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Abstract. In this paper, we investigate the model checking problem of symbolic models against epis-
temic logic with arbitrary public announcements and group announcements. We reduce this problem to
the satisfiability of Monadic Monadic Second Order Logic (MMSO), the fragment of monadic-second
order logic restricted to monadic predicates. In particular, for the case of epistemic formulas in which
all arbitrary and group announcements are existential, the proposed reduction lands in monadic first-
order logic. We take advantage of this situation to report on few experiments we made with first-order
provers.

1 Introduction

In a multi-robot system, agents collect knowledge from what they perceive with their sensors and from
the information acquired from some communication channel [31,32]. In order to formalize the notion of
knowledge, epistemic modal logics have been developed. For instance, Dynamic epistemic logic [9,43] aims
at expressing properties about the knowledge of agents and at modeling information change in multi-agent
settings. Public announcement logic PAL [38] is a noticeable fragment of Dynamic epistemic logic, where
possible events are public announcements. Since then, variants/extensions of PAL have been developed:
typically, arbitrary public announcement logic APAL [6] and group announcement logic GAL [2]. The family
of announcement logics has been the subject of much work as they open the way to formal reasoning in many
practical applications. We here mention a few, at the intuitive level only. For example, such logics enable one
to reason about human/robot interaction via a public channel of communication: message exchanges between
robots can be modeled by public announcements when there is common knowledge of the reliability of the
network and when it is assumed that messages are received instantaneously [32]. Announcement logics, as
well as dynamic epistemic logic, are also relevant in games [34]: in the Battleships, players publicly announce
that there is a ship in a given cell. In card games, players often publicly show some cards to other players or
announce something. Some issues in security may also be approached with announcement logic: for example,
one may wish to verify that no announcement leads the system to a critical/bad state, say, where Intruder
knows some secret [17]. Finally, gossip-based algorithms in distributed systems, where agents privately share
their secrets in order to achieve shared knowledge of all secrets4, may be analyzed with announcement logic
[28,41].

In order to get started with announcement logic, we develop the classic Russian card example.

Example 1 (Russian card [44,42]).
We consider three agents, a, b and c. Agent a has 3 cards in her hand, b has 3 cards in his hand and c has

1 card in his hand. The cards range from 1 to 7. Given a hand, say as in Figure 1, the question is whether a
and b can publicly announce truthful facts so that they commonly know all players’ hands but c not learning
any card from a’s or b’s hands from the course of announcements.

In the case where a and b have 3 cards and c 1 card, it is shown in [44] that it is possible for a and b to
share information about their hands in any possible configuration in one single public announcement for a
and one single public announcement for b.

4 in a minimal number of communications.



1 3 4 2 6 7 5

a b c

Fig. 1. Example of hands for the Russian cards puzzle

Of course, a cannot just announce what her hand is, because it would cause c to learn the content of her
hand. The trick for a consists in announcing a set of possible hands such that b can deduce what a’s hand
is, and c cannot. In the example of Figure 1, if a announces the sentence (∆) “My hand is either 134, 126,
367, 465 or 275”, she ensures that for any possible configuration of hands for b and c, b will always be able to
deduce a’s hand and c will never deduce any card of a’s hand. After a has announced (∆), b actually knows
all hands of the players. Therefore, b announces “c has card 5 is his hand” so that a knows all hands.

Regarding logics APAL and GAL, it has been proved that their satisfiability problem are undecidable
([3], [25]). It has been shown that the satisfiability problem with iterations over public announcements is
undecidable too [36], so the satisfiability problem with any protocol is also undecidable. Nevertheless, these
logics are very relevant for model checking, that is verifying that a given model satisfies a given property. The
model checking problem is at the heart of this contribution. Additionally, the setting we consider is the one
of symbolic models. These models are not specified in extension but described by means of all the possible
valuations of a finite set of propositions (each valuation denotes a possible world) and the indistinguishability
relations (one for each agent) are specified by accessibility programs.

We introduce a second example, the standard muddy children puzzle [43], and we pull its definition to a
symbolic model. Both Russian cards and muddy children examples will be useful in the paper.

Example 2 (muddy children). We consider n children playing in their garden. Some of them have mud on
their forehead, some have not. Each child can see the others’ forehead5, but she cannot see her own. We
suppose that all children are honest and clever. Their father comes to them and says: “At least one of you
has mud on her head.”. Then he repeatedly asks “Does any one of you know for sure whether he/she is
muddy?”. He stops asking when at least one child tells that she knows.

The solution to this very classic puzzle is that if k children are muddy with k ≤ n, no child knows its
status before round k, and the muddy children know their status in round k 6.

Formally, the initial situation is modeled by a Kripke model containing all combinations of possible
children’s forehead’s status, that is 2n possible worlds. In a given situation/world, each child considers one
other possible world that differs from the current one regarding her own forehead’s status. Figure 2 shows
the Kripke model for two agents. Proposition pa stands for “a is muddy” while proposition pb symmetrically
stands for “b is muddy”.

Because Kripke models may be large – in the muddy children example the model is exponential in the
number of children – many symbolic representations have been considered in the model checking literature
(see for example [5]) and more recently in epistemic logic [40,19,20]. We use here the notion of symbolic
accessibility relations that we call accessibility programs, or simply programs, that can modify propositional
variables. These programs are akin to a dialect used in PDL [24], called DL-PA, for “dynamic logic of
propositional assignments” [8]. These programs turn out to be the natural way of defining Kripke models.
For instance, for the muddy children puzzle, the program of agent a (resp. b) is: Non-deterministically choose
between setting the value of pa (resp. pb) to false or to true. As observed in [20], the size of a symbolic Kripke
model (that is the size needed to describe the collection of agent programs) may be exponentially smaller
than the size any equivalent non-symbolic Kripke model 7. Thus it is polynomial in the number of children
in the muddy children’s example.

5 henceforth if there is mud.
6 Clean children know their status during round k + 1.
7 For non-symbolic Kripke models, the size is the one of its graph.
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The symbolic model checking of APAL was already studied in [19]. Its complexity was proved to be
ApolExptime-complete, and NExptime-complete when restricted to existential arbitrary announcements.
Recall that the class ApolExptime [29,14,15] stands for the class of problems decided by alternating Turing
machines [16] that run in exponential time but with only a polynomial number of alternations along the
computation, hence it is in between Exptime and Aexptime (= Expspace).

In this paper, instead of building specific algorithms for model checking symbolic models against arbitrary
public announcement and group announcement logic (AGPAL, the natural combination of APAL and GAL),
we bring closer this logic and first-order logic. More precisely:

1. We show a polynomial reduction from the symbolic model checking8 against AGPAL to the satisfiability
problem of the monadic monadic second order logic, written MMSO here, that is the fragment of monadic
second order logic where all predicates in the formula are monadic.

2. We prove that this reduction leads to a reduction from the symbolic model checking of existential AG-
PAL9 (∃AGPAL) to the satisfiability problem of monadic first-order logic, that we write MFO. This
reduction is supported by the fact that the symbolic model checking against ∃AGPAL and the satisfi-
ability problem of monadic first-order logic are both NExptime-complete (see respectively [19] and [4],
[33], [35]).

3. We build a set of benchmarks for FO provers and report on our experiments.

We claim that the relationship we establish between announcement logics and first-order logic cross-
fertilizes two communities: the one in dynamic epistemic logic would benefit from the expertise of researchers
in first-order provers in term of efficiency of algorithms and theorem proving techniques; the other community
from first-order logic will collect new benchmarks that correspond to instances of the symbolic model checking
problem of ∃AGPAL.

The article is organized as follows. In Section 2, we recall the setting of MMSO and MFO. Next, in Sec-
tion 3, we describe the language AGPAL and its existential fragment ∃AGPAL. Sections 4 (resp. Section 5)
is dedicated to the reduction of the symbolic model checking problem against AGPAL (resp. ∃AGPAL) to
the satisfiability problem for MMSO (resp. MFO). In Section 6, we benefit from the use of FO provers to
solve the symbolic model checking problem against ∃AGPAL, and report on our experiments. Finally, we
open perspectives for future work in Section 7.

In the rest of this paper, we fix a countable set of atomic propositions AP = {p, q, p1, p2, . . .}.

2 Brief recall on first and second-order logics

Monadic monadic second-order logic MMSO and its fragment monadic first-order logic MFO are central
in the proposed approach. These monadic fragments of MSO and FO respectively disallow the use of non-
unary predicates and of function symbols: MMSO-formulas are thus monadic second-order formulas with
first-order and second-order variables but with no occurrence of non-unary predicates; MFO-formulas have
only first-order variables. The signature of MMSO mimics the set of atomic propositions AP: to each atomic
proposition p ∈ AP, we introduce a corresponding unary predicate symbol P (.)10.

A model M of MMSO is a structure (D, (PM )p∈AP) where D is a non-empty domain and each PM ⊆ D.
We will use the classical notation of the form M [...] for the model M extended with (first-order and second-
order) variable assignments: for instance, M [x ← e, y ← e′,X ← D′,Y ← D′′] is the model M in which
first-order variables x and y are interpreted by element e ∈ D and e′ ∈ D respectively, and second-order
variables X and Y are interpreted by element D′ ⊆ D and D′′ ⊆ D respectively.

8 a short way for model checking of symbolic models.
9 the fragment of AGPAL with only existential arbitrary and group announcements.

10 We take the convention that atomic propositions are written in lowercase while the corresponding predicates are
written in uppercase.
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Regarding the properties of MMSO and MFO, it is known that the satisfiability problem of a MFO-
formula is NExptime-complete [4,33]. Also, there are plenty of FO provers: Isabelle, iprover, Z3 [21], CVC4
[10]. In particular, the prover iprover won CASC 2016 in EPR division [39].

3 Background on arbitrary/group public announcement

In this section, we define the logic AGPAL that extends both arbitrary public announcement logic and group
announcement logic, as well at its fragment ∃AGPAL. Moreover, we consider symbolic models to interpret
these logics, and state the symbolic model checking problem.

3.1 Syntax of AGPAL

Let AP be a countable set of atomic propositions. Let Agt be a finite set of agents. We define the logic AGPAL
that extends both arbitrary public announcement logic and group announcement logic, but we simply call
it announcement logic.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | 〈ϕ!〉ϕ | 〈•!〉ϕ | 〈•!G〉ϕ
where p ranges over AP and a over Agt. Formula Kaϕ reads as “agent a knows that ϕ holds”. Construction

〈ψ!〉ϕ reads as “ψ is true and after having announced ψ, formula ϕ holds”. 〈•!〉ϕ reads as “there exists a
true formula ψ such that makes ϕ true after announcing it”. Formula 〈•!G〉ϕ reads as “agents of group G
can make ϕ hold by announcing at the same time each a formula she knows”. In other words, it means
that “there exists a true formula of the form

∧
a∈GKaψa such that make ϕ hold after announcing it”. As

usual, we write (ϕ ∨ ψ) for ¬(¬ϕ ∧ ¬ψ), K̂aϕ for ¬Ka¬ϕ, [ψ!]ϕ for ¬〈ψ!〉¬ϕ. We concisely write 〈ψ!〉nϕ for
〈ψ!〉 . . . 〈ψ!〉ϕ where the announcement of ψ takes place n times.

Example 3 (Muddy children with n children). Suppose that all children are muddy.
Formula 〈

∨
a∈Agt pa!〉〈(

∧
a∈Agt ¬Kapa)!〉n

∧
a∈AgtKapa states that all children know that they are muddy

after the father announces that one of them is muddy and then announces n times that no child knows that
she is muddy. It is known that this formula holds in the initial situation of the muddy children puzzle.

Example 4 (Russian cards). We introduce propositions pi,a for “agent a has card i”. Let APh be the set of
all propositions pi,a, pi,b, pi,c for i ∈ {1, . . . , 7}.

Let S7 be the set of all permutations of {1, . . . , 7}. Given h = (h1, ..., h7) an element of S7, we define

ϕRh(h) = ph1,a ∧ ph2,a ∧ ph3,a ∧ ph4,b ∧ ph5,b ∧ ph6,b ∧ ph7,c ∧
∧

p∈APh\{ph1,a,...,ph7,c}

¬p.

ϕRh(h) describes a particular configuration h of the hands for the players. The rules of the game are
defined by the formula ϕR =

∨
h∈S7

ϕRh(h).
The following formula ϕG states that both a and b know the card configurations while c does not:

ϕG =
∨

h∈S7

(KaϕRh(h) ∧KbϕRh(h))) ∧
∧

p∈{p1,a,...,p7,a,p1,b,...,p7,b}

¬(Kcp) ∧ ¬(Kc¬p)

In the Russian card situation, the goal is to check that 〈•!a〉〈•!b〉ϕG holds.

3.2 Syntax of ∃AGPAL

We now define the fragment ∃AGPAL of AGPAL, where arbitrary and group announcement operators are
only existential. Formally, ∃AGPAL is defined by the following grammar.

∃AGPAL 3 ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | K̂aϕ | 〈ϕ!〉ϕ | 〈•!〉ϕ | 〈•!G〉ϕ
ψ ::= p | ¬ψ | ψ ∨ ψ | Kaψ

where p ∈ AP and a is an agent.
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Example 5. The formula 〈•!a〉〈•!b〉ϕG given in the Russian card Example is in ∃AGPAL.

Example 6. Formula Kb〈•!a〉Kcp is not in ∃AGPAL since 〈•!a〉 occurs after Kb. Formula K̂b〈•!a〉Kcp is in
∃AGPAL.

3.3 Semantics of AGPAL

Formulas of AGPAL are interpreted on classic Kripke models with the possible world semantics, widely used
in logics of knowledge [23].

Definition 1. A Kripke model is a tuple M = (W, { a−→}a∈Agt, V ), where:

– W is the non-empty set of worlds,
– for each a ∈ Agt,

a−→⊆W ×W is the accessibility relation for agent a,
– V : W → 2AP is the valuation on worlds, that reveals the set of propositions that hold.

For the sake of generality, we do not require the accessibility relations to be equivalence relations.

w : {pa, pb} u : {pb}

v : {pa} s : ∅

a

a

b b

a, b

a, b

a, b

a, b

Fig. 2. Kripke model for the muddy children puzzle for two agents

Example 7 (muddy children). Figure 2 shows a Kripke model for muddy children with n = 2 agents. It has
four worlds w, u, v, s. The arrows represent the agents’ accessibility relations. For an arbitrary number n of

agents, the Kripke model is M = (W, { i−→}i∈Agt, V ) where:

– W = 2{pa|a∈Agt};
–

a−→= {(w, u) | w \ {pa} = u \ {pa}};
– V (w) = w.

This Kripke model is a graph containing 2n nodes and 2n+1 × |Agt| edges.

Example 8 (Russian cards). A Kripke model corresponding to the Russian card puzzle is

M = (W, { a−→}a∈Agt, V ) where:

– W is the set of valuations over APh that satisfy formula ϕR; where ϕR is defined in Example 4;
– w

a−→ u if w ∩ {pi,a | i ∈ {1, . . . , 7}} = u ∩ {pi,a | i ∈ {1, . . . , 7}};
– V (w) = w.

Informally, W is the set of all distributions of cards, w
a−→ u if a holds the same cards in both worlds w and

u, and the valuation V (w) is given by w.

Back to the semantics of AGPAL, we now define the truth conditions for M, w |= ϕ (read as “formula
ϕ is true in world w of model M”) and the restriction Mψ of a model M to a formula ψ.
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Definition 2. We define M, w |= ϕ (read as “formula ϕ is true in world w of model M”) and Mψ (the
ψ-restriction of M) by mutual induction:

– M, w |= p if p ∈ V (w);
– M, w |= (ϕ1 ∧ ϕ2) if M, w |= ϕ1 and M, w |= ϕ2;
– M, w |= ¬ϕ if M, w 6|= ϕ;

– M, w |= Kaϕ if for all u such that w
a−→ u, M, u |= ϕ;

– M, w |= 〈ψ!〉ϕ if M, w |= ψ and Mψ, w |= ϕ;
– M, w |= 〈•!〉ϕ if there exists a formula ψ without any occurrence of 〈•!〉 or 〈•!G〉 such thatM, w |= 〈ψ!〉ϕ;
– M, w |= 〈•!G〉ϕ if there exist formulas (ψa)a∈G without any occurrence of 〈•!〉 or 〈•!G〉, such that
M, w |= 〈

∧
a∈GKaψa!〉ϕ.

and Mψ is the model (Wψ, { a−→
ψ
}i∈Agt, V ψ) where

– Wψ = {u ∈W | M, u |= ψ} (namely, only worlds satisfying ψ are preserved);

–
a−→
ψ

=
a−→ ∩(Wψ ×Wψ);

– V ψ is the restriction of V to Wψ.

Example 9 (muddy children continued). Let M be the model of Figure 2. We have:

M, w |= 〈Kbpa!〉Kapa ∧ 〈•!〉Kapa ∧ 〈•!{b}〉Kapa.

3.4 Symbolic presentations of models

As in [19], [20], a symbolic accessibility relation, simply called an accessibility program, or even a program, de-
scribes a relation between valuations by executing an explicit sequence of propositional variable assignments.
We write u

π−→ v for “v is a π-successor of u by π”. The syntax for symbolic programs is the following.

π ::= p←β | β? | (π;π) | (π ∪ π) | (π ∩ π) | π−1

where p ∈ AP, β is a Boolean formula over AP.
The intuitive meaning of the constructions for programs is given in Table 1.

p←β Set p to the value of Boolean formula β

β? Test that β holds.

π;π′ Execute π then execute π′.

π ∪ π′ Non-deterministically execute π or π′.

π ∩ π′ Execute the intersection of π and π′

π−1 Converse of π

Table 1.

In what follows, we let set(p1, . . . , pn) denote the program (p1←⊥ ∪ p1←>); . . . ; (pn←⊥ ∪ pn←>) that
sets arbitrary values to p1, . . . , pn.

Example 10 (Programs for the muddy children example). Since child a sees the forehead of child b but not
her own, the program of a amounts to varying the truth value of pa. That is, πa = set(pa), and symmetrically
for b, πb = set(pb).

The semantics of programs is defined by induction.

– w
p←β−−−→ u iff (w 6|= β and u = w\{p} ) or (w |= β and u = w ∪ {p});
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– w
β?−→ u iff w |= β and w = u;

– w
π1;π2−−−→ u iff there exists v s.t. w

π1−→ v and v
π2−→ u;

– w
π1∪π2−−−−→ u iff w

π1−→ u or w
π2−→ u;

– w
π1∩π2−−−−→ u iff w

π1−→ u and w
π2−→ u;

– w
π−1

−−→ u iff u
π−→ w.

The size of a program is the number of nodes its syntax tree, or equivalently the number of symbols
needed to write it, parenthesis omitted. For instance, the program (p← >) ∪ (q?; p← ⊥) has size 10.

As we have seen, the models are symbolically described by means of programs. They yield symbolic Kripke
models that denote classic Kripke models11. However, the former may be exponentially more succinct than
the latter

Definition 3 (Symbolic Kripke models). A symbolic Kripke model is a tuple M = 〈APM , (πa)a∈Agt〉
where APM ⊆ AP is a finite set of atomic propositions and πa is a program over APM for each agent a.

Intuitively, each program πa symbolically describes the accessibility relation for an agent a.

Example 11. The symbolic Kripke model corresponding to the initial situation of the muddy children puzzle
is M = 〈APM , (πa)a∈Agt〉 where:

– APM = {pa | a ∈ Agt};
– πa = set(pa) for all agents a.

A pointed symbolic Kripke model is a pair (M, w) where M = 〈APM , (πa)a∈Agt〉 is a symbolic Kripke
model and w is a valuation over APM .

We define the explicit Kripke model M̂(M) associated to the symbolic Kripke model M: the set of worlds

is the set of valuations over APM and the accessibility relation
a−→ is the relation

πa−→.

Definition 4. Given a symbolic Kripke model M = 〈APM , (πa)a∈Agt〉, the Kripke model represented by M,

noted M̂(M) is the model (W, (
a−→)a∈Agt, V ) where:

– W = V(APM ) where V(APM ) is the set of valuations over APM ;

–
a−→= {(w, u) ∈W 2 | w πa−→ u};

– V (w) = w.

We write M, w |= ϕ instead of M̂(M), w |= ϕ.

Example 12 (muddy children continued). The Kripke model corresponding toM is M̂(M) = (W, { a−→}a∈Agt, V )

where W = V(APM ); for every a ∈ Agt,
a−→= {(w, u) ∈W 2 | w \ pa = u \ pa}; V (w) = w. Compared to the

Kripke model given in Example 7 whose size is exponential in |Agt|, the symbolic Kripke model is of size
3|Agt|.

Example 13 (Russian cards). First we consider the following symbolic Kripke model M = 〈APM , (πa)a∈Agt〉
where: APM = {pi,a, pi,b, pi,c | i ∈ {1, . . . , 7}}; πx = set{pi,y | i ∈ {1, . . . , 7} and y ∈ {a, b, c} \ {x}} for agent

x ∈ {a, b, c}. The Kripke model corresponding to the initial situation of the Russian card is M̂(M)ϕR , which
corresponds to model M̂(M) after the fake announcement ϕR that enforces common knowledge that agents
a and b have 3 cards each and c has 1.

We finally define the symbolic model checking problem against AGPAL which is central in our contri-
bution, and that we write AGPAL-mc.

– Input: a symbolic model M, a valuation w, and a formula ϕ;
– Output: yes if M, w |= ϕ, no otherwise.

11 Actually, and vice versa [20].
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4 Announcement logic into monadic monadic second-order logic

We reduce the model checking against AGPAL to the satisfiability problem of MMSO. Intuitively, second-
order variables denote current sets of valuations, called contexts, and first-order variables denote possible
worlds/valuations. We present the reduction in four steps:

1. we define an MMSO-theory that enforce the MMSO-model to contain all valuations (Theorem 1);
2. we translate arbitrary accessibility programs into first-order logic (Theorem 2);
3. we translate AGPAL formulas into MMSO (Theorem 3);
4. we give the reduction of the AGPAL-model checking into the MMSO-satisfiability problem (Theorem 4).

4.1 The theory of models of valuations

In this section, we fix a set of atomic propositions A. Since we evaluate AGPAL-formulas on a symbolic
model M meant to denote the Kripke model with all valuations, we therefore need to enforce that all such
valuations are captured.

Definition 5. The model of valuations MA on A is the structure MA = (D, (PMA)p∈A) with D is the
domain of all valuations on A and the interpretation of P is defined by as PMA(w) iff p ∈ w.

In what follows, we write PA for the set of atomic predicates associated to some p ∈ A.

Definition 6. Let β be a Boolean formula over A. We define the first-order formula tr(β)(x) to be formula
β in which each occurrence of p ∈ AP is replaced by P (x). Similarly, for a valuation w, we define tr(w)(x) for
the formula describing w where all p are replaced by P (x).

Example 14. Let β = (p ∨ q) ∧ (¬p ∨ q). Then tr(β)(x) = (P (x) ∨Q(x)) ∧ (¬P (x) ∨Q(x)).

Example 15. Let w = {p, q} a valuation over A = {p, q, r}. tr(w)(x) = P (x) ∧Q(x) ∧ ¬R(x).

We define a theory TA such that MA satisfies TA and every model satisfying TA is isomorphic to MA.
Currently, in an arbitrary structure (D, (PM

i )pi∈AP), two distinct elements e, e′ in D may be such that
e ∈ PM

i iff e′ ∈ PM
i for all pi ∈ AP. To prevent it, we define ϕunique = ∀x∀y(x = y)↔

∧
p∈A(P (x)↔ P (y)).

It says that two elements satisfy the same predicates (i.e. are the same valuation) iff they are equal. We
define too ϕexists says that for each valuation, for each atomic proposition p, there exists another valuation

that differs only on p. In other words, ϕexists = ∀x
∧
p∈A

(
∃y
(

(P (x)↔ ¬P (y)) ∧
∧
q∈A,q 6=p(Q(x)↔ Q(y))

))
,

imposing all valuations to appear in the model.
By letting TA = {ϕunique, ϕexists}, we get the following.

Theorem 1. For all MMSO-models M , we have M |= TA iff M is isomorphic to MA.

Proof. ⇐: It is sufficient to prove that MA |= TA:
• MA |= ϕunique because each valuation is represented exactly one time in D and by Definition 5, P

mimics the role of the atomic propositions in the valuations.
• MA |= ϕexists because all valuations are represented in D.

Therefore MA |= TA and thus M |= TA.
⇒: Let M be such that M |= TA. Let D′ be the domain of M and P ′ be the monadic predicates of M .

We define the mapping f : D′ → D such that for all e ∈ D, f(e) is the valuation {p | e ∈ P ′} ∈ D. We
conclude by showing that f is an isomorphism.
• f is injective: if f(e) = f(e′), it means that for all P , e ∈ PM iff e′ ∈ PM . With M |= ϕunique, we

conclude that e = e′.
• f is surjective: let w be an element of D. As D′ is non-empty, let e be in D′. As M |= ϕexists, we

can, from e, guarantee the existence of an element e′ of D′ such that f(e′) = w.

From Theorem 1, we obtain the following.

Corollary 1. Let ϕ be an MMSO-formula. Then MA |= ϕ if, and only if, TA ∧ ϕ is MMSO-satisfiable.
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4.2 From programs to FO-formulas

Definition 7. Let π be a program and x, y be two first-order variables. We define the first-order formula
π(x, y) by induction π as follows:

(p← β)(x, y) = (P (y)↔ tr(β)(x)) ∧
∧
q∈A,q 6=p (Q(x)↔ Q(y));

β?(x, y) = tr(β)(x) ∧ (x = y);
(π1;π2)(x, y) = ∃z π1(x, z) ∧ π2(z, y).
(π1 ∪ π2)(x, y) = π1(x, y) ∨ π2(x, y);
(π1 ∩ π2)(x, y) = π1(x, y) ∧ π2(x, y);
π−1(x, y) = π(y, x).

The formula π(x, y) expresses that y is a π-successor of x. It should be noticed that formulas π(x, y) are
in MFO, although the notation might be misleading. Formally:

Theorem 2. For all worlds w, u and π, w
π−→ u if, and only if, MA[x← w, y← u] |= π(x, y).

Proof. By induction on π.

– π = p← β:

w
p←β−−−→ u iff (p ∈ u iff w |= β) and for all q 6= p, (q ∈ w iff q ∈ u).

iff MA[x← w, y← u] |= P (y)↔ tr(β)(x) and for all q 6= p,MA[x← w, y← u] |= Q(x)↔ Q(y).
iff MA[x← w, y← u] |= (p← β)(x, y).

– π = β?:

w
β?−→ u iff w = u and w |= β

iff MA[x← w, y← u] |= (x = y) and MA[x← w, y← u] |= tr(β)(x).
iff MA[x← w, y← u] |= β?(x, y).

– π = π1;π2:

w
π1;π2−−−→ u iff there exists v such that w

π1−→ v and v
π2−→ u

iff there exists v such that MA[x← w, y← u, z← v] |= π1(x, z) ∧ π2(z, y).
iff MA[x← w, y← u] |= (π1;π2)(x, y).

– π = π1 ∪ π2:

w
π1∪π2−−−−→ u iff w

π1−→ u or w
π2−→ u

iff MA[x← w, y← u] |= π1(x, y) or MA[x← w, y← u] |= π2(x, y)
iff MA[x← w, y← u] |= (π1 ∪ π2)(x, y).

– π = π1 ∩ π2:

w
π1∩π2−−−−→ u iff w

π1−→ u and w
π2−→ u

iff MA[x← w, y← u] |= π1(x, y) and MA[x← w, y← u] |= π2(x, y)
iff MA[x← w, y← u] |= (π1 ∩ π2)(x, y).

– π = π′−1:

w
π′−1

−−−→ u iff u
π′−→ w

iff MA[x← w, y← u] |= π(y, x)
iff MA[x← w, y← u] |= π′−1(x, y).

4.3 From AGPAL-formulas to MMSO-formulas

In the following definition, we define trX(ϕ)(x) to be the translation of the AGPAL-formula ϕ, where x is a
first-order variable representing the valuation in which the formula ϕ is evaluated and X is a second-order
variable representing the context (namely, the set of valuations that survived the previous announcements).
Both variables x and X are the sole free variables of trX(ϕ)(x).

Definition 8. Let M = 〈APM , (πa)a∈Agt〉 be a symbolic model, ϕ be a AGPAL-formula, X be a second-order
variable, and x be a first-order variable. We define the MMSO-formula trX(ϕ)(x) by induction over ϕ, with
the notation Y ⊆ X for ∀x(Y(x)→ X(x)).

9



trX(p)(x) = P (x);
trX(¬ϕ)(x) = ¬trX(ϕ)(x);
trX(ϕ1 ∨ ϕ2)(x) = trX(ϕ1)(x) ∨ trX(ϕ2)(x);
trX(Kaϕ)(x) = ∀y [(X(y) ∧ πa(x, y))→ trX(ϕ)(y)];
trX(〈ϕ!〉ψ)(x) = ∃Y (∀y Y(y)↔ (X(y) ∧ trX(ψ)(y))) ∧ Y(x) ∧ trY(ϕ)(x);
trX(〈•!〉ϕ)(x) = ∃Y Y ⊆ X ∧ Y(x) ∧ trY(ϕ)(x);
trX((〈•!G〉ϕ))(x) = ∃Y Y ⊆ X ∧ isGroupAnnouncementG(Y) ∧ Y(x) ∧ trY(ϕ)(x).

where isGroupAnnouncementG(Y) =
∧
a∈G ∀x (∀y πa(x, y)→ (∃z πa(z, y) ∧ Y(z)))→ Y(x).

Formula trX(Kaϕ)(x) mimics the standard translation of modal logic into first-order logic ([11], p. 84),
except that we use the MFO-formula πa(x, y) instead of Ra(x, y). In formula trX(〈ϕ!〉ψ)(x), we ask for the exis-
tence of a context Y that corresponds to the set of valuations in which ψ holds (∀y Y(y)↔ (X(y)∧trX(ψ)(y))),
that contains x (Y(x)) and where ϕ holds. Formula trX(〈•!〉ϕ)(x) is similar to formula trX(〈ϕ!〉ψ)(x), ex-
cept that, as the announcement is arbitrary, we only impose that the context Y is included in X. Formula
trX((〈•!G〉ϕ))(x) is similar to trX(〈•!〉ϕ)(x) but we impose that the announcement is a group announcement.
This constraint is guaranteed by formula isGroupAnnouncementG(Y) that is a characterization of submodels
generated by a group announcement.

We now state and prove the correctness of the translation.

Theorem 3. Let M be a symbolic model on A, ϕ be an AGPAL-formula on A and w ∈M. Let DM be the
set of valuations of M. Then M, w |= ϕ iff MA[x← w,X← DM] |= trX(ϕ)(x).

Proof. By induction on ϕ.

– ϕ = p:

M, w |= ϕ iff p ∈ w

iff MA[x← w,X← DM] |= P (x)

– ϕ = ¬ψ:

M, w |= ¬ψ iff M, w 6|= ψ
iff MA[x← w,X← DM] 6|= trX(ϕ)(x)
iff MA[x← w,X← DM] |= ¬trX(ϕ)(x)

– ϕ = ϕ1 ∨ ϕ2:

M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2

iff MA[x← w,X← DM] |= trX(ϕ1)(x) or MA[x← w,X← DM] |= trX(ϕ2)(x)
iff MA[x← w,X← DM] |= trX(ϕ1)(x) ∨ trX(ϕ2)(x)

– ϕ = (Kaϕ):

M, w |= (Kaψ) iff for all u ∈ DM such that w
πa−→ u, M, u |= ψ

iff for all u ∈ DM such that w
πa−→ u, MA[y← u,X← DM] |= trX(ψ)(y)

iff for all u ∈ DM such that MA[x← w, y← u,X← DM] |= πa(x, y),
MA[y← u,X← DM] |= trX(ψ)(y)

iff MA[x← w,X← DM] |= ∀y (X(y) ∧ πa(x, y)→ trX(ϕ)(y))

– ϕ = (〈χ!〉ψ):

M, w |= (〈χ!〉ψ) iff M, w |= χ and Mχ, w |= ψ
iff M, w |= χ; for all u, (u ∈ DMχ iff u ∈ DM and M, u |= χ); and Mχ, w |= ψ
iff w ∈ DMχ ; and for all u, (MA[y← u,Y ← DMχ ] |= Y(y) iff

MA[y← u,X← DM] |= X(y) and MA[y← u,X← DM] |= trX(χ)(y));
and MA[x← w,Y ← DMχ ] |= trX(ψ)(y))

iff MA[x← w,X← DM,Y ← DMχ ] |= Y(x) ∧ (∀y Y(y)↔ (X(y) ∧ trX(ψ)(y))) ∧ trY(χ)(x)
iff MA[x← w,X← DM] |= ∃Y Y(x) ∧ (∀y Y(y)↔ (X(y) ∧ trX(ψ)(y))) ∧ trY(χ)(x)

– ϕ = (〈•!〉ψ):

10



M, w |= (〈•!〉ψ) iff there exists a formula χ such that M, w |= 〈χ!〉ψ.
iff there exists D′ ⊆ DM such that w ∈ D′ and M′, w |= ψ

(where M′ is M restricted to D′.)12

iff there exists D′ such that MA[X← DM,Y ← D′] |= ∀y Y(y)→ X(y) and
MA[x← w,Y ← D′] |= Y(x) and MA[x← w,Y ← D′] |= trY(ψ)(x))

iff MA[x← w,X← DM] |= ∃Y (∀y Y(y)→ X(y)) ∧ Y(x) ∧ trY(ϕ)(x)

– ϕ = (〈•!G〉ψ): to prove this case, we first prove the following lemma.

Lemma 1. Let M be a Kripke model on AP, ψ be a formula on APM , a an agent. Then for all contexts
D′ ⊆ DM, there exists χ such that D′ = DMKπaχ iff

MA[X← DM,Y ← D′] |= (∀y Y(y)→ X(y)) ∧ ∀x (∀y πa(x, y)→ (∃z πa(z, y) ∧ Y(z)))→ Y(x))

Proof. ⇒ If there exists χ such that D′ = DMKπaχ then MA[X ← DM,Y ← D′] |= (∀y Y(y) → X(y)).

For the other formula, let w be a world such that for all u with w
πa−→ u, there exists a world v

with v
πa−→ u. Then by definition, M, u |= χ and so M, w |= Kπaχ. We conclude that w ∈ D′, so

MA[X← DM,Y ← D′] |= (∀y Y(y)→ X(y)) ∧ ∀x (∀y πa(x, y)→ (∃z πa(z, y) ∧ Y(z)))→ Y(x)).

⇐ If MA[X ← DM,Y ← D′] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y πa(x, y) → (∃z πa(z, y) ∧ Y(z))) → Y(x))
then D′ ⊆ DM. Let χ be the formula characterizing postπa(D′) = {u ∈ DM, there exists v ∈
D′ such that v

πa−→ u} (the successors of D′ via πa). Then we obtain D′ ⊆ DMKπaχ . For the other
implication, we observe that any element of D′ ⊆ DMKπaχ has all its πa-successors in postπa(D′), so
is in D′.

Now back to the proof of the ϕ = (〈•!G〉ψ) case. Thanks to Lemma 1, we obtain:
M, w |= (〈•!〉ψ) iff there exists formulas {χg, g ∈ G} such that M, w |= 〈

∧
g∈GKπgχg!〉ψ.

iff there exists {Dg, g ∈ G} such that for all g ∈ G
MA[X← DM,Y ← Dg] |= (∀y Y(y)→ X(y)) ∧ ∀x (∀y πa(x, y)

→ (∃z πa(z, y) ∧ Y(z)))→ Y(x))
and MA[x← w,Y ←

⋂
g∈GDg] |= Y(x) ∧ trY(ψ)(x).

iff MA[x← w,X← DM] |= trX((〈•!G〉ψ))(x).

4.4 Reduction from AGPAL-mc to MMSO-sat

We wrap up our results obtained so far to define the reduction from the symbolic model checking problem
against AGPAL to the MMSO-satisfiability problem.

Definition 9 (reduction). Given a pointed symbolic Kripke model (M, w) and an AGPAL-formula ϕ, we
let τ(M, w, ϕ) be the MMSO formula TA ∧ tr(w)(x) ∧ ∀yX(y) ∧ trX(ϕ)(x) that is computable in polynomial
time in the size of M.

By Corollary 1 and Theorem 3 we get the following.

Theorem 4. M, w, |= ϕ iff τ(M, w, ϕ) is MMSO-satisfiable.

Because the symbolic model checking of AGPAL is ApolExptime-hard [19], we obtain:

Corollary 2. MMSO-satisfiability problem is ApolExptime-hard.

However, as discussed in the next section, restricting to logic ∃AGPAL yields a reduction to the satisfi-
ability problem of monadic first-order logic MFO.

12 The right-to-left implication is proven by considering χ =
∨

w∈D′
∧

p∈A,p∈w p ∧
∧

q∈A,q 6∈w ¬q.
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5 Existential announcement logic into monadic first-order logic

If we restrict inputs M, w, ϕ of the AGPAL-model checking by letting ϕ ∈ ∃AGPAL, then τ(M, w, ϕ) is an
MMSO-formula where all second-order quantifiers are existential and are not under the scope of universal
quantifiers. Such second-order quantifiers can be removed from the formula τ(M, w, ϕ) resulting in a MFO-
formula.

Since the symbolic model checking against ∃AGPAL is NExptime-hard [19], the icing on the cake is the
following already well-known lower-bound.

Corollary 3. MFO-satisfiability problem is NExptime-hard.

In the next section, we make use of this reduction to solve the symbolic model checking problem against
∃AGPAL.

6 Implementation

We implemented the reduction from ∃AGPAL to MFO in OCaml. We also built benchmarks. The code and
a readme file can be found at the following link

https://github.com/tcharrie/agpal-mmso

6.1 Description of the implementation

The input is an ∃AGPAL formula of the type agpal formula in the source code. The type acc program

represents accessibility programs, the type bool formula boolean formulas, and the type fo formula MFO-
formulas (the output of the code). The function agpal formula to mfo defines the translation from ∃AGPAL
formulas to MFO formulas (as in Definition 9).

In addition to the algorithm for the reduction, we implemented a function from existential formulas to
the TPTP format [1] used by the FO-SAT-solvers, called agpal formula to tptp. It first calls the function
agpal formula to mfo, then calls the function mfo formula to tptp that transforms a MFO-formula into
its TPTP representation.

6.2 Benchmarks

We provide benchmarks for FO-provers built from the muddy children and the Russian card puzzles in order
to tests the combinatorial ability of FO-provers.

Muddy children. We consider the following true properties:

– ϕmuddystandard = 〈
∨
a∈Agt pa!〉〈

∧
a∈Agt ¬(Kapa ∧ ¬Ka¬pa)!〉 . . . 〈

∧
a∈Agt ¬(Kapa ∧ ¬Ka¬pa)!〉

∨
a∈Agt(Kapa ∨

Ka¬pa): standard formalization of the muddy children.

– ϕmuddyarbitrary = 〈
∨
a∈Agt pa!〉〈•!〉

∧
a∈Agt(Kapa ∨Ka¬pa): variant with an arbitrary announcement.

– ϕmuddygroup = 〈
∨
a∈Agt pa!〉〈•!Agt〉

∧
a∈Agt(Kapa ∨Ka¬pa): variant with a group announcement.

where Agt = {1, . . . , n}.

Russian cards. For this example, agents a and b holds the same number of cards n. For instance, the classical
Russian cards problem corresponds to n = 3. Let ϕRussiangoal =

∧2n+1
i=1 (Kapi,b∨Ka¬pi,b)∧ (Kbpi,a∨Kb¬pi,a)∧

¬Kcpi,a ∧ ¬Kc¬pi,a ∧ ¬Kcpi,b ∧ ¬Kc¬pi,b. We consider three types of properties:

– ϕRussianarbitrary = 〈ϕR!〉〈•!〉ϕRussiangoal : formalization of the Russian cards with a unique arbitrary announcement.

– ϕRussiangroup1 = 〈ϕR!〉〈•!a〉ϕRussiangoal : formalization with only one announcement from a. This formula is not
satisfiable.

– ϕRussiangroup2 = 〈ϕR!〉〈•!a〉〈•!b〉ϕRussiangoal : normal formalization of the Russian cards problem.
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6.3 Experiments

To perform the tests, we used the FO-solver Iprover [30] on a HP EliteBook 840 G2. The prover Iprover
enabled us to test whether a FO-formula is satisfiable or not. The results are summarized in Figure 6.3.

n = ϕmuddy
arbitrary n = ϕmuddy

standard ϕmuddy
group n = ϕRussian

arbitrary ϕRussian
group1 ϕRussian

group2

3 0.03s 3 0.07s 0.04s 2 0.18s 0.32s 0.45s

10 0.20s 4 0.09s 0.08s 3 0.44s 0.85s 0.92s

25 1.32s 5 0.19s 0.22s 4 3.80s 3.51s 3.32s

40 3.23s 6 0.24s 0.25s 5 23.48s 26.80s 24.20s

55 9.405s 7 > 10min > 10min 6 > 10min > 10min > 10min

Fig. 3. Results for the implementation of the reduction from ∃AGPAL to MFO, using the FO-SAT-solver Iprover.

We now briefly comment on the experiments.

Muddy children. For ϕmuddyarbitrary, the FO-SAT solver seems to perform well in all cases, as arbitrary an-
nouncements only require the new context to be included in the previous one. Hence, in this example, it is
sufficient to restrict the model to the current world in order to satisfy the goal of ϕmuddyarbitrary. However, for

the other tests, namely ϕmuddystandard and ϕmuddygroup , the FO-SAT-solver is able to test up to n = 6 agents. This
can be explained by the fact public announcements and group announcements add significant combinatorial
constraints to the specification.

Russian cards. For the three properties, the tests cannot exceed n = 6 cards, the main reason being that
the rules of the game are very combinatorial, as for the muddy children.

Notice that the problems we have considered are puzzles, thus highly combinatorial. For the muddy
children puzzle, the existential second-order quantification ranges over 22

n

subsets. For n = 7, we have
22

7

= 2128 ∼ 1038, that is, about the number of positions 1.15868..× 1042 of a chess board.
Still, our implementation is promising and provides some interesting benchmarks for FO-provers.

7 Conclusion

We have reduced the problem of model checking symbolic Kripke models against AGPAL formulas to
the satisfiability problem of MMSO, and shown that for the fragment ∃AGPAL, the reduction yields a
satisfiability problem of some MFO formulas, which is known to be decidable [4,33]. We then have conducted
experiments with FO provers. Our experiments show that the symbolic model checking problem against
∃AGPAL is difficult. As this problem is equivalent13 to the MFO-satisfiability problem (they are both
NEXPTIME-complete), we claim that efforts to obtain efficient algorithms are alike.

An interesting future work would be to effectively synthesize announcements. To this aim, we would like
to generate the most simple formula to be announced so that a given property holds. This is close to the
problem of generating a first-order model for a given MFO-formula.

We believe that our work is important since it would give efficient algorithms for several symbolic models
in epistemic logic [7,26,27,18]. We also believe that the work done can improve epistemic planning specifi-
cations: in epistemic planning instances [13], the set of available actions is finite and described explicitly.
Arbitrary announcement is a way to describe them implicitly. One can think of them as an action type
while a specific announcement is an action token. Having efficient algorithms in this context would be very
relevant.

13 A reversed reduction can be proved.
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Besides, we strongly believe that efficient data structures as in [37] for representing sets of sets of valua-
tions are useful. Indeed, as Boolean formulas correspond to a set of valuations (and thus to binary decision
diagrams [22]), an AGPAL-formula corresponds to a set of pair context/world, that, in a nutshell, could be
represented by a set of sets of valuations.

On a more theoretical side, we would like to investigate on the relationship between announcement logics
and MSO. Indeed, in MSO, second-order quantifications range over arbitrary sets (or over finite sets in
weak-MSO) while announcements restrict the model to sets that are bisimulation-closed. We are not aware
of any results regarding such second-order quantifiers.

Acknowledgments We thank Konstantin Korovin who helped us to use iprover. We thank Ocan Sankur for
pin-pointing us the article [12] where the authors reduce the model checking of safety properties into FO.
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