
The Hintikka’s world project

Sophie Pinchinat and François Schwarzentruber

No Institute Given

Abstract. We present an online software for getting started with epis-
temic reasoning. Playgrounds (muddy children, Sally and Anne, etc.) are
proposed, whose specification is described in Dynamic Epistemic Logic.
Those various playgrounds feature a pedagogical visual description of
the current knowledge of each agent and the knowledge she has about
the knowledge of the others, and so on, which is commonly called higher-
order knowledge. Additionally, an end user, whether expert or not, can
create its own playground by specifying the initial epistemic situation
and run a finite sequence of events to observe the information change of
each agent along this course of events. Beyond the aim of offering a con-
crete setting for experimenting on dynamic epistemic logic, the software
displays the epistemic temporal tree structure resulting from the execu-
tion of the sequence of events, with precise information such as the truth
value of propositions in a node and the event labels along its branch from
the root.

To make the description of the software as friendly as it is, we propose a
dialog-based paper where two protagonists, Q and A, have a conversation about
the aims of this tool and the functionalities it offers. The paper is organized as
follows. Section 1 is meant to motivate the Hintikka’s world project. Sections 2
and 3 address the usefulness of the software for expert and non-expert users, re-
spectively. Next, a use case of the tool is presented in Section 4, and perspectives
for forthcoming improvements and developments are discussed in Section 5.

1 Overview of the Hintikka’s world project

Q: What is the Hintikka’s world project about?
A: First, let me say that the project name is inspired from other tools that have
been developed to help people better acquainted with logic, namely Tarski’s
world ([8],[7]) and Kripke’s worlds [17].

More precisely, Hintikka’s world is a software1 for experimenting Dynamic
Epistemic Logic (DEL) ([6], [28], [27]). DEL extends epistemic logic ([22], [21]))
and is designed for reasoning about knowledge and information change in a multi-
agent system. A multi-agent system is an abstract model of some real situations
which gather autonomous agents that can act and communicate, and that may
have individual or collective goals. DEL has been designed to specify properties

1 http://people.irisa.fr/Francois.Schwarzentruber/hintikkasworld/

http://people.irisa.fr/Francois.Schwarzentruber/hintikkasworld/

of multi-agent systems. It is manifold. The first ingredient of a DEL specification
is the description an initial situation by means of an initial epistemic model. The
second ingredient of a DEL specification is the description of all the events that
may occur along the time line by means of a finite set of event models. These
two first ingredients form a DEL presentation.

The third ingredient of DEL is a language to express properties of the spec-
ified multi-agent system.

Q: What are the strong points in favor of DEL compared to other formalisms
for specifying and analyzing multi-agent systems?

A: As opposed to other formalisms such as epistemic temporal logic [20] or
alternating-time logic [1], DEL offers a powerful language to describe possible
events. The language extends the traditional one of STRIPS, with pre/post-
conditions [16]. Additionally, it is possible to pair events to reflect their indistin-
guishability for a given agent. The resulting structure where events are paired is
called an event model.

This ability to describe a pairing of events is not considered in STRIPS and
leads to a more involved operation when a possible event is triggered in a given
world of the current epistemic model. The triggering of an event displays the
information change caused by the event by an accurate mechanism based on the
update product of the current epistemic model and the triggered event model.

Because of the pairing of events, I wish that you believe that I believe that
DEL is well-suited to express higher-order knowledge (a knows that b knows ...).
Note that higher-order knowledge of agents is relevant in many applications:
game theory [5], robotics ([25], [13]), specifications of distributed systems [19],
etc. Besides, the research community investigates a large amount of effort to
solve a natural extension of classical planning [18], called the epistemic plan-
ning, where the plans to be synthesized are sequences of event models and the
goal to be achieved with such plans is in general an epistemic property [3], [10],
[11].

Q: Are there other softwares that deal with DEL?

A: Recently, model checking in DEL has been proved to be possible in practice
[29], and brought forth the tool DEMO [30], [29]. Still, using DEMO requires
some skills in logic and in Haskell, preventing the tool from being used by “non-
experts”. On the contrary, Hintikka’s world is designed to reach out to a wider
public, such as people who do not know anything about DEL, but can have a
smell of what information change and high-ordered knowledge can be. Never-
theless, Hintikka’s world also propounds expert-level functionalities, that do not
exist in DEMO.

2 For expert users

Q: What functionalities Hintikka’s world offers to experts?

A: Typically, with the custom entry in the scrolling menu, the user can specify
a DEL presentation and “run” it. Before explaining in detail the functionalities,
we recall the formal setting of DEL, focusing on the DEL presentations and on
the update product, leaving apart the language to state properties.

DEL framework is grounded on two central notions: on the one hand, epis-
temic models, namely classic Kripke structures and the possible world semantics
– widely used in logics of knowledge [15], and event models.

In the sequel, we let Ag denote a finite set of agents, with typical elements
i, j, Also we consider an infinite set of atomic propositions AP whose typical
elements are p, q, r,

Definition 1 (Epistemic models). An epistemic model is a structure

M = (W, { i−→}i∈Ag, V)

where W is the non-empty set of worlds, for each agent i ∈ Ag,
i−→⊆W ×W is

its accessibility relation, and V : W → 2AP is the valuation of worlds by atomic
propositions.

A specific world w of the epistemic modelM may be distinguished (to high-
light w as the “actual” world), in which case we note the resulting pointed epis-
temic model as (M, w).

Example 1 (consecutive numbers). Suppose that agents a and b are each given
a number between 0 and 10. Suppose also that they commonly know that the
difference between a’s number and b’s number is at most 1. For instance, the
actual world may be a’s number is 2 and b’s number is 3. In that actual world, a
imagines another possible world in which b’s number is 1. We introduce atomic
propositions of the form pi,n read as ‘agent i’s number is n’. The epistemic

model corresponding to this example called consecutive numbers isM = (W, { i−→
}i∈Ag, V) where:

– W = {(na, nb) ∈ {0, . . . , 10}2 | |na − nb| = 1};
– (na, nb)

i−→ (n′a, n
′
b) iff ni = n′i (agent i knows its own number);

– V ((na, nb)) = {pa,na
, pb,nb

}.

Figure 1 shows the epistemic model, where the actual world is the one labeled
by a2, b3.

Before defining events models, we briefly recall epistemic logic, which we shall
denote by LEL. The syntax of LEL is as follows: ϕ ::= p | ¬ϕ | (ϕ∧ϕ) | Kiϕ.

The semantics of LEL rests upon epistemic models. The truth value of a
formula is evaluated in a pointed epistemic model; as the semantics for the
usual inductive cases is forthright, we only concern ourselves with the knowledge
operator for arbitrary agent i and LEL formula ϕ: (M, w) |= Kiϕ iff for all

worlds w′ such that w
i−→ w′, (M, w′) |= ϕ. In layman’s terms, Kiϕ means that

a0,b1 a2,b1

a2,b3

a4,b3

a4,b5

a6,b5
a6,b7

a8,b7

a8,b9

a10,b9

Fig. 1: Epistemic model for the consecutive numbers example.

a0,b1a2,b1

a2,b3
a2,b3

a4,b3

a4,b5

a6,b5 a6,b7

a8,b7
a8,b9

a10,b9

Fig. 2: The updated epistemic model for the consecutive numbers example, after
the private announcement to a that b’s number is 3.

proposition ϕ stands in all of the worlds thought by agent i to be possible when
the real world is w. Formulas in LEL are used to describe pre and postconditions
of events in event models.

Definition 2 (Event models). An event model E is a structure

(E, (
i−→)i∈Ag, pre, post)

where E is a finite set (of events), each
i−→ is a binary (accessibility) relation on

E, pre : E → LEL is a precondition function, and post : E → AP → LEL is a
postcondition function.

Analogously as for worlds, we designate (E , e) as a pointed event model where
e is some event from E (the “true” event).

pre : ϕ
post : -

a, b

Fig. 3: The point event model for the public announcement of ϕ.

Example 2 (Pointed event model for public announcement). The public announce-
ment of ϕ as considered in [24] corresponds to an event where it is common
knowledge that a true message ϕ is received by all agents. The public announce-
ment of ϕ is modeled by a pointed event model depicted in Figure 3. It has a
single possible event, a reflexive loop on it for each agent. Its precondition is
ϕ and its postcondition is empty (no assignment is made so that the values of
atomic propositions remain unchanged).

We consider now a more involved example of a private announcement.

Example 3 (Pointed event model for private announcement). For the case of
two agents a and b, the private announcement of the message ϕ to agent a is
model-led by the following pointed event model of Figure 4.

The effect of events on worlds is formalized by means of the update product.

Definition 3 (Update product). Given a pointed epistemic model (M, w0)
and a pointed event model (E , e0) where w0 |= pre(e0), the update product
(M, w0)⊗(E , e0) is a new epistemic model (hence new worlds) defined as follows.

(M, w0)⊗ (E , e0) = ((W⊗, (
i−→
⊗

)i∈Ag, V
⊗), (w0, e0))

where

pre : ϕ
post : -

pre : >
post : -

b

a a, b

Fig. 4: For two agents a and b, the pointed event model for the private announce-
ment of ϕ to agent a.

– W⊗ = {(w, e) ∈W ×E | (M, w) |= pre(e)} (each world satisfying an event’s
precondition gives rise to a new world through that event);

– (w, e)
i−→
⊗

(w′, e′) iff (w
i−→ w′ and e

i−→ e′) (the epistemic relation for agent
i conflates new worlds iff it conflated the associated old worlds as well as the
events);

– V ⊗(w, e) = {p ∈ AP | (M, w) |= post(e)(p)} (any new world observes the
postcondition that the associated event required from the old world).

For ease of notation and for the sake of the iteration process described below,
a world (w, e) ∈W⊗ is simply written we.

Example 4. Figure 2 shows (M, w0)⊗ (E , e0) where (M, w0) is given in figure 1
and (E , e0) is given in 4 with ϕ := pb,3.

Without loss of generality, instead of considering a finite family {(Ek, ek)}k∈K
of pointed event model, we may consider pointed event models of the form (E , ek)
where E is the disjoint union of all Ek. We then write (M⊗En, we1 . . . en) for the
epistemic model (M, w)⊗(E , e1) . . .⊗(E , en) obtained by triggering the course of
events e1 . . . en. A trace ofM⊗En is a world inM⊗En, whose typical element
will be denoted by τ .

In Hintikka’s world, one can see the picture of the epistemic modelM⊗Ek.
Very conveniently, it is possible to acquire the Tikz code of the picture, say to
be inserted into a LaTeX document. All those who have written papers on DEL,
know how tedious it is to manually compute the k-th update M⊗Ek, and how
unexciting it is to write the Tikz code that to depict it.

Another useful functionality is also offered. We name DEL presentation a
pair (M, E), sometimes equipped with a family of distinguished events {ek}k∈K .
In order to merge knowledge and time, one can also consider the DEL structure
ME∗ induced by a DEL presentation (M, E). DEL structures are akin to models
in logic of knowledge and time, such as interpreted systems in epistemic temporal
logic [20]. Intuitively those structures are forests. A node at depth n of a tree in
this forest denotes a trace τ ofM⊗En. The relationship between a parent node
τ and its child τ ′ in a tree, reflects the dynamics2 of the system when triggering

2 the dimension along the time line.

an event, so that τ ′ = τe where e is the triggered event. Finally, traces at the

same depth in the forest, say n, may be connected by the binary relation
i−→

reflecting the accessibility relation for agent i in M⊗En.

Fig. 5: A DEL structure generated by Hintikka’s world

Definition 4 (DEL structures). Let M = (W, { i−→}i∈Ag, V) be an epistemic

model and E = (E, (
i−→)i∈Ag, pre, post) be a event model. The DEL structure

denoted by the DEL presentation (M, E) is the infinite structure

ME∗ = (WE∗,→, { i−→}i∈Ag, V ∗),

where

– WE∗ =
⋃

n≥0{τ ∈WEn | τ is a trace of M⊗En}3
– −→⊆ WE∗ × E ×WE∗ is defined by (τ, e, τ ′) ∈−→ whenever τ |= pre(e) and

τ ′ = τe (we simply write τ
e−→ τ ′),

– τ
i−→ τ ′ if τ, τ ′ are traces of M⊗ En, for some n, and τ

i−→ τ ′ in M⊗ En,
and

– V ∗(τ) is the valuation of τ in its update M⊗En.

In Hintikka’s world, the DEL structure ME∗ can be displayed up to some
depth. We came to developing this functionality while investigating the struc-
tural properties of DEL structures: whereas a DEL presentation whose event

3 notice that a trace belongs to a unique update.

preconditions and postconditions are propositional has a regular language of
traces; actually, such a DEL presentation denotes a DEL structure that is au-
tomatic4[4,14]. On the other hand, an arbitrary DEL presentation may lead to
a DEL structure with a non-regular set traces [14], and some DEL structures
can even be proved to be non-automatic; this last observation results from the
reduction of two-counter machine to the epistemic planning problem proposed
in [11]. Therefore, offering an opportunity to observe the DEL structure is very
informative, and paves the way to understanding the expressive power of DEL
presentations. Figure 5 displays an example of a DEL structure generated by
the software up to depth 3.

3 For non-expert users

Q: Who do you think non-expert can be?
A: Non-expert users can be our colleagues working in connected research areas;
typically verification, model-checking, game theory, etc. Indeed most of those
colleagues are not yet familiar with epistemic logic, which is unfortunately not
yet fully established in this community. The DEL framework, although more
complex than epistemic logic has the advantage of introducing the dynamics of
the system and the information change. This way, the mathematical represen-
tation of knowledge becomes something alive and closer to their intuition, even
higher-order knowledge arises naturally.

Other non-expert users can be colleagues from culturally remote fields such
as roboticians, psychologists, etc.

But the simplicity of the tool, with its well-thought built-in examples, makes
it attainable by budding scientists, such as students in computer science or in
philosophy, etc. Besides, we already experimented the tool with psychiatrists
and psychologists at the IME5, with a very positive feedback regarding their
understanding of Kripke models and of higher-order knowledge these structures
capture.

We are currently working on promising test beds for the tool. In June 2017,
the workshop Robolog 20176 will be presented to robotocians, in order to discuss
the relevance of logical approach in decision making. Also, we currently develop a
training course for PhD students on dynamic epistemic logic with an intensive use
of our tool Hintikka’s world [23]; this course will be given at the next European
Agent Systems Summer School in August 20177.

On a broader level, with Hintikka’s world, we want to promote the teaching
of modal logic as an adequate setting that clearly separates orthogonal notions
of syntax and semantics, as opposed to begin with teaching first-order logic.

Q: What does Hintikka’s world offer to non-expert users?

4 in the sense of [9].
5 Institut médico-éducatif of Rennes, France
6 http://people.irisa.fr/Francois.Schwarzentruber/robolog2017/.
7 http://easss2017.ipipan.waw.pl/

http://people.irisa.fr/Francois.Schwarzentruber/robolog2017/
http://easss2017.ipipan.waw.pl/

A: At a first stage, non-expert user may find built-in examples, in which they
can execute event models and observe the resulting updated epistemic model. In
a second stage, users can develop their own examples.
Q: How can user access the models?
A: We use comic strips! So intuitive ...

We have made a great effort to offer an easy way to report epistemic mod-
els. Figure 6 depicts the graphical user interface for the consecutive numbers
example. In this example, two agents a and b8 are given a number and it is
common knowledge that the two numbers are consecutive. Possible events are
two announces: one is agent a announces that “she does not know b’s number”
and the other is agent b announces that “he does not know a’s number”.

Fig. 6: Graphical user interface of Hintikka’s world

What an agent visualises, that is all the possible worlds for her, is displayed
as a thought bubble when clicking on her. In the initial situation of Figure 6,
agent a has number 2 and agent b has number 3. One agent a has been clicked so
that bubble reveals the possible words for her: she considers possible that agent
b has number 1 and that agent b has number 3 (the actual world). Next agent b
has been clicked in the former possible world, hence unfolding the pointed Kripke
model of the current situation. At the same time, the user can observe the graph
of the epistemic model where each possible world of the bubbles highlighted.

8 In the comic strips the agents are with a face red and blue, respectively.

For each built-in example of the software, the worlds of the epistemic model
are labeled by the relevant atomic propositions; for the consecutive numbers
example of Figure 6, they are of the form ai for the fact “agent a has number i”
and of the form bj for the fact “agent b has number j”. On the top right of the
comic strips, buttons for possible pointed event models (public announcement,
public actions, private actions, etc.) are made available to the user. In Figure 6,
the two announcements of the consecutive numbers example are proposed. By
clicking one of them, the corresponding event takes place and the update product
becomes the new current model. The user can then explore it as she could do
for the epistemic model before the event was triggered.

4 Developing new examples

Q: You said that new examples can be developed. How should one proceed?
A: Do you have a particular example in mind?
Q: Hmmm, a friend of mine, that I will call H to ensure anonymity, would be
delighted to hear about the Russian cards example. Do you know this example?

A: Of course, I know it! It is a setting with three agents a, b and c and seven cards
0, 1, 2, 3, 4, 5, 6. Agents a and b hold three cards each and c holds the remaining
card. The example demonstrates the existence of a public announcement leading
to the common knowledge among a and b of their both hands, whereas c does
not know their hands.

Let me tell you how easy it is to develop this example with Hintikka’s world,
which uses Javascript – a classic that most users should be familiar with, or eas-
ily get started for the few required knowledge needed in Hintikka’s world. Notice
that Javascript is a functional language with concise and elegant instructions
(map, interactions, etc. [12]) that ease the description of the models.

Back to our development session, we should start by defining a new class –
that we name RussianCardsWorld (see the architecture of Hintikka’s world in
Figure 9 on last page 13).

The class RussianCardsWorld is described in Figure 7a to define a world
for the example. Its constructor takes as an input an array of propositions
truePropositions that reflects the actual world of the example. For instance,
if agent c holds card 1, a holds cards 3, 5, 6 and b holds cards 0, 2, 4, we would
consider input truePropositions=["c1","a3","a5","a6","b0","b2","b4"].
The instruction super(truePropositions) in the constructor code is a call to
the constructor of the parent class WorldValuation, an abstract class for worlds
in epistemic structures. The three remaining lines of code in the constructor
are responsible for the position of the agents in the graphical user interface ex-
plained earlier. Also, the method draw allows the user to specify the graphical
representation of a world for the developed example. It requires the standard
canvas API of HTML5.

c l a s s RussianCardsWorld extends WorldValuation
{

con s t ruc to r (t r u e P r o p o s i t i o n s) {
super (t r u e P r o p o s i t i o n s) ;
t h i s . agentPos [” a ”] = {x : 6+16 , y : 32+16 , r : 16} ;
t h i s . agentPos [” b ”] = {x : 48+16 , y : 32+16 , r : 16} ;
t h i s . agentPos [” c ”] = {x : 90+16 , y : 32+16 , r : 1 6 } ; ;

}

draw (context) {
t h i s . drawAgents (context) ;

. . .
}

}

(a) Definition of the class RussianCardsWorld

. . .
l e t M = new EpistemicModel () ;

M. addWorld (” w0123456 ” ,
new RussianCardsWorld ([” a0 ” ,” a1 ” ,” a2 ” ,” b3 ” ,” b4 ” ,” b5 ” ,” c6 ”])
)
. . .

M. addEdge (” a ” , ”w0123456 ” , ”w0125634 ”)
. . .

M. setPointedWorld (” w0123456 ”)
. . .

(b) An extract from the epistemic model specification.

. . .
agents . forEach (i =>

M. addEdgeIf (i ,
(w1 , w2) => [0 , 1 , 2 , 3 , 4 , 5 , 6] . map((c) => i+c)
. every ((p) => (w1 . modelCheck (p) == w2 . modelCheck (p))

)
)

) ;
. . .

(c) Another way to specify the epistemic model.

Fig. 7: The Russian cards example.

Q: WOW! Do you mean then that the GUI for the built-in examples would also
work for this newly-developed Russian cards example? Clicking on an agent,
seeing what she visualises, etc.?

A: Sure it will work! This is made possible by the fact that the new class in-
herits from the abstract class WorldValuation. But let us keep on with the new
example of Russian cards.

You may now specify the pointed epistemic model as depicted in Figure 7b,
or as in Figure 7c, by taking advantage of the functional nature of Javascript:
this concise piece of code adds, for each agent i, an i-edge in M between two
worlds w1 and w2 whenever the two worlds agree on the value on agent a’s card
numbers; formally, for every p ∈ {a0, . . . , a6}, w1 |= p iff w2 |= p.

Q: And how do you define event models?

A: Just like we specified epistemic models, as the mathematical structures are
alike. Figure 8 is an example of an event model specification: this event describes
agent a dropping Card 1 while other agents (b and c) do not notice it. Param-
eters of the method addEvent are as follows. The first parameter is the event
name. The second one is its precondition, and the third one (optional) is its
postcondition. For instance, the precondition of e is a1 and its postcondition
assigns false to a1.

l e t E = new ActionModel () ;
E . addEvent (” e ” , ”a1 ” , {”a1 ” : ”bottom ”}) ;
E . addEvent (” f ” , ” top ”) ;
E . addEdge (” a ” , ”e ” , ”e ”) ;
agents . forEach (i => E. addEdge (i , ” f ” , ” f ”) ;)
[” b” , ”c ”] . forEach (i => E. addEdge (i , ” e ” , ” f ”)) ;
E . setPo intedAct ion (” e ”) ;

Fig. 8: The Russian cards example: an event model where agent a drops Card 1
and agents b and c do not notice it.

Once an event model E has been specified, the user can execute this event on
her current epistemic model M, and obtain the new (updated) epistemic model;
the needed piece of code is just product(M, E). She can next iterate the execu-
tion of events that she has specified.

Q: The tool seems easy to use and very intuitive.

A: I am happy to hear that, and indeed colleagues who tried it gave us a very
encouraging feedback.

5 Perspectives

Q: Your tool seems promising for teaching, explaining and experimenting dy-
namic epistemic logic. What do you plan for the future?
A: In the short term, we wish to improve the graphical user interface. To this
aim, we have submitted a project in collaboration with the art school l’institut
supérieur des arts appliqués (LISAA) in Rennes, France. We also want to im-
plement heuristics for displaying the most relevant epistemic worlds when they
are too many.

In the medium term, on a more technically side, we will connect Hintikka’s
world with model checkers for dynamic epistemic logic model checkers [30,29],
while promoting symbolic appraoches [26]; we may also consider developing our
own model checker to enrich the domain of the variables, such as enumerated
types and infinite types like integers.

In a longer term, we target an involved functionality that solves epistemic
planning problems. Those problems, acknowledged to be difficult ones have nu-
merous applications and open the way to epistemic strategic reasoning in multi-
agent systems. The generic problem of epistemic planning consists in synthe-
sizing a finite sequence of events to be executed so that the reached epistemic
situation fulfills a given epistemic formula [10]. Notice that we may modestly
stick to bounded epistemic planning problems9, because the general problem is
undecidable [10], [3], [11].

Ultimately, the tool could be useful in several kinds of societal applications,
such as the three following ones. First, it could contribute to teaching children
how to reason about higher-order knowledge [2]. Second, it may provide an
interface for displaying mental states of real human-aware robots [25], [13].

1 *

*

1

Graph

GUI

WorldValuation

EpistemicModel

MuddyChildrenWorld SallyAndAnneWorld RussiancardsWorld

EventModel

Fig. 9: Architecture of Hintikka’s world

9 that is by bounding the length of the plans.

Acknowledgments. We warmly thank all the members of the LogicA group:
Tristan Charrier, Eva Soulier, Sébastien LeCong, Maxime Audinot, Florence
Wacheux. Also, we are cheerful to thank Noël Plouzeau for dedicating his pre-
cious time to playing with Hintikka’s world and letting us know that he enjoyed!

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

2. Burcu Arslan, Rineke Verbrugge, Niels Taatgen, and Bart Hollebrandse. Teaching
children to attribute second-order false beliefs: A training study with feedback. In
Proceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci
2015, Pasadena, California, USA, July 22-25, 2015, 2015.

3. Guillaume Aucher and Thomas Bolander. Undecidability in epistemic planning. In
IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, 2013.

4. Guillaume Aucher, Bastien Maubert, and Sophie Pinchinat. Automata techniques
for epistemic protocol synthesis. In Proceedings 2nd International Workshop on
Strategic Reasoning, SR 2014, Grenoble, France, April 5-6, 2014., pages 97–103,
2014.

5. Robert J. Aumann. Interactive epistemology I: knowledge. Int. J. Game Theory,
28(3):263–300, 1999.

6. Alexandru Baltag, Lawrence S Moss, and Slawomir Solecki. The logic of public
announcements, common knowledge, and private suspicions. In Proceedings of the
7th conference on Theoretical aspects of rationality and knowledge, pages 43–56.
Morgan Kaufmann Publishers Inc., 1998.

7. David Barker-Plummer, Jon Barwise, and John Etchemendy. Tarski’s world: Re-
vised and expanded. 2007.

8. Jon Barwise and John Etchemendy. The language of first-order logic including the
macintosh version of tarski’s world 4.0. 1993.

9. Achim Blumensath and Erich Grädel. Automatic Structures. In Proceedings of
15th IEEE Symposium on Logic in Computer Science LICS 2000, pages 51–62.
IEEE, 2000.

10. Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single
and multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34,
2011.

11. Tristan Charrier, Bastien Maubert, and François Schwarzentruber. On the impact
of modal depth in epistemic planning. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 1030–1036, 2016.

12. Guy Cousineau and Michel Mauny. The functional approach to programming.
Cambridge University Press, 1998.

13. Sandra Devin and Rachid Alami. An implemented theory of mind to improve
human-robot shared plans execution. In The Eleventh ACM/IEEE International
Conference on Human Robot Interation, HRI 2016, Christchurch, New Zealand,
March 7-10, 2016, pages 319–326, 2016.

14. Gaëtan Douéneau-Tabot, Sophie Pinchinat, and François Schwarzentruber. Pro-
priétés régulières des arbres. IRISA research report, 2016.

15. Ronald Fagin, Yoram Moses, Joseph Y Halpern, and Moshe Y Vardi. Reasoning
about knowledge. MIT press, 2003.

16. Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.

17. Olivier Gasquet, Andreas Herzig, Bilal Said, and François Schwarzentruber.
Kripke’s Worlds - An Introduction to Modal Logics via Tableaux. Studies in Uni-
versal Logic. Birkhäuser, 2014.

18. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

19. Joseph Y. Halpern and Ronald Fagin. Modelling knowledge and action in dis-
tributed systems. Distributed Computing, 3(4):159–177, 1989.

20. Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowl-
edge and time. 1. Lower bounds. Journal of Computer and System Sciences,
38(1):195–237, 1989.

21. Jaakko Hintikka. Reasoning about knowledge in philosophy: The paradigm of
epistemic logic. In Proceedings of the 1st Conference on Theoretical Aspects of
Reasoning about Knowledge, Monterey, CA, March 1986, pages 63–80, 1986.

22. Saul A Kripke. Semantical analysis of modal logic i normal modal propositional
calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963.

23. Sophie Pinchinat and François Schwarzentruber. Dynamic epistemic logic and its
applications to plan/protocol synthesis, August 2017.

24. Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.
25. Brian Scassellati. Theory of mind for a humanoid robot. Auton. Robots, 12(1):13–

24, 2002.
26. Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. Symbolic

model checking for dynamic epistemic logic. In Logic, Rationality, and Interaction
- 5th International Workshop, LORI 2015 Taipei, Taiwan, October 28-31, 2015,
Proceedings, pages 366–378, 2015.

27. Johan van Benthem, Jan van Eijck, and Barteld P. Kooi. Logics of communication
and change. Inf. Comput., 204(11):1620–1662, 2006.

28. Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Springer, Dordecht, 2008.

29. Hans van Ditmarsch, Jan van Eijck, Ignacio Hernández-Antón, Floor Sietsma, Sunil
Simon, and Fernando Soler-Toscano. Modelling cryptographic keys in dynamic
epistemic logic with DEMO. In Highlights on Practical Applications of Agents and
Multi-Agent Systems - 10th International Conference on Practical Applications
of Agents and Multi-Agent Systems, PAAMS 2012 Special Sessions, Salamanca,
Spain, 28-30 March, 2012, pages 155–162, 2012.

30. Jan van Eijck. Demo—a demo of epistemic modelling. In Interactive Logic. Selected
Papers from the 7th Augustus de Morgan Workshop, London, volume 1, pages 303–
362, 2007.

	The Hintikka's world project

