Tracesgin(T) C Tracessi,(T")

Then Traces(T) C Traces(T")

Proof: Pick some path 1 =598 5 ... in 7 and show
that there exists a path

' =tyty ty... in T’
such that trace(w) = trace(n’)
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Tracesfin versus traces 152.5-33

finite TS 77

paths from state tg
(unfolded into a tree)
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Tracesfin versus traces

finite TS 77

paths from state tg
(unfolded into a tree)

ATRRTAIRA

182.5-33

finite until
depth < n



Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments

paths from state t, with trace Ag A; ... A,

(unfolded into a tree)

finite until
depth < n

Pl
KYARS AT R
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,

(unfolded into a tree) . in particular: oty ... t,

finite until
depth < n

f(:‘r /?'I':‘t\? 4(?3! :}\
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state tg with trace Ag A; ... A,
(unfolded into a tree) in particular: foty...t,

/6 }\ finite until
\ depth < n

M/ﬁ‘w ?\\}\

contains infinitely

many path fragments

m m
tn sn_|_1 eee Sm
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Tracesfin versus traces 152.5-33

finite TS 77 contains all path fragments
paths from state t with trace Ag A; ... A,
(unfolded into a tree) in particular: oty ... t,

1)

}t\ finite until
I LY. }\ depth < n

A

contains infinitely _
many path fragments there exists t,.1 € Post(t,)
m s.t. thy1 = S5y, for

thSpq--- S,
n ol o infinitely many m
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
o for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
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Finite trace and trace inclusion

152.5-TRACE-IM-FIN

Suppose that 7 and 7" are TS over AP such that

(1) T has no terminal states
(2) T is finite —
(3) Tracessin(T) C Tracesgn(T")
Then Traces(T) C Traces(T")

image-finiteness
is sufficient

image-finiteness of T = (§', Act, —, Sy, AP, L):
o for each A € 24P and state s € S":
{t € Post(s) : L'(t) = A} is finite
e for each A € 2%: {5y € S} : L'(s0) = A} is finite
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

112 /174



Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)
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Trace equivalence vs. finite trace equivalence 253

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

while the reverse direction does not hold in general
(even not for finite transition systems)

finite trace equivalent,

but not trace equivalent
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Trace equivalence vs. finite trace equivalence 2531,

Whenever Traces(7) = Traces(7") then
Traces;in(T) = Tracesgn(T")

The reverse implication holds under additional
assumptions, e.g.,

e if T and 77 are finite and have no terminal states

e or, if T and 7' are AP-deterministic
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OverView OVERVIEW3.4

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction
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Liveness LE2.6-1

“liveness: something good will happen.”

“event a will occur eventually”

e.g., termination for sequential programs

“event a will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event b occurs then event a
will occur sometimes in the future”
e.g., every waiting process enters eventually
its critical section
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at
the same time.
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which property type? LF2.6-2
e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at

the same time. ) )
invariant
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which property type? LF2.6-2
e Each philosopher thinks infinitely often.
liveness

e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been
thinking at some time before.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

129/174



which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think
some time afterwards.
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness
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which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness

e Between two eating phases of philosopher i lies at
least one eating phase of philosopher i+1.

132/174



which property type? LF2.6-2

e Each philosopher thinks infinitely often.
liveness
e Two philosophers next to each other never eat at

the same time. ) )
invariant

e Whenever a philosopher eats then he has been

thinking at some time before. safety

e Whenever a philosopher eats then he will think

some time afterwards. .
liveness

e Between two eating phases of philosopher i lies at
least one eating phase of philosopher i+1.
safety
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Liveness LF2.6-FORMAL

many different formal definitions of liveness
have been suggested in the literature
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Liveness LF2.6-FORMAL

many different formal definitions of liveness
have been suggested in the literature

here: one just example for a formal definition
of liveness
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Definition of liveness properties
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Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E
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Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E, i.e., if

pref(E) = (2AP)+

recall: pref(E) = set of all finite, nonempty
prefixes of words in E
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Definition of liveness properties

Let E be an LT property over AP, i.e., E C (2AP)w.

E is called a liveness property if each finite word over
AP can be extended to an infinite word in E, i.e., if

pref(E) = (2AP)+

Examples:
e each process will eventually enter its critical section
e each process will enter its critical section

infinitely often

e whenever a process has requested its critical section
then it will eventually enter its critical section
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Examples for liveness properties P

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

E = set of all infinite words Ap A1 A>. .. s.t.
Vie{1,...,n} Ik > 0. crit; € A,
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

e each process will enter its critical section
infinitely often

143 /174




Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {crit; : i =1,...,n}:
e each process will eventually enter its critical section

e each process will enter its critical section
infinitely often

E = set of all infinite words Apg A1 A>. .. s.t.
Vie{l,...,n} 3 k > 0. crit; € Ay
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {wait;, crit; : i = 1,..., n}:
e each process will eventually enter its critical section
e each process will enter its crit. section inf. often

e whenever a process is waiting then it will eventually
enter its critical section
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Examples for liveness properties

An LT property E over AP is called a liveness property
if pref(E) = (2""’)Jr

Examples for AP = {wait;, crit; : i = 1,..., n}:
e each process will eventually enter its critical section
e each process will enter its crit. section inf. often

e whenever a process is waiting then it will eventually
enter its critical section

E = set of all infinite words Ap A1 A>. .. s.t.
Vie{l,...,n} Vj > 0.wait; € A
— dk > j.crit; € Ay
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @

remind:

pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€k
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Recall: safety properties, prefix closure

Let E be an LT-property, i.e., E C (2AP)w

E is a safety property
iff Vo€ (2P)\E JAyAi...A, € pref(o) s.t.
{o’ € E:AyA ... A, € pref(d’)} = @
iff cl(E)=E

remind: cl(E) = {o € (24P)“ : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€k
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DecomPOSition theorem LF2.6-DECOMP-THM
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

152 /174



Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof:
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof Let SAFE % cI(E)
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof Let SAFE % cI(E)

remind: cl(E) = {o € (22P)* : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€E
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)
LIVE ¥ Eu ((2*P)“\ d(E))

remind: cl(E) = {o € (22P)* : pref(c) C pref(E)}
pref(o) = set of all finite, nonempty prefixes of o

pref(E) = |J pref(o)
o€E
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE
e SAFE is a safety property

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)

LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property as c/(SAFE) = SAFE

e LIVE is a liveness property
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Decomposition theorem PP ——

For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.

E = SAFEN LIVE

Proof: Let SAFE = cl(E)
LIVE ¥ Eu ((2*P)“\ d(E))
Show that:

e E=SAFENLIVE /
e SAFE is a safety property as c/(SAFE) = SAFE

e LIVE is a liveness property, i.e., pref (LIVE) = (2AP)+

160 /174



Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property
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e If E is a liveness property then
pref(E) = (24P)*
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Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /

e If E is a liveness property then
pref(E) = (24P)*
—  d(E) = (2P)°
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Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property

° (2Ap)w is a safety and a liveness property: /

e If E is a liveness property then
pref(E) = (24P)*
= d(E) = (24F)”

If E is a safety property too, then c/(E) = E.
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Being Safe and Iive LF2.6-SAFE-AND-LIVE

Which LT properties are both
a safety and a liveness property?

answer: The set (2Ap)w is the only LT property which
is a safety property and a liveness property
° (2Ap)w is a safety and a liveness property: /
e If E is a liveness property then
pref(E) = (24P)*
—  d(E) = (2*°)"

If E is a safety property too, then c/(E) = E.
Hence E = cl(E) = (24P)”.
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