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Strategic Games

Representions

ℓ r
T w1,w2 x1, x2

B y1, y2 z1, z2

Player 1 has the rows (Top or Bottom) and Player 2 has the columns
(left or right):

S1 = {T ,B} and S2 = {ℓ, r}

For example, when Player 1 chooses T and Player 2 chooses ℓ, the
payoff for Player 1 (resp. Player 2) is w1 (resp. w2), that is

u1(T , ℓ) = w1 and u2(T , ℓ) = w2
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Strategic Games

Example

The Battle of Sexes

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Strategic Interaction = players wish to coordinate their behaviors but
have conflicting interests.

A Coordination Game

Mozart Mahler
Mozart 1, 1 0, 0
Mahler 0, 0 2, 2

Strategic Interaction = players wish to coordinate their behaviors
and have mutual interests.
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Strategic Games

The Prisoner’s Dilemma
The story behind the name “prisoner’s dilemma” is that of two prisoners
held suspect of a serious crime. There is no judicial evidence for this crime
except if one of the prisoners confesses against the other. If one of them
confesses, he will be rewarded with immunity from prosecution (payoff 0),
whereas the other will serve a long prison sentence (payoff −3). If both
confess, their punishment will be less severe (payoff −2 for each).
However, if they both “cooperate” with each other by not confessing at
all, they will only be imprisoned briefly for some minor charge that can be
held against them (payoff −1 for each). The “defection” from that
mutually beneficial outcome is to confess, which gives a higher payoff no
matter what the other prisoner does, which makes “confess” a dominating
strategy (see later). However, the resulting payoff is lower to both. This
constitutes their “dilemma”.

confess don’t Confess
Confess −2,−2 0,−3

Don’t Confess −3, 0 −1,−1
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Strategic Games

The Prisoner’s Dilemma

confess don’t Confess
Confess −2,−2 0,−3

Don’t Confess −3, 0 −1,−1

The best outcome for both players is that neither confess.

Each player is inclined to be a “free rider” and to confess.

S. Pinchinat (IRISA) Elements of Game Theory Master2 RI 2011-2012 7 / 64



Strategic Games

A 3-player Games

L R
T 8 0
B 0 0

L R
4 0
0 4

L R
0 0
0 8

L R
3 3
3 3

M1 M2 M3 M4

Player 1 chooses one of the two rows;
Player 2 chooses one of the two columns;
Player 3 chooses one of the four tables.
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Strategic Games Definitions and Examples

(Finite) Strategic Games

A finite strategic game with n-players is Γ = (N, {Si}i∈N , {ui}i∈N) where

N = {1, . . . , n} is the set of players.

Si = {1, . . . ,mi} is a set of pure strategies (or actions) of player i .

ui : S → IR is the payoff (utility) function.

S := S1 × S2 × . . . × Sn is the set of profiles.

s = (s1, s2, . . . , sn)

Instead of ui , use preference relations:

s ′ %i s for Player i prefers profile s ′ than profile s

Γ = (N, {Si}i∈N , {ui}i∈N) or Γ = (N, {Si}i∈N , {%i}i∈N)
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Strategic Games Definitions and Examples

Comments on Interpretation

A strategic game describes a situation where

we have a one-shot even

each player knows
◮ the details of the game.
◮ the fact that all players are rational (see futher)

the players choose their actions “simultaneously” and independently.
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Strategic Games Definitions and Examples

Comments on Interpretation

A strategic game describes a situation where

we have a one-shot even

each player knows
◮ the details of the game.
◮ the fact that all players are rational (see futher)

the players choose their actions “simultaneously” and independently.

Rationality: Every player wants to maximize its own payoff.
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Strategic Games Dominance and Elimination of Dominated Strategies

Notations

Use si ∈ Si , or simply j ∈ Si where 1 ≤ j ≤ mi .

Given a profile s = (s1, s2, . . . , sn) ∈ S , we let a counter profile be an
element like

s−i := (s1, s2, . . . , si−1, empty, si+1, . . . , sn)

which denotes everybody’s strategy except that of Player i , and write
S−i for the set of such elements.

For ri ∈ Si , let (s−i , ri ) := (s1, s2, . . . , si−1, ri , si+1, . . . , sn) denote the
new profile where Player i has switched from strategy si to strategy ri .
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Strategic Games Dominance and Elimination of Dominated Strategies

Dominance

Let si , s
′

i ∈ Si .

si strongly dominates s ′i if

ui (s−i , si ) > ui(s−i , s
′

i ) for all s−i ∈ S−i ,

si (weakly) dominates s ′i if

{

ui(s−i , si ) ≥ ui (s−i , s
′

i ), for all s−i ∈ S−i ,
ui(s−i , si ) > ui (s−i , s

′

i ), for some s−i ∈ S−i .
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Strategic Games Dominance and Elimination of Dominated Strategies

Example of Dominance

The Prisoner’s Dilemma

c d
C −2,−2 0,−3
D −3, 0 −1,−1

Strategy C of Player 1 strongly dominates strategy D.

Because the game is symmetric, strategy c of Player 2 strongly
dominates strategy d.

Note also that u1(D, d) > u1(C , c) (and also u2(D, d) > u2(C , c)),
so that
“C dominates D” does not mean “C is always better than D”.
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Strategic Games Dominance and Elimination of Dominated Strategies

Example of Weak Dominance

ℓ r
T 1, 3 1, 3
B 1, 1 1, 0

ℓ (weakly) dominates r .
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Strategic Games Dominance and Elimination of Dominated Strategies

Elimination of Dominated Strategies

If a strategy is dominated, the player can always improve his payoff by
choosing a better one (this player considers the strategies of the other
players as fixed).

Turn to the game where dominated strategies are eliminated.

c d
C −2,−2 0,−3
D −3, 0 −1,−1

The game becomes simpler.

Eliminating D and d, shows (C,c) as the “solution” of the game, i.e. a
recommandation of a strategy for each player.
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Strategic Games Dominance and Elimination of Dominated Strategies

Iterated Elimination of Dominated Strategies

We consider iterated elimination of dominated strategies.

The result does not depend on the order of elimination:
If si (strongly) dominates s ′i , it still does in a game where some
strategies (other than s ′i ) are eliminated.

In contrast, for iterated elimination of weakly dominated strategies
the order of elimination may matter
EXERCISE: find examples, in books

A game is dominance solvable if the Iterated Elimination of Dominated
Strategies ends in a single strategy profile.
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Strategic Games Nash Equilibrium

Motivations

Not every game is dominance solvable, e.g. Battle of Sexes.

Bach Stravinsky
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

The central concept is that of Nash Equilibrium [Nas50].
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Strategic Games Nash Equilibrium

Best Response and Nash Equilibrium

Informally, a Nash equilibrium is a strategy profile where each player’s
strategy is a best response to the counter profile.

Formally:
Given a strategy profile s = (s1, . . . , sn) in a strategic game
Γ = (N, {Si}i∈N , {%i}i∈N), a strategy si is a best response (to s−i )
if

(s−i , si ) %i (s−i , s
′

i ), for all s ′i ∈ Si

A Nash Equilibrium in a profile s∗ = (s∗1 , . . . , s∗n) ∈ S such that
s∗i is best response to s∗

−i , for all i = 1, . . . , n.

Player cannot gain by changing unilateraly her strategy, i.e. with the
remained strategies kept fixed.
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Strategic Games Nash Equilibrium

Illustration

ℓ r

T
2

2
1

0

B
0

3
1

1
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Strategic Games Nash Equilibrium

Illustration

ℓ r

T
2

2
1

0

B
0

3
1

1

draw best reponse in boxes

ℓ r

T
2

2
1

0

B
0

3
1

1
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Strategic Games Nash Equilibrium

Examples

Battle of Sexes: two Nash Equilibria.

Bach Stravinsky

Bach 2,1 0, 0

Stravinsky 0, 0 1,2

Mozart-Mahler: two Nash Equilibria.

Mozart Mahler

Mozart 1,1 0, 0

Mahler 0, 0 2,2

Prisoner’s Dilemma: EXERCISE

c d
C −2,−2 0,−3
D −3, 0 −1,−1
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Strategic Games Nash Equilibrium

Dominance and Nash Equilibrium (NE)

A dominated strategy is never a best response
⇒ it cannot be part of a NE.

We can eliminate dominated strategy without loosing any NE.

Elimination does not create new NE (best response remains when
adding a dominated strategy).

Proposition

If a game is dominance solvable, its solution is the only NE of the game.
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Strategic Games Nash Equilibrium

Nash Equilibria May Not Exist

Matching Pennies: a strictly competitive game.

Head Tail
Head 1,−1 −1, 1
Tail −1, 1 1,−1

Each player chooses either Head or Tail.

If the choices differ, Player 1 pays Player 2 a dollar;
if they are the same, Player 2 pays Player 1 a dollar.

The interests of the players are diametrically opposed.

Those games are often called zero-sum games.
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Mixed Strategy Nash Equilibrium

“Extended” Strategic Games

We have seen that NE need not exist when players deterministically
choose one of their strategies (e.g. Matching Pennies)

If we allow players to non-deterministically choose, then

NE always exist (Nash Theorem)

By “non-deterministically” we mean that the player randomises his
own choice.

We consider mixed strategies instead of only pure strategies
considered so far.
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Mixed Strategy Nash Equilibrium

Mixed Strategies
A mixed (randomized) strategy xi for Player i is a probability distribution
over Si . Formally, it is a vector xi = (xi (1), . . . , xi (mi )) with

{

xi (j) ≥ 0, for all j ∈ Si , and
xi(1) + . . . + xi(mi ) = 1

Let Xi be the set of mixed strategies for Player i .

X := X1 × X2 × . . . × Xn is the set of (mixed) profiles.

A mixed strategy xi is pure if xi(j) = 1 for some j ∈ Si and xi(j
′) = 0

for all j ′ 6= j . We use πi ,j to denote such a pure strategy.

The support of the mixed strategy xi is

support(xi ) := {πi ,j | xi (j) > 0}

We use e.g. x−i (counter (mixed) profile), X−i (counter profiles), etc.
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Mixed Strategy Nash Equilibrium

Interpretation of Mixed Strategies

Assume given a mixed strategy (probability distribution) of a player.

This player uses a lottery device with the given probabilities to pick
each pure strategy according to its probability.

The other players are not supposed to know the outcome of the
lottery.

A player bases his own decision on the resulting distribution of
payoffs, which represents the player’s preference.
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Mixed Strategy Nash Equilibrium

Expected Payoffs

Given a profile x = (x1, . . . , xn) of mixed strategies, and a
combination of pure strategies s = (s1, . . . , sn), the probability of
combinaison s under profile x is

x(s) := x1(s1) ∗ x2(s2) ∗ . . . ∗ xn(sn)

The expected payoff of Player i is the mapping Ui : X → IR defined by

Ui(x) :=
∑

s∈S

x(s) ∗ ui (s)

It coincides with the notion of payoff when only pure strategies are
considered.
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Mixed Strategy Nash Equilibrium

Mixed Extension of Strategic Games and Mixed Strategy

Nash Equilibrium

The mixed extension of Γ = (N, {Si}i∈N , {ui}i∈N) is the strategic
game

(N, {Xi}i∈N , {Ui}i∈N)

(CONVENTION: we still use ui instead Ui .)

A mixed strategy Nash Equilibrium of a strategic game
Γ = (N, {Si}i∈N , {ui}i∈N) is a Nash equilibrium of its mixed
extension.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Focus on 2-player Games

Sets of strategies {1, . . . , n} and {1, . . . ,m} respectively;

Payoffs functions u1 and u2 are described by n × m matrices:

U1 :=









u1(1, 1) u1(1, 2) . . . u1(1,m)
u1(2, 1) u1(2, 2) . . . u1(2,m)

. . . . . . . . . . . .
u1(n, 1) u1(n, 2) . . . u1(n,m)









U2 . . .

x1 = (p1, . . . , pn) ∈ X1 and x2 = (q1, . . . , qm) ∈ X2 for mixed
strategies; that is pj = x1(j) and qk = x2(k).

Write (U1x2)j the j-th component of vector U1x2.

(U1x2)j =
∑m

k=1 u1(j , k) ∗ qk
is the expected payoff of Player 1
when playing row j .

we shall write x1(U1x2) instead of xT
1 (U1x2).
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Given a mixed profile x = (x1, x2),

The expected payoff of Player 1 is

x1(U1x2) =

n
∑

j=1

m
∑

k=1

pj ∗ u1(j , k) ∗ qk

The expected payoff of Player 2 is

(x1U2)x2 =

n
∑

j=1

m
∑

k=1

pj ∗ u2(j , k) ∗ qk
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Existence: the Nash Theorem

Theorem (Nash 1950)

Every finite strategic game has a mixed strategy NE.

We omit the proof in this course and refer to the literature.

Remarks

The assumption that each Si is finite is essential for the proof.

The proof uses Brouwer’s Fixed Point Theorem.

Theorem

Let Z be a subset of some space IRN that is convex and compact, and
let f be a continuous function from Z to Z . Then f has at least one
fixed point, that is, a point z ∈ Z so that f (z) = z .

S. Pinchinat (IRISA) Elements of Game Theory Master2 RI 2011-2012 30 / 64



Mixed Strategy Nash Equilibrium 2-player Strategic Games

The Best Response Property

Theorem

Let x1 = (p1, . . . , pn) and x2 = (q1, . . . , qm) be mixed strategies of Player
1 and Player 2 respectively. Then x1 is a best response to x2 iff for all pure
strategies j of Player 1,

pj > 0 ⇒ (U1x2)j = max{(U1x2)k | 1 ≤ k ≤ n}

Proof Recall that (U1x2)j is the the expected payoff of Player 1 when
playing row j . Let u := max{(U1x2)j | 1 ≤ j ≤ n}. Then

x1U1x2 =
∑n

j=1 pj(U1x2)j =
∑n

j=1 pj [u − [u − (U1x2)j]]

=
∑n

j=1 pj ∗ u −
∑n

j=1 pj [u − (U1x2)j] = u −
∑n

j=1 pj [u − (U1x2)j]

Since pj ≥ 0 and u − (U1x2)j ≥ 0, we have x1U1x2 ≤ u. The expected
payoff x1U1x2 achieves the maximum u iff

∑n
j=1 pj [u − (U1x2)j = 0, that

is pj > 0 implies (U1x2)j = u.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Consequences of the Best Response Property

Only pure strategies that get maximum, and hence equal, expected payoff
can be played with postive probability in NE.

Proposition

A propfile (x∗

1 , x∗

2 ) is a NE if and only if there exists w1,w2 ∈ IR such that

for every j ∈ support(x∗

1 ), (U1x
∗

2 )j = w1, and
for every j /∈ support(x∗

1 ), (U1x
∗

2 )j ≤ w1.

for every k ∈ support(x∗

2 ), (x∗

1U2)k = w2. and
for every k /∈ support(x∗

2 ), (x∗

1U2)k ≤ w2.

S. Pinchinat (IRISA) Elements of Game Theory Master2 RI 2011-2012 32 / 64



Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (1)
We characterize NE: suppose we know the supports support(x∗

1 ) ⊆ S1 and
support(x∗

2 ) ⊆ S2 of some NE (x∗

1 , x∗

2 ). We consider the following system
of constraints over the variables p1, . . . , pn, q1, . . . , qm,w1,w2:

Write x∗

1 = (p1, . . . , pn) and x∗

2 = (q1, . . . , qm).























(U1x
∗

2 )j = w1 for all 1 ≤ j ≤ n with pj 6= 0
(x∗

1U2)k = w2 for all 1 ≤ k ≤ m with qk 6= 0
∑n

j=1 pj = 1
∑m

k=1 qk = 1
EXERCISE : what is missing ?

Notice that this system is a Linear Programming system – however the
system is no longer linear if n > 2 –. Use e.g. Simplex algorithm
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (1)
We characterize NE: suppose we know the supports support(x∗

1 ) ⊆ S1 and
support(x∗

2 ) ⊆ S2 of some NE (x∗

1 , x∗

2 ). We consider the following system
of constraints over the variables p1, . . . , pn, q1, . . . , qm,w1,w2:

Write x∗

1 = (p1, . . . , pn) and x∗

2 = (q1, . . . , qm).























(U1x
∗

2 )j = w1 for all 1 ≤ j ≤ n with pj 6= 0
(x∗

1U2)k = w2 for all 1 ≤ k ≤ m with qk 6= 0
∑n

j=1 pj = 1
∑m

k=1 qk = 1
EXERCISE : what is missing ?

Notice that this system is a Linear Programming system – however the
system is no longer linear if n > 2 –. Use e.g. Simplex algorithm
For each possible support(x∗

1 ) ⊆ S1 and support(x∗

2 ) ⊆ S2 solve the system
⇒ Worst-case exponential time (2m+n possibilities for the supports).
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

As seen before, we already have two
NE with pure strategies (B , b) and
(S , s).

We now determine the mixed strategy probabilities of a player so as to
make the other player indifferent between his or her pure strategies,
because only then that player will mix between these strategies. This is a
consequence of the Best Response Theorem: only pure strategies that get
maximum, and hence equal, expected payoff can be played with positive
probability in equilibrium.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

Suppose Player I plays B with prob.
1 − p and S with prob. p. The best
response for Player II is b when p → 0,
whereas it is s when p → 1.
⇒ There is some probability so that
Player II is indifferent.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

Fix p (probability) the mixed strategy of Player I. The expected payoff of
Player II when she plays b is 2(1 − p), and it is p when she plays s.

She is indifferent whenever 2(1 − p) = p, that is p = 2/3.

If Player I plays B with prob 1/3 and S with prob 2/3, Player II has an
expected payoff of 2/3 for both strategies.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

If Player I plays the mixed strategy
(1/3, 2/3), Player II has an expected
payoff of 2/3 for both strategies.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

If Player I plays the mixed strategy
(1/3, 2/3), Player II has an expected
payoff of 2/3 for both strategies.

Then Player II can mix between b and s. A similar calculation shows that
Player I is indifferent between C and S if Player II uses the mixed strategy
(2/3, 1/3), and Player I has an expected payoff of 2/3 for both strategies.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (2)
Battle of Sexes

b s

B
2

1

0
0

S
0

0
1

2

If Player I plays the mixed strategy
(1/3, 2/3), Player II has an expected
payoff of 2/3 for both strategies.

Then Player II can mix between b and s. A similar calculation shows that
Player I is indifferent between C and S if Player II uses the mixed strategy
(2/3, 1/3), and Player I has an expected payoff of 2/3 for both strategies.

The profile of mixed strategies ((1/3, 2/3), (2/3, 1/3)) is the mixed NE.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Finding Mixed Nash Equilibria (3)

The difference trick method

The upper envelope method
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Matching Pennies

Head Tail
Head 1,−1 −1, 1
Tail −1, 1 1,−1

x∗

1 (Head) = x∗

1 (Tail) = x∗

2 (Head) = x∗

2 (Tail) =
1

2

is the unique mixed strategy NE.

Here, support(x∗

1 ) = {π1Head , π1Tail} and support(x∗

2 ) = {π2Head , π2Tail}.

EXERCISE: apply previous techniques to find it yourself.
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Complements

Particular classes of games, e.g. symmetric games, degenerated
games, ...

Bayesian games for Games with imperfect information.

Solutions for N ≥ 3: there are examples where the NE has irrational
values. See Nash 1951 for a Poker game.

...
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Mixed Strategy Nash Equilibrium 2-player Strategic Games

Strategic Games (2h)

Extensive Games (2h)
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Extensive Games (with Perfect Information)

By Extensive Games,

we implicitly mean

“Extensive Games with Perfect Information”.
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Extensive Games (with Perfect Information) Definitions and Examples

Example

n
y

n
y

n
y

(2, 0)
(1, 1)

(0, 2)

1

2 2

(2, 0)

2

(0, 0) (1, 1) (0, 0) (0, 2) (0, 0)

H = {ǫ, (2, 0), (1, 1), (0, 2), ((2, 0), y), . . .}.
Each history denotes a unique node in the game tree, hence we often use
the terminology decision nodes instead.
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Extensive Games (with Perfect Information) Definitions and Examples

1
3

2
3

a b c

X
Y

Z

d
e

P
Q

1

1

2 2

3, 4

0, 15 3, 0

2, 3

1, 3

0, 5 4, 2

4, 5

EXERCISE: Tune the definition of an extensive game to take chance nodes
into account.
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Extensive Games (with Perfect Information) Definitions and Examples

Extensive Games (with Perfect Information)
An extensive game (with perfect information) is a tuple
G = (N,A,H,P , {%i}i=1,...,n) where

N = {1, . . . , n} is a set of players.

Write A = ∪iAi , where Ai is the set of action of Player i .
H ⊆ A∗ is a set of (finite) sequences of actions s.t.

◮ The empty sequence ǫ ∈ H .
◮ H is prefix-closed.

The elements of H are histories; we identify histories with the decision
nodes they lead to. A decision node is terminal whenever it is
(reached by a history) of the form h = a1a2 . . . aK and there is no
aK+1 ∈ A such that a1a2 . . . aKaK+1 ∈ H. We denote by Z the set of
terminal histories.

P : H \ Z → N indicates whose turn it is to play in a given
non-terminal decision node.

Each %i⊆ Z × Z is a preference relation.

We write A(h) ⊆ AP(h) for the set of actions available to Player P(h) at
decision node h.
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Extensive Games (with Perfect Information) Definitions and Examples

Strategies and Strategy Profiles

A strategy of a player in an extensive game is a “plan”.
Formally, let G = (N,H,P , {%i }i=1,...,n) be an extensive game
(from now on, we omit the set A of actions).

A strategy of Player i is (a partial mapping) si : H \ Z → A whose domain
is {h ∈ H \ Z |P(h) = i} and such that si(h) ∈ A(h).
Write Si for the set of strategies of Player i .

Note that the definition of a strategy only depends on the game tree
(N,H,P), and not on the preferences of the players.
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Example

n
y

n
y

n
y

(2, 0)
(1, 1)

(0, 2)

1

2 2

(2, 0)

2

(0, 0) (1, 1) (0, 0) (0, 2) (0, 0)

Player 1 plays at decision node ǫ (she starts the game), and this is the
only one; she has 3 strategies s1 = (2, 0), s ′1 = (1, 1), s”1 = (0, 2).

Player 2 takes an action after each of the three histories, and in each
case it has 2 possible actions (y or n); we write this as abc
(a, b, c ∈ {y , n}), meaning that after history (2, 0) Player 2 chooses
action a, after history (1, 1) Player 2 chooses action b, and after
history (0, 2) Player 2 chooses action c .
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Example

n
y

n
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n
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(2, 0)
(1, 1)

(0, 2)

1

2 2

(2, 0)

2

(0, 0) (1, 1) (0, 0) (0, 2) (0, 0)

Player 1 plays at decision node ǫ (she starts the game), and this is the
only one; she has 3 strategies s1 = (2, 0), s ′1 = (1, 1), s”1 = (0, 2).

Player 2 takes an action after each of the three histories, and in each
case it has 2 possible actions (y or n); we write this as abc
(a, b, c ∈ {y , n}), meaning that after history (2, 0) Player 2 chooses
action a, after history (1, 1) Player 2 chooses action b, and after
history (0, 2) Player 2 chooses action c . Possible strategies for Player
2 are yyy , yyn, yny , ynn, ... There are 23 possibilities.
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Extensive Games (with Perfect Information) Definitions and Examples

Example

n
y

n
y

n
y

(2, 0)
(1, 1)

(0, 2)

1

2 2

(2, 0)

2

(0, 0) (1, 1) (0, 0) (0, 2) (0, 0)

Player 1 plays at decision node ǫ (she starts the game), and this is the
only one; she has 3 strategies s1 = (2, 0), s ′1 = (1, 1), s”1 = (0, 2).

Possible strategies for Player 2 are yyy , yyn, yny , ynn, ... There are
23 possibilities.

In general the number of strategies of a given Player i is in O(|Ai |
m)

where m is the number of decision nodes where Player i plays.
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Extensive Games (with Perfect Information) Definitions and Examples

Remarks on the Definition of Strategies

Strategies of players are defined even for histories that are not
reachable if the strategy is followed.

1

A
B

D
C

F
E

1

1

2

In this game, Player 1 has four strategies AE ,AF ,BE ,BF : By BE ,
we specify a strategy after history e.g. AC even if it is specified that
she chooses action B at the beginning of the game.
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Extensive Games (with Perfect Information) Definitions and Examples

Reduced Strategies

A reduced strategy of a player specifies a move for the decision nodes
of that player, but unreachable nodes due to an earlier own choice.

It is important to discard a decision node only on the basis of the
earlier own choices of the player only.

A reduced profile is a tuple of reduced strategies.
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Extensive Games (with Perfect Information) Relation to Strategic Games

Outcomes

The outcome of a strategy profile s = (s1, . . . , sn) in an extensive game
G = (N,H,P , {%i}i∈N), written O(s), is the terminal decision node that
results when each Player i follows the precepts si :

O(s) is the history a1a2 ∈ Z s.t. for all (relevant) k > 1, we have

sP(a1
...ak−1)(a

1 . . . ak−1) = ak
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Extensive Games (with Perfect Information) Relation to Strategic Games

Example of Outcomes

O(AE ,C ) has payoff v!

...
O(BE ,C ) has payoff v4

...
O(BF ,D) has payoff v4

...

1

A
B

D
C

F
E

1

1

2

v1 v2

v3

v4
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Extensive Games (with Perfect Information) Relation to Strategic Games

Strategic Form of an Extensive Game

The strategic form of an extensive game G = (N,H,P , {%i }i∈N) is the
strategic game (N, {Si}i∈N , {%′

i}i∈N) where %′

i⊆ Si × Si is defined by

s %′

i s ′ whenever O(s) %i O(s ′)

As the number of strategies grows exponentially with the number m of
decision nodes in the game tree – recall it is in O(|Ai |

m) –, strategic forms
of extensive games are in general big objects.
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Extensive Games (with Perfect Information) Relation to Strategic Games

Extensive Games as Strategic Games

C D
AE v1 v3

AF v2 v3

BE v4 v4

BF v4 v4

Reduced Strategies:
C D

AE v1 v3

AF v2 v3

B v4 v4

1

A
B

D
C

F
E

1

1

2

v1 v2

v3

v4
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Extensive Games (with Perfect Information) Nash Equilibrium

Nash Equilibrium in Extensive Games

Simply use the definition of NE for the strategic game form of the
extensive game.
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Extensive Games (with Perfect Information) Nash Equilibrium

Examples of Nash Equilibria

1

A
B

R
L

1

2

0, 0 2, 1

1, 2

Two NE (A,R) and (B ,L) with payoffs are (2, 1) and (1, 2) resp.

(B ,L) is a NE because:
◮ given that Player 2 chooses L after history A, it is always optimal for

Player 1 to choose B at the beginning of the game – if she does not,
then given Player 2’s choice, she obtains 0 rather than 1.
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Extensive Games (with Perfect Information) Nash Equilibrium

Examples of Nash Equilibria

1

A
B

R
L

1

2

0, 0 2, 1

1, 2

Two NE (A,R) and (B ,L) with payoffs are (2, 1) and (1, 2) resp.

(B ,L) is a NE because:
◮ given that Player 2 chooses L after history A, it is always optimal for

Player 1 to choose B at the beginning of the game – if she does not,
then given Player 2’s choice, she obtains 0 rather than 1.

◮ given Player 1’s choice of B, it is always optimal for Player 2 to play L.

The equilibrium (B ,L) lacks plausibility.

The good notion is the Subgame Perfect Equilibrium
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Extensive Games (with Perfect Information) Nash Equilibrium

Subgame Perfect Equilibrium

We define the subgame of an extensive game G = (N,H,P , {%i}i∈N) that
follows a history h as the extensive game

G(h) = (N, h−1H,P |h, {%i |h}i∈N)

where

h−1H := {h′ | hh′ ∈ H}

P |h(h
′) := P(hh′) ...

h′ %i |hh” whenever hh′ %i hh”

G(h) is the extensive game which starts at decision node h.
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Extensive Games (with Perfect Information) Nash Equilibrium

G and G(h), for h = A

1

A
B

D
C

F
E

1

1

2

v1 v2

v3

v4  
D

C

F
E

1

2

v1 v2

v3
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Extensive Games (with Perfect Information) Nash Equilibrium

Subgame Perfect (Nash) Equilibrium

A subgame perfect equilibrium represents a Nash equilibrium of every
subgame of the original game. More formally,

A subgame perfect equilibrium (SPE) of G = (N,H,P , {%i}i∈N) is a
strategy profile s∗ s.t. for every Player i ∈ N and every non-terminal
history h ∈ H \ Z for which P(h) = i , we have

O|h(s
∗

−i |h, s
∗

i |h) %i |hO|h(s
∗

−i |h, si )

for every strategy si of Player i in the subgame G(h).
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Extensive Games (with Perfect Information) Nash Equilibrium

Example

1

A
B

R
L

1

2

0, 0 2, 1

1, 2

NE were (A,R) and (B ,L), but the only SPE is (A,R).
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Extensive Games (with Perfect Information) Nash Equilibrium

Another Example

n
y

n
y

n
y

(2, 0)
(1, 1)

(0, 2)

1

2 2

(2, 0)

2

(0, 0) (1, 1) (0, 0) (0, 2) (0, 0)

Nash Equilibrium are:

((2, 0), yyy), ((2, 0), yyn), ((2, 0), yny), and ((2, 0), ynn) for the
division (2, 0).

((1, 1), nyy), ((1, 1), nyn), and ((1, 1), nyn) for the division (1, 1).

...

EXERCISE: What are the SPE?
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Extensive Games (with Perfect Information) Nash Equilibrium

Computing SPE of Finite Extensive Games (with Perfect

Information): Backward Induction

Backward Induction is a procedure to construct a strategy profile which is
a SPE.

Start with the decision nodes that are closest to the leaves, consider a
history h in a subgame with the assumption that a strategy profile has
already been selected in all the subgames G(h, a), with a ∈ A(h). Among
the actions of A(h), select an action a that maximises the (expected)
payoff of Player P(h).

This way, an action is specified for each history of the game G, which
determines an entire strategy profile.
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Extensive Games (with Perfect Information) Nash Equilibrium

Backward Induction Example

1

A
B

R
L

1

2

0, 0 2, 1

1, 2
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Extensive Games (with Perfect Information) Nash Equilibrium

Backward Induction Example

1

A
B

R
L

1

2

0, 0 2, 1

1, 22, 1

2, 1
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Extensive Games (with Perfect Information) Nash Equilibrium

Theorem: Backward Induction defines an SPE.

We prove inductively (and also consider chance nodes): consider a
non-terminal history h. Suppose that A(h) = {a1, a2, . . . , am} each aj

leading to the subgame Gj , and assume, as inductive hypothesis, that the
strategy profiles that have been selected by the procedure so far (in the
subgames Gj ’s) define a SPE.
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Extensive Games (with Perfect Information) Nash Equilibrium

Theorem: Backward Induction defines an SPE.

We prove inductively (and also consider chance nodes): consider a
non-terminal history h. Suppose that A(h) = {a1, a2, . . . , am} each aj

leading to the subgame Gj , and assume, as inductive hypothesis, that the
strategy profiles that have been selected by the procedure so far (in the
subgames Gj ’s) define a SPE.

If h is a chance node, then the BI procedure does not select a particular
action from h. For every player, the expected payoff in the subgame G(h)
is the expectation of the payoffs in each subgame Gj (weighted with
probability to move to Gj). If a player could improve on that payoff, she
would have to do so by changing her strategy in one subgame Gj which
contradicts the induction hypothesis.
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Extensive Games (with Perfect Information) Nash Equilibrium

Theorem: Backward Induction defines an SPE.

We prove inductively (and also consider chance nodes): consider a
non-terminal history h. Suppose that A(h) = {a1, a2, . . . , am} each aj

leading to the subgame Gj , and assume, as inductive hypothesis, that the
strategy profiles that have been selected by the procedure so far (in the
subgames Gj ’s) define a SPE.

Assume now that h is a decision node (P(h) ∈ N).

Every Player i 6= P(h) can improve his payoff only by changing his strategy
in a subgame, which contradicts the induction hypothesis.
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Extensive Games (with Perfect Information) Nash Equilibrium

Theorem: Backward Induction defines an SPE.

We prove inductively (and also consider chance nodes): consider a
non-terminal history h. Suppose that A(h) = {a1, a2, . . . , am} each aj

leading to the subgame Gj , and assume, as inductive hypothesis, that the
strategy profiles that have been selected by the procedure so far (in the
subgames Gj ’s) define a SPE.

Assume now that h is a decision node (P(h) ∈ N).

Player P(h) can improve her payoff, she has to do it by changing her
strategy: the only way is to change her local choice to aj together with
changes in the subgame Gj . But the resulting improved payoff would only
be the improved payoff in Gj , itself, which contradicts the induction
hypothesis.
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Extensive Games (with Perfect Information) Nash Equilibrium

Consequences of the Theorem

Backward Induction defines an SPE.

(In extensive games with perfect information)
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Extensive Games (with Perfect Information) Nash Equilibrium

Consequences of the Theorem

Backward Induction defines an SPE.

(In extensive games with perfect information)

Corollary

By the BI procedure, each player’s action can be chosen deterministically,
so that pure strategies suffice. It is not necessary, as in strategic games, to
consider mixed strategies.
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Extensive Games (with Perfect Information) Nash Equilibrium

Consequences of the Theorem

Backward Induction defines an SPE.

(In extensive games with perfect information)

Corollary

By the BI procedure, each player’s action can be chosen deterministically,
so that pure strategies suffice. It is not necessary, as in strategic games, to
consider mixed strategies.

Corollary

Subgame Perfect Equilibrium always exist.
For game trees, we can use “SPE” synonymously with “strategy profile
obtained by backward induction”.

S. Pinchinat (IRISA) Elements of Game Theory Master2 RI 2011-2012 62 / 64



Extensive Games (with Perfect Information) Nash Equilibrium

An example of an exam (2009)

3,5,0

II

II III

T
M

B

l
c

r L R

2,1,3 0,2,4 2,3,1

1,2,3

1,4,2

1 How many strategy profiles does this game have?
2 Identify all pairs of strategies where one strategy strictly, or weakly,

dominates the other.
3 Find all Nash equilibria in pure strategies. Which of these are

subgame perfect?
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Extensive Games (with Perfect Information) Nash Equilibrium

What we have not seen

Combinatorial game theory
A mathematical theory that studies two-player games which have a
position in which the players take turns changing in defined ways or
moves to achieve a defined winning condition.
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What we have not seen

Combinatorial game theory
A mathematical theory that studies two-player games which have a
position in which the players take turns changing in defined ways or
moves to achieve a defined winning condition.

Game trees with imperfect information
A player does not know exactly what actions other players took up to
that point. Technically, there exists at least one information set with
more than one node.
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What we have not seen

Combinatorial game theory
A mathematical theory that studies two-player games which have a
position in which the players take turns changing in defined ways or
moves to achieve a defined winning condition.

Game trees with imperfect information
A player does not know exactly what actions other players took up to
that point. Technically, there exists at least one information set with
more than one node.

Games and logic
Important examples are semantic games used to define truth,
back-and-forth games used to compare structures, and dialogue
games to express (and perhaps explain) formal proofs.
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What we have not seen

Combinatorial game theory
A mathematical theory that studies two-player games which have a
position in which the players take turns changing in defined ways or
moves to achieve a defined winning condition.

Game trees with imperfect information
A player does not know exactly what actions other players took up to
that point. Technically, there exists at least one information set with
more than one node.

Games and logic
Important examples are semantic games used to define truth,
back-and-forth games used to compare structures, and dialogue
games to express (and perhaps explain) formal proofs.

others ...
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