
On the Soundness of Attack Trees

Maxime Audinot and Sophie Pinchinat

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE.
E-mails:{maxime.audinot,sophie.pinchinat}@irisa.fr

Abstract. We formally define three notions of soundness of an attack tree w.r.t.
the system it refers to: admissibility, consistency, and completeness. The system is
modeled as a labeled transition system and the attack is provided with semantics
in terms of paths of the transition system. We show complexity results on the three
notions of soundness, and the influence of the operators that are in the attack tree
(see the recap in Figure 5).

1 Introduction

Attack trees [8, 5, 4] are graphical representations of sets of attacks de-
scribed in a hierarchical manner. The hierarchy is reflected in the struc-
ture of the tree, whose internal nodes represent abstract attack goals, and
leaf nodes represent atomic goals. Internal nodes of an attack tree have
extra information, namely the combinator (or operator) which expresses
how the goal of the current node decomposes into the combination of its
children goals. Classic operators are the “or” operator, the “sequential”
operator, and the “and” operator.

Attack trees are a common tool used in risk analysis. The tree is used
to describe the attacks to which of a system is vulnerable. First, an attack
tree is constructed from a model of the system, and then it is analyzed
for quantitative results, like computing the likelihood of an attack. In this
paper, we focus on the qualitative part of attack trees, because our trees
can be post-processed to take likelihood into account by adding weigths
to the leafs and propagating them.

There are different ways of defining the semantics of attack trees,
which unsurprisingly strongly relies on the semantics of the set of op-
erators. In [5], the focus is put on quantitative interpretations: atomic
goals are given values in a domain, then, via the operators’ semantics, a

bottom-up computation yields a value at the (root node of the) tree that
corresponds to, e.g. the length of the shortest attack, the highest proba-
bility to achieve an attack, etc.

In this contribution, we propose various semantics of attack trees that
enable us to interpret them in the context of the system they refer to.
This is strongly motivated by the nature of the top-down manual design
of attack trees by practitioners, where the leaves a tree are iteratively
refined into a combination of sub-nodes. To our knowledge, this issue
has not been addressed in the literature.

In our setting, the system the tree refers to is a standard transition
system S labeled over a set of atomic propositions Prop. It represents the
operational semantics of some domain, as done in [7] for military build-
ings, or in [6] for socio-technical systems, leaving aside quantitative as-
pects (likelihood, time, cost). We describe the attack goal of a node by an
expression ι�γ, where ι, γ ∈ Prop are atomic propositions that denote re-
spectively the preconditions and post-conditions of the goal (in the spirit
of automated planning approaches). A natural system-based denotational
path semantics is given to an attack goal ι� γ, where ι and γ are atomic
propositions: the denoted set of paths is composed of all paths of the
fixed transition system S that start from a state labeled by the precondi-
tion ι and that end in a state labeled by the post-condition γ. The internal
nodes of an attack tree carry an attack goal, together with the operator
that describes its decomposition into sub-goals1, hence a pair (ι� γ,�);
we call such an internal node a �-node. In this paper, we let � range
over {>,=,?} for the “or”, the “sequential and”, and the “and” operators
respectively. In our graphical representations of attack trees (see Figure 2
on Page 8), the shapes of the nodes emphasize the operator associated to
the node: >-nodes are represented with an ellipse, =-nodes are repre-
sented with pentagons pointing rightwards, and ?-nodes are represented
with rectangles, and the leaf nodes are represented with rounded corners
rectangles.

In this paper, we address the soundness of an attack tree in terms of
the relationship between an internal node (ι � γ,�) and the list of its
children nodes (ι1 � γ1,�1),. . . , (ιn � γn,�n) (from left to right). To do

1 the children of the internal node.

2

so, we compare2 the set of paths denoted by ι�γ with the�-combination
of the sets of paths denoted by the children ιi � γi of that node.

We introduce three notions of soundness for attack trees w.r.t. the
transition system: admissibility, consistency, and completeness. Admissi-
bility captures the approach where practitioners decompose the main goal
into a structured goal some of whom achievements are also an achieve-
ments of the main goal. Consistency expresses that the proposed decom-
position of the main goal guarantees its achievement. Finally, the intent
of completeness is a complete characterization of the main goal in terms
of the proposed decomposition.

The three notions of soundness are defined by comparing the two
sets of paths denoted by ι� γ and the �-combination of the sets of paths
denoted by the children. We use the three natural comparisons between
sets, namely equality, inclusion, and non-empty intersection. Each no-
tion of soundness entails a decision problem, of whether a given attack
tree is sound or not w.r.t. the transition system it refers to. We establish
complexity results on the three notions of soundness, and with regards to
the kinds of operators that are allowed. We show that the admissibility
problem is in P for the operators > and =, but becomes NP-complete
for the operator ?. Next, we prove that the consistency problem is in P
for the operators >, co-NP3 for the operator = and co-NP-complete for
the operator ?. The completeness problem is in co-NP for the operators
> and =, and in ΠP

2 for the operator ?. Recall that ΠP
2 is a complex-

ity class of the polynomial hierarchy [10] composed of languages whose
complement is in ΣP

2 , or equivalently NPNP, that are languages captured
by a non-determinitsic polynomial-time algorithm which can call a non-
determinitsic polynomial-time subroutine4.

The paper is organized as follows: In Section 2, we present prelim-
inaries notions used in the rest of the paper. In Section 3, we present
transitions systems and formal attack goals, and their paths properties. In
Section 4, we present attack trees, and the three soundness completeness,
consistency and admissibility. In Section 5, we show the complexity re-

2 see further for details.
3 that is the negative instances of the decision problem, i.e. those for which the answer is “no”,

are fully characterized by a polynomial-time non-deterministic algorithm.
4 which is classically called an oracle.

3

sults for the three soundness. In Section 6, we discuss the complexity
result and conjecture about the harness that are not established yet.

2 Preliminaries

For i, j ∈ N, we denote by [i; j] the interval of integers ranging over
{i, i+1, . . . j}. For a finite set X, 2X is the powerset of X, |X| is the cardinal
of X, X∗ is the set of finite sequences of elements of X. For a binary
relation R over a set X (R ⊆ X × X), we say that R is left-total if for
every x ∈ X, there exists y ∈ X such that (x, y) ∈ R. We denote by R∗ the
reflexive and transitive closure of R.

We recall that P is the class of decision problems5 that can be solved
by a deterministic polynomial-time algorithm, that NP is the class of de-
cision problems that can be solved by a non-deterministic polynomial-
time algorithm, and co-NP is the class of decision problems whose com-
plementary problem6 is in NP. As a typical representative of the class
NP, we will consider the classical decision problem SAT (We refer to [3]
for these classic classes of complexity). We end with the class ΠP

2 of the
polynomial hierarchy which captures the decision problems whose neg-
ative instances can be characterized by a non-determinitsic polynomial-
time algorithm which can call a non-determinitsic polynomial-time sub-
routine7. We refer to [10] for details on the polynomial hierarchy.

3 Transition systems and attack goals

In this section, we define transition systems, attack goals and the seman-
tics of the operators {>,=,?}.

5 the answer is “Yes/No”.
6 the answers “Yes/No” are swapped.
7 which is classically called an oracle.

4

3.1 Transition systems

Without loss of generality and for technical reasons, transition systems
will carry no actions, but instead have all the necessary information in
their states via a labeling by atomic propositions.

Definition 1 (Transition system). Let Prop be a finite set of atomic
propositions. A transition system over Prop is a tuple S = (S ,→, λ),
where:

– S is the finite set of states,
– →⊆ S × S is the transition relation of the system (which is assumed

left-total8),
– λ : Prop→ 2S is the valuation function.

The size of S is |S| = |S | + |→|.

Let S ′ ⊆ S be a sub-set of states. We let Post∗
S
(S ′) be the set of states

that are reachable from some state of S ′, and Pre∗
S
(S ′) be the set of states

that are co-reachable from some state of S ′. Formally,

– Post∗
S
(S ′) := {s ∈ S | there is some s′ ∈ S ′ such that s′ →∗ s}

– Pre∗
S
(S ′) := {s ∈ S | there is some s′ ∈ S ′ such that s→∗ s′}.

We will use the following running example:

Example 1.
The set Prope is {i, f ,m1,m2, e1, e2, prea, posta, preb, postb, prec, postc},
the system Se = (S e,→e, λe) over Prope, whose graphical representation
is given in Figure 1, is formally defined by: S e = {si}0≤i≤6, where the
transition relation→e contains the pairs (s0, s1), (s0, s2), (s1, s3), (s2, s3),
(s2, s4), (s3, s5), (s4, s6). Finally, we let λe(i) = λe(prea) = {s0}, λe(f) =

{s5, s6}, λe(m1) = λe(posta) = {s1, s2}, λe(m2) = {s3, s4}, λe(e1) = {s5},
λe(e2) = {s6}, λe(preb) = {s1, s2, s4}, λe(postb) = {s3, s6}, λe(prec) =

{s2, s3}, and finally, λe(postc) = {s4, s5}. Also, Pre∗
S
({s3}) = {s0, s1, s2, s3}

and Post∗
Se

({s1, s6}) = {s1, s3, s5, s6}.

8 this is classic and it is no loss of generality.

5

s0

s1

s2

s3

s4

s5

s6

{i, prea}

{m1, posta, preb}

{m1, posta, preb, prec}

{m2, postb, prec}

{m2, postc, preb}

{ f , e1, postc}

{ f , e2, postb}

Fig. 1. Example of transition system: Se.

Definition 2 (Paths, elementary paths, factors). A path in a system S
is a sequence of states of the form π = s0s1 . . . sn ∈ S ∗ for some n ∈ N,
such that for all k ∈ [0; n − 1], (sk, sk+1) ∈→. An elementary path is a
path s0s1 . . . sn where ∀k , k′ ∈ [0; n], sk , sk′ (i.e. there is no cycles).
We denote by Π(S) the set of paths of S. Let π = s0 . . . sn ∈ Π(S). The
length of π is n, written |π|. A factor of π is a sequence si . . . s j for some
0 ≤ i ≤ j ≤ n, that will be denoted by π[i; j]. The interval [i; j] is an
anchoring interval, or simply an anchoring, of the factor π[i; j] in π.

We define two notions of decomposition of a path that reflect the
refinement of attack tree nodes. Both are based on factors.

Definition 3 (Sequential and parallel decomposition of paths). Let
π ∈ Π(S) be a path. A sequence π1.πk ∈ Π(S)∗ of paths is a se-
quential decomposition of π if each π j is a factor of π, there are ordered
anchorings of the π j’s that form a tiling of the interval [0; |π|]. In partic-
ular, this anchoring of π1 is of the form [0; y] and this anchoring of πk is
of the form [x; |π|]. A set of paths {π1, . . . , πk} is a parallel decomposition
of π ∈ Π(S) if each π j is a factor of π, and the anchorings of the paths
π j cover the interval [0; |π|]. Notice that a sequential decomposition is a
particular case of a parallel decomposition.

Example 2. Consider the path π = s0s2s3s5 in system Se. The sequence
(s0s2).(s2s3s5) is a sequential decomposition of π, where the anchoring
of s0s2 is (unique and equal to) [0; 1] and the unique anchoring of s2s3s5

is [1; 3]. The set {s2s3s5, s0s2s3} is a parallel decomposition of π, where
the anchoring of s2s3s5 is [1; 3] and the anchoring of s0s2s3 is [0; 2].

6

For the section 3.2 and 4, we fix a transition system S = (S ,→, λ).

3.2 Attack goals

Attack goals are descibed in a formal language meant to specify attack
objectives that internal nodes of an attack tree naturally carry.

Definition 4 (Attack goals). An attack goal is an expression of the form
either ι � γ, or a term of the form (ι1 � γ1) � (ι2 � γ2) � . . . (ιn � γn),
where � ∈ {>,=,?} and ι, ι1, . . . ιn, γ, γ1, . . . γn ∈ Prop.

Example 3. i � f , (i � e1)> (i � e2) and (i � posta)= (posta � postc)=
(postc � postb) are attack goals, whose interpretation will be given in
system Se (see Example 4).

Definition 5 (Path semantics of attack goals). The path semantics of an
attack goal t, written [t]path

S
, is a subset of Π(S) defined by: if t = ι � γ,

then [ι � γ]path
S

= {π ∈ Π(S) | π(0) ∈ λ(ι) and π(|π|) ∈ λ(γ)}, otherwise
we distinguish between the different operators � ∈ {>,=,?} according
to:

[(ι1 � γ1) >n (ι2 � γ2) >n . . . (ιn � γn)]path
S

=
⋃

1≤i≤n

[ιi � γi]
path
S

[(ι1 � γ1) =n (ι2 � γ2) =n . . . (ιn � γn)]path
S

= {π | there is a
decomposition π1.π2πn of π and each πi ∈ [ιi � γi]

path
S
}

[(ι1 � γ1) ?n (ι2 � γ2) ?n . . . (ιn � γn)]path
S

= {π | there is a
parallel decomposition {π1, π2, . . . , πn} of π and each πi ∈ [ιi � γi]

path
S
}

Example 4. The attack goals of Example 3 have the following path se-
mantics:

[i � f]path
Se

= {π ∈ Π(Se) | π(0) = s0 and π(|π| ∈ {s5, s6}}

[(i � e1) >2 (i � e2)]path
Se

= [i � f]path
Se

[(i � posta) =3 (posta � postc) =3 (postc � postb)]path
Se

= {s0s2s4s6}

7

4 Attack trees

We define the set of attack trees over a set Prop of atomic propositions.
In addition to the classical branching structure with nodes typed by a
operator, we decorate each node with an attack goal ι � γ, representing
the goal of the node. This goal is a formalization of the what is usually
written in plain text in nodes of classical attack trees.

(i � f ,=)

(i � m2,?)

(i � m1,�) (m1 � m2,�)

(m2 � f ,>)

(m2 � e1,�) (m2 � e2,�)

Fig. 2. The attack tree Te.

An attack tree (over Prop) is either a leaf of the form (ι � γ,�) or
a composed tree of the form (ι � γ,�)(T1,T2 . . . Tn), where ι, γ ∈ Prop,
� ∈ {>,=,?}, n ≥ 2, and T1, T2, l. . . , Tn are attack trees.We call the
main node of a non-leaf tree a �-node whenever it is of the form (ι �
γ,�)(T1,T2 . . . Tn).

The path semantics of an attack tree (ι � γ,�)(T1,T2 . . . Tn) is natu-
rally defined as [ι� γ]path

S
⊆ Π(S).

Example 5. Figure 2 represents the attack tree Te over Prope where:

Te = (i � f ,=)((i � m2,?)((i � m1,�), (m1 � m2,�)),
(m2 � f ,>)((m2 � e1,�), (m2 � e2,�)))

Another example of such an attack tree, using an ?-node, is (i �
f ,?)(prea � posta,�), (preb � postb,�), (prec � postc,�)).

For example, the path semantics of Te is Π(Se).

8

We now turn to more subtle semantics for attack trees that enable one
to relate a tree with its subtrees, or equivalently an internal node with its
children, in terms of their path semantics, hence the explicit reference
to the system the attack tree refers to. Our proposal yields three notions
of soundness with different interpretations from the point of view of the
practitioner. The admissibility property means that there is an attack that
achieves the the parent node goal that decomposes with the ones of its
children nodes (Equation (1)). The consistency property means that the
combined children node goals yield attacks (if any) that achieve the par-
ent node goal (Equation (2)). Finally, the completeness property means
that the combined children node goals fully characterize the parent node
goal (Equation (3)).

(ι � γ),�

ι1 � γ1 ι2 � γ2 . . . ιn � γn

Fig. 3. A picture for Equation (1).

Definition 6 (Admissibility).
The attack tree (ι� γ,�)(T1,T2 . . . Tn) is admissible w.r.t. S either when
� is �, or when Equation (1) holds, where ιi � γi is the local attack goal
of the tree Ti (1 ≤ i ≤ n), see Figure 3.

[�n
i=1 (ιi � γi)]

path
S
∩ [ι� γ]path

S
, ∅ (1)

Then, the consistency and completeness properties are variants of the
admissibility property by replacing Equation (1) of Definition 6 by Equa-
tion (3) and Equation (2), respectively:

[�n
i=1 (ιi � γi)]

path
S
⊆ [ι� γ]path

S
(2)

[�n
i=1 (ιi � γi)]

path
S

= [ι� γ]path
S

(3)

Remark 1. As Equation (3) entails Equation (2), completeness implies
consistency.

9

For example, the attack tree (i � f ,=)((i � m2,�), (m2 � f ,�)) is
admissible w.r.t. Se, whereas (prea � posta,>)((preb � postb,�), (prec �
postc,�)) is not admissible w.r.t. Se.

5 The decision problems ADM(O), CONS(O), COMP(O)

We formalize the decision problems ADM(O), CONS(O), COMP(O) respec-
tively related to the notions of admissibility, consistency and complete-
ness, as introduced in Section 4. Let O ⊆ {>,=,?}.

Definition 7. The Admissibility problem ADM(O) is defined by:
Input: θ = ιγι1γ1 . . . ιnγn a sequence of atomic propositions, � ∈ O and
S a labeled transition system over {ι, γ, ι1, . . . , γn}.
Output: “yes” if (ι � γ,�)((ι1 � γ1,�), (ι2 � γ2,�) . . . (ιn � γn,�)) is
admissible w.r.t S, “no” otherwise.

We similarly define the decisions problems CONS(O) and COMP(O) in a
natural way, respectively called the the consistency problem and the com-
pleteness problem. In the sequel, we will denote by (θ,�,S) an instance
of ADM(O), CONS(O), or COMP(O), where unless explicitely stated, θ ex-
pands into ιγι1γ1 . . . ιnγn.

5.1 Preliminary complexity results

We first establish useful technical propositions that will be used to prove
our main results on complexity for the three decision problems ADM(O),
CONS(O), and COMP(O).

Proposition 1. Given a path π, deciding whether or not π ∈ [(ι� γ)]path
S

can be done in constant time. As a consequence, deciding whether or not
π ∈ [>n

i=1 (ιi � γi)]
path
S

is also in P.

Proof. For π ∈ [(ι � γ)]path
S

, the only thing to check is π(0) ∈ λ(ι) and
π(|π|) ∈ λ(γ). For π ∈ [>n

i=1 (ιi � γi)]
path
S

, it amount to finding i ∈ [1; n]
such that π ∈ [(ιi � γi)]

path
S

.

10

The next two propositions address operators = and ?.

Proposition 2. Given a path π, deciding whether or not π ∈ [=n
i=1 (ιi �

γi)]
path
S

is in P.

Proof. It sufficient to check that π(0) ∈ λ(ι1) and π(|π|) ∈ λ(γn) and to
make a traversal of π that seeks for a sequence of positions 0 ≤ y1 ≤

· · · ≤ yn−1 ≤ |π| such that π(yi) ∈ λ(γi) ∩ λ(ιi+1), for all i ∈ [1; n − 1].

Proposition 3. Given a path π, deciding whether or not π ∈ [?n
i=1 (ιi �

γi)]
path
S

is in NP.

Proof. To verify that π ∈ [?n
i=1(ιi�γi)]

path
S

the algorithm guesses n factors
of π, or equivalently their sequence of anchorings [x1; y1], . . . , [xn; yn] and
checks they provide a parallel decomposition of π. Namely, the algorithm
needs to check the following properties: (i) xi ≤ yi, for each i ∈ [1; n],
(ii) for each x ∈ [0; |π|], there exists i ∈ [1; n] such that xi ≤ x ≤ yi, and
(iii) π[xi; yi] ∈ [ιi � γi]

path
S

, that is π(xi) ∈ λ(ιi) and π(yi) ∈ λ(γi). By the
above propositions, it is clear that Properties (i)-(iii) can be verified in
polynomial time.

The two following propositions are helpful in order to bound the size
of the paths we will need to guess in our non-deterministic algorithms of
Section 5.2.

Proposition 4. Let � ∈ {?,=,>}. If [�n
i=1 (ιi � γi)]

path
S
, ∅, then it

contains a path of size smaller than |S | (2n − 1). In particular, if n = 1,
we can consider a path of length at most |S |, that is an elementary path.

Proof. We first consider the case where� = ?. Let π ∈ [?n
i=1(ιi�γi)]

path
S

,
and let [x1; y1], . . . , [xn; yn] be the anchoring intervals of a parallel decom-
position of π, such that, for each 1 ≤ i ≤ n, π(xi) ∈ λ(ιi) and π(yi) ∈ λ(γi).
Let z1 ≤ · · · ≤ z2n be the resulting of sorting the elements x1, y1 . . . , xn, yn.
Notice that the sequence π[z1; z2], π[z2; z3], . . . , π[z2n−1; z2n] is a sequen-
tial decomposition of π. For 1 ≤ i ≤ 2n − 1, let π′i be the elementary
path obtained from π[zi; zi+1] by removing the cycles. We have

∣∣∣π′i ∣∣∣ ≤ |S |.
The path π′ obtained by the sequential composition of the paths π′i is in

11

[?n
i=1 (ιi � γi)]

path
S

since the states π(zi) for i ∈ [1; 2n] are still in π′ and
in the same order. Then we have |π′| ≤ |S | (2n − 1), which concludes.
Regarding the case where � = =, it is enough to remark that sequential
decomposition is a particular parallel decomposition, and the case� = >
is obvious as even elementary paths suffice.

Finally, the following more involved Proposition 5 plays a key role
in our proofs of Section 5.2. The rest of this section is dedicated to its
proof.

Proposition 5. Given a S = (S ,→, λ) be a labeled transition system
over a set of propositions Prop ⊇ {ι, γ, ι1, . . . , γn}, it is NP-complete to
decide whether or not [?n

i=1 (ιi � γi)]
path
S
, ∅.

NP-easyness: We describe the non-deterministic algorithm that decides
[?n

i=1 (ιi � γi)]
path
S
, ∅. This algorithm guesses a path π such that |π| ≤

|S | (2n − 1) (which is sufficient by Proposition 4), and n anchoring inter-
vals [x1; y1], . . . , [xn; yn] in π. It then verifies that π ∈ [?n

i=1 (ιi � γi)]
path
S

,
which can be done in polynomial time in (θ,?,S) according to Proposi-
tions 3.
NP-hardness: We reduce the classical NP-complete problem SAT [2] to
[?n

i=1 (ιi � γi)]
path
S
, ∅. An input of SAT is a set of clauses C over a set

of propositions {p1, . . . pr}, where each clause C ∈ C is a set of liter-
als, that is either a proposition pi or its negation ¬pi. The SAT problem
amounts to answering whether or not C is satisfiable, that is whether
or not there is a valuation of the propositions p1, . . . pr that makes all
clauses of C true. Now, let C = {C1, . . .Cm} over propositions {p1, . . . pr}

be an input of the SAT problem; classically, |C | =
∑
C∈C

|C|, where |C | is the

number of literals that occur in C. We introduce two fresh propositions
ι0 and γ0 and we define a labeled transition system SC = (S C ,→C , λC)
over PropC = {ι0, γ0,C1, . . .Cm}: In the following, we let `i denote ei-
ther pi or ¬pi, for every i ∈ {1, . . . , r}. We let S C = {s, t} ∪ {`i}i=1,...,r,
→C = {(`i, `i+1) | i ∈ [1; r − 1]} ∪ {(s, `1), (`r, t)}, and λC : Prop → 2S is
such that λC (ι0) = {s}, λC (γ0) = {t}, and λC (`) = C whenever ` is a literal
of C. An example of SC is depicted in Figure 4. Notice that by definition,
|SC | is polynomial in |C |.

12

s

p

¬p

q

¬q

r

¬r

tι0 γ0

C1,C2

C1

C2

Fig. 4. SC with C = {C1,C2} where C1 = p ∨ ¬q and C2 = p ∨ r

In the following, let call a full path a path of SC from s to t. The
system SC is designed in such a way that any full path visits either p j or
¬p j in an exclusive manner, for each i = 1, . . . , r. A full path π therefore
unambigously denotes a valuation vπ of the propositions. Reciprocally,
every valuation v of the propositions yields a unique full path πv. Addi-
tionally, a full path π visits a state labeled by C ∈ C if, and only if, vπ
makes the clause C true. Moreover, a full path π visits a state labeled by
C if, and only if there is an anchoring [0; j] such that π(j) is labeled by
C. The following concludes the proof of Proposition 5.

It remains to establish that [(ι0�γ0)?(ι0�C1)?. . .?(ι0�Cm)]path
SC
, ∅

if, and only if, C is satisfiable.

Assume [(ι0 � γ0) ? (ι0 � C1) ? . . . ? (ι0 � Cm)]path
SC
, ∅, with some

element π. The constraint (ι0 � γ0) enforces π to be a full path. Now,
the other constraints enforce π to visits a state labeled by C for each
C ∈ C , entailing the valuation vπ making all clauses true, so that C is
a positive input of SAT. It is not hard to see that conversely, if C is a
positive instance of SAT, then any full path πv, for some valuation v that
makes all clauses true, is in [(ι0 � γ0) ? (ι0 � C1) ? . . .? (ι0 � Cm)]path

SC
.

5.2 Complexity results for ADM(O), CONS(O), COMP(O)

We successively study admissibility, consistency, and completeness.

Theorem 1. ADM({>,=}) is in P.

Proof. We consider the syntactic fragment of the temporal logic CTL [1]
defined by: ϕF p | ϕ∧ ϕ | ϕ∨ ϕ | ^ϕ, where the only temporal operator

13

is the “eventually” one denoted by ^. The semantics of a formula ϕ of
this fragment is given with regard to a labeled transition system S =

(S ,→, λ), and is noted ~ϕ�S. We define ~ϕ�S ⊆ S by induction over ϕ:
~p�S = λ(p), ~ϕ ∧ ϕ′�S = ~ϕ�S ∩ ~ϕ

′�S, ~ϕ ∨ ϕ′�S = ~ϕ�S ∪ ~ϕ
′�S,

and ~^ϕ�S = Pre∗
S
(~ϕ�S), where Pre∗

S
is defined in Section 3.1, that is

s ∈ ~^ϕ�S iff there is a path in S starting from s that visits a state in
~ϕ�S. In the following we simply write ~ϕ� instead of ~ϕ�S. Note that
computing ~ϕ� takes polynomial time in the size of S and ϕ, see for
example [9].

Let ϕθ> :=
n∨

i=1

ι∧ ιi∧^(γ∧γi). Then [>n
i=1 (ιi �γi)]

path
S
∩ [ι�γ]path

S
, ∅ if,

and only if, ~ϕθ>� , ∅. Indeed, if [>n
i=1 (ιi � γi)]

path
S
∩ [ι� γ]path

S
, ∅, then

let π be a path in [>n
i=1 (ιi �γi)]

path
S
∩ [ι�γ]path

S
. Then π go from ι to γ and

there is an i ∈ [1; n] such that π go from ιi to γi. Hence, π go from ι ∧ ιi
to γ ∧ γi. So π ∈ ~ι ∧ ιi ∧ ^(γ ∧ γi)�, which implies π ∈ ~ϕθ>�, which is
then non-empty. Conversely, if ~ϕθ>� , ∅, then let π ∈ ~ϕθ>�. Then there
is an i ∈ [1; n] such that π start from ιi and eventually reaches ι ∧ γ ∧ γi.
Let π′ be the prefix of π that is a path that go from ιi to ι∧γ∧γi. We have
π′ ∈ [>n

i=1 (ιi � γi)]
path
S
∩ [ι� γ]path

S
, so it is not empty.

Let ϕθ= := ι∧ ι1 ∧^(γ1 ∧ ι2 ∧^(γ2 ∧ . . .^(γn ∧ γ))). Then [=n
i=1 (ιi �

γi)]
path
S
∩ [ι � γ]path

S
, ∅ if, and only if, ~ϕθ=� , ∅ Indeed, if [=n

i=1 (ιi �
γi)]

path
S
∩[ι�γ]path

S
, ∅, then let π be a path in [=n

i=1 (ιi�γi)]
path
S
∩[ι�γ]path

S
.

Then π go from ι to γ and is the concatenation of paths πi going from
ιi to γi. Hence, π visits successively ι ∧ ι1, γ1 ∧ ι2, . . . and γn ∧ γ. So
π ∈ ~ϕθ=�, which is then non-empty. Conversely, if ~ϕθ=� , ∅, then let
π ∈ ~ϕθ=�. Then π visits successively ι ∧ ι1, γ1 ∧ ι2, . . . and γn ∧ γ. Let
π′ be the prefix of π that is a path that stops in γn ∧ γ. We have π′ ∈
[=n

i=1 (ιi � γi)]
path
S
∩ [ι� γ]path

S
, so it is not empty.

Theorem 2. ADM({?}) is NP-complete.

Proof. First, we show that ADM(?) is NP-easy by giving a non-determi-
nistic polynomial algorithm. According to Proposition 5, we can guess
π ∈ [?n

i=1 (ιi � γi)]
path
S

with a non-deterministic polynomial algorithm.
Then, we check that π ∈ [(ι � γ)]path

S
by checking that π(0) ∈ λ(ι) and

14

π(|π|) ∈ λ(γ) which is done in constant time, so the algorithm is still
polynomial.

Second, we prove the NP-hardness by reducing the problem of Propo-
sition 5. Let S = (S ,→, λ) be a labeled transition system over proposi-
tions {ι1, γ1, . . . , ιn, γn}. We extend S to S′ = (S ,→, λ′) over propositions
{ι1, γ1, . . . , ιn, γn} ∪ {ι, γ}, with λ′(ι) = λ′(γ) = S and λ′ coincide with
λ over {ι1, γ1, . . . , ιn, γn}. As [(ι � γ)]path

S′
= Π(S′), deciding ADM(?) for

S amounts to deciding if [?n
i=1 (ιi � γi)]

path
S′
, ∅. So the reduction is

straightforward, and ADM(?) is NP-hard.

Theorem 3. CONS({>}) is in P.

Proof. We show a polynomial algorithm deciding CONS({>}).
Let (θ,>,S) be an input of CONS({>}). First, we compute the sets of state
S (ιi) = λ(ιi) ∩ Pre∗

S
(λ(γi)) and S (γi) = λ(γi) ∩ Post∗

S
(λ(ιi)) for i ∈ [1; n],

which is done in polynomial time by reachability analysis. S (ιi) (resp.
S (γi)) represents the states of λ(ιi) (resp. λ(γi)) from which there is a
path to a state of λ(γi) (resp. from a state of λ(ιi)). Then, check that for
every i ∈ [1; n], S (ιi) ⊆ λ(ι) and S (γi) ⊆ λ(γ).

Theorem 4. CONS({=}) is in co-NP.

Proof. We decribe a polynomial non-deterministic algorithm deciding
that an input (θ,=,S) of CONS({=}) is a negative instance9. Let (θ,=,S)
be an input of CONS({=}). We first guess a path π, and check that π ∈
[=n

i=1 (ιi � γi)]
path
S

: the latter can be done by guessing anchoring intervals
[xi; xi+1] of a sequential decomposition of π, and by checking that for all
i ∈ [1; n], xi ≤ xi+1, that π(xi) ∈ λ(ιi) and π(xi+1) ∈ λ(γi), and that x1 = 0
and xn+1 = |π|. It then remains to verify that π < [(ι � γ)]path

S
. Clearly all

these checks can be done in polynomial time.

Theorem 5. CONS({?}) is co-NP-complete.

Proof. A negative instance (θ,?,S) of CONS({?}) is characterized by the
existence of a path π ∈ [?n

i=1 (ιi � γi)]
path
S
\ [(ι� γ)]path

S
.

9 namely that the answer is “no”.

15

Deciding that (θ,?,S) is a negative instance of CONS({?}) is NP-easy:
According to Proposition 5, we can guess π ∈ [?n

i=1 (ιi � γi)]
path
S

with
a non-deterministic polynomial-time algorithm. It then remains to check
that π < [(ι� γ)]path

S
which takes constant time, by Proposition 1.

Deciding that (θ,?,S) is a negative instance of CONS({?}) is NP-hard:
we reduce the problem of deciding [?n

i=1 (ιi � γi)]
path
S
, ∅ (which is NP-

complete by Proposition 5). Assume S = (S ,→, λ) is a labeled transi-
tion system over {ι1, γ1, . . . , ιn, γn}. We extend λ to the set of propositions
{ι1, γ1, . . . , ιn, γn} ∪ {ι, γ}, by letting λ(ι) = λ(γ) = ∅. By construction
[(ι � γ)]path

S′
= ∅, so that (θ,?,S) is a negative instance of CONS({?}) is

equivalent to [?n
i=1 (ιi � γi)]

path
S′
, ∅, and we are done.

We now turn to the decision problems COMP(O). By Remark 1, a neg-
ative instance of CONS(O) necessarily is a negative instance of COMP(O).

Theorem 6. COMP({>,=}) is in co-NP.

Proof. Let (θ,�,S) be a negative instance of COMP({>,=}). There are
two cases: (a) (θ,�,S) is a negative instance of CONS(�), or (b) there
exists a path π ∈ [(ι� γ)]path

S
\ [�n

i=1 (ιi � γi)]
path
S

. The algorithm guesses
whether it is Case (a) or Case (b). For Case (a) we use the polynomial-
time algorithm in the proof of Theorem 3 (recall P ⊆ co-NP) for operator
> and Theorem 4 for operator =. Regarding Case (b), we use a vari-
ant of the proof of Theorem 4: the non-deterministic polynomial-time
algorithm that decides whether or not an input (θ,�,S) is a negative in-
stance of COMP({>,=}) consists in guessing a path π, and in checking that
π ∈ [(ι�γ)]path

S
\[�n

i=1 (ιi�γi)]
path
S

. First, the algorithm guesses an elemen-
tary path π and checks π ∈ [(ι�γ)]path

S
; this check is done in constant time

by Proposition 1. Next, the algorithm checks that π < [�n
i=1 (ιi � γi)]

path
S

.
If � = >, we apply Proposition 1, otherwise � = = and we use Propo-
sition 2.

The last theorem shows that the operator ? is much harder to handle.

Theorem 7. COMP(?) is in ΠP
2 .

Proof. We show that negative instances of COMP(?) can be captured by a
polynomial-time non-deterministic algorithm that can call a polynomial-

16

time non-deterministic subroutine. Let (θ,?,S) be a negative instance
of COMP(?). Similarly to the case of Theorem 6, there are two possible
cases: (a) (θ,?,S) is a negative instance of CONS(?), or (b) there ex-
ists π ∈ [(ι � γ)]path

S
\ [?n

i=1 (ιi � γi)]
path
S

. Therefore, the algorithm first
non-deterministically guesses if it is Case (a) or Case (b). For Case (a), it
behaves like the polynomial-time non-deterministic algorithm proposed
for CONS(?) in the proof of Theorem 5. Regarding Case (b), the algo-
rithm guesses a path 10 π and checks that π ∈ [(ι � γ)]path

S
. Then, the

algorithm checks that π < [?n
i=1 (ιi � γi)]

path
S

. The latter can be performed
by running an NP oracle according to Proposition 3. Hence the set of
negative instances of COMP(?) is in NPNP, that is ΣP

2 , which concludes.

6 Discussion

In this paper, we have developed a path semantics to attack trees that
yields three natural notions of soundness of attack trees: admissibility,
consistency, and completeness. Each soundness notion conveys a mean-
ing of the practioners’ manual decomposition of internal nodes. We then
have explored the complexity of the associated decision problems.

ADM CONS COMP

> P P co-NP
= P co-NP co-NP
? NP-complete co-NP-complete ΠP

2

Fig. 5. Complexities of the three decision problems for each operator

As can be seen, operators > and = are much simpler than the very
classic operator ? widely used in the literature; actually the complexity
ΠP

2 established here for the decision problem COMP(?) is not proved to be
optimal, but we conjecture it is. This rather high complexity is not supris-
ing since the notion of parallel decomposition underlying the operational
semantics of operator? features complex combinatorics. As future work,
we wish to complete the complexity classes picture by showing that, e.g.
all complexities are tight.

10 by Proposition 4 it is enough to consider paths whose size is polynomial in (θ,?,S)

17

References
1. Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. In Workshop on Logic of Programs, pages 52–71.
Springer, 1981.

2. Stephen A. Cook. The complexity of theorem-proving procedures. In Conference Record of
Third Annual ACM Symposium on Theory of Computing, pages 151–158, Shaker Heights,
Ohio, 3–5 1971 1971.

3. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. Freeman, 1979.

4. Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Rolando Trujillo-Rasua.
Attack Trees with Sequential Conjunction. In IFIP SEC 2015, volume 455 of IFIP AICT,
pages 339–353. Springer, 2015.

5. Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Attack–Defense
Trees. Journal of Logic and Computation, 24(1):55–87, 2014.

6. Gabriele Lenzini, Sjouke Mauw, and Samir Ouchani. Security analysis of socio-technical
physical systems. Computers & Electrical Engineering, 47:258–274, 2015.

7. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Atsyra: An integrated environment
for synthesizing attack trees - (tool paper). In Graphical Models for Security - Second Inter-
national Workshop, GraMSec 2015, Verona, Italy, July 13, 2015, Revised Selected Papers,
pages 97–101, 2015.

8. Bruce Schneier. Attack Trees. Dr. Dobb’s Journal of Software Tools, 24(12):21–29, 1999.
9. Philippe Schnoebelen. The complexity of temporal logic model checking. Advances in

modal logic, 4(393-436):35, 2002.
10. Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–

22, 1976.

18

