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2Université de Rennes, IRISA, CNRS, France

Abstract
Action models of Dynamic Epistemic Logic (DEL)
represent precisely how actions are perceived by
agents. DEL has recently been used to define infi-
nite multi-player games, and it was shown that they
can be solved in some cases. However, the dynam-
ics being defined by the classic DEL update prod-
uct for individual actions, only turn-based games
have been considered so far. In this work we de-
fine a concurrent DEL product, propose a mecha-
nism to resolve conflicts between actions, and de-
fine concurrent DEL games. As in the turn-based
case, the obtained concurrent infinite game arenas
can be finitely represented when all actions are pub-
lic, or all are propositional. Thus we identify cases
where the strategic epistemic logic ATL∗K can be
model checked on such games.

1 Introduction
The discipline of distributed synthesis seeks solutions for au-
tomating the design of artificial agents that interact and make
decisions in order to achieve some service. The main chal-
lenge is to synthesize strategies for each agent of a team col-
laborating towards a common goal, against opponents, usu-
ally in an imperfect information setting.

As advocated in the Dynamic Epistemic Logic (DEL) ap-
proach to epistemic planning, we consider multi-agent sys-
tems described symbolically by DEL presentations, which
consist in an initial epistemic state (actual world and worlds
considered possible by some agents), and epistemic actions
that agents may perform. An epistemic action, besides the
standard precondition and effects of the action, also describes
the agents’ ability to perceive its execution. Synthesising
strategies was studied in the single-agent case [Bolander and
Andersen, 2011; Aucher and Bolander, 2013; Bolander et al.,
2015; Bolander, 2017], and in a multi-player turn-based game
setting [Maubert et al., 2019; Maubert et al., 2020].

However, concurrent execution of actions has not been
considered so far in epistemic planning. Some works con-
sider concurrent execution of abstract actions (as in concur-
rent game structures [de Alfaro and Henzinger, 2000]), or
concurrent execution of purely epistemic actions without ef-
fects on the world [van Eijck et al., 2011; Ågotnes and van
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Figure 1: The two-robot coordination example.

Ditmarsch, 2011; Benevides and Lima, 2019] or only public
[Lima, 2014]. But to our knowledge, concurrent execution
of arbitrary epistemic actions with explicit effects has never
been studied. And yet they are essential for modelling realis-
tic situations.

Consider the two-robot coordination example of Figure 1.
Some container can be placed either left or right. Two robots
(or agents), i and j, can either wait or push the container,
which incidentally is energy-consuming. Both agents wait-
ing, the container stays in place. Otherwise, if i pushes while
j waits, the container moves right (if not already there), and,
symmetrically, if j pushes while i waits, it moves left (if
not already there). Agents pushing concurrently results in a
conflict. To determine the effect of such conflicting actions,
one solution is to consider that they are blocking, as done
for instance in [Fox and Long, 2003] for in temporal plan-
ning, or facts involved in conflifcts are just maintained [Lima,
2014]. Another option consists in selecting a maximal subset
of non-conflicting actions, as done for instance in [Eshuis and
Wieringa, 2001] in UML work-flow modelling.

In this paper, we adopt the latter solution, which is more
challenging. A major additional difficulty with respect to this
latter UML setting arises from epistemic features of actions
of the DEL framework. In our robot example, while robots i
and j perfectly perceive pushing and waiting actions, the two
other agents k and ` cannot distinguish them. Note that this
issue is not tackled in [Lima, 2014] since actions are public.

Our first contribution is to define a DEL concurrent update
product that provides the dynamics of concurrent epistemic
actions. This new product yields a non-deterministic dynam-
ics controlled by a scheduler, whose role is to resolve con-
flicts. On the basis of this product we show how finite DEL
presentations can generate infinite concurrent game arenas.

Our second contribution is a proof that distributed synthe-
sis can be solved for such games for two cases: the case where
all actions are public (perfectly observed by everyone), and
the case where all actions have propositional pre- and post-
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Figure 2: The epistemic state of Figure 1.

conditions and information among the agents is hierarchical
(Theorems 4 and 7). To prove this we extend to the concur-
rent setting some results from [Maubert et al., 2019; Maubert
et al., 2020], namely, that the infinite concurrent game arenas
arising from DEL game presentations can be finitely repre-
sented when actions are all public or all propositional. We
then transfer existing results on the model-checking problem
for the epistemic strategic logic ATL∗K [Van der Hoek and
Wooldridge, 2003] to obtain, in particular, decidability of dis-
tributed synthesis for rich temporal epistemic objectives.

Remark that our work is unrelated to the concurrent dy-
namic logic from [van Benthem et al., 2007], where several
games are played concurrently. Our work also differs from
concurrent dynamic epistemic logic [van Ditmarsch et al.,
2003], where concurrency represents some form of alterna-
tion [Chandra and Stockmeyer, 1976].

Outline: In Section 2, we provide all the necessary material
on DEL presentations. In Section 3 we present the concur-
rent update product, and we use it in Section 4 to define DEL
games and establish our main results.

2 Background on DEL
We fix a finite set of agents Ag = {1, . . . , N} and a
countable set of atomic propositions AP . The language
of epistemic logic, noted LK, is defined by the grammar
ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ where p ∈ AP and
i ∈ Ag . Formula Kiϕ reads as “agent i knows that ϕ”. Rul-
ing out modality Ki yields propositional logic.

2.1 Epistemic Models and States
Epistemic models are relational structures that represent
agents’ knowledge.

Definition 1 (Epistemic models). An epistemic model is a
structure M = (W, (≈i)i∈Ag , λ) where W is a finite non-
empty set of worlds, for each agent i ∈ Ag , the equivalence
relation ≈i⊆ W × W is an epistemic relation that reflects
agents i’s information (or knowledge), and λ : W→ 2AP is a
valuation function. An epistemic state is a pair (M, w) where
M is an epistemic model and w is a world ofM representing
the actual world.

An epistemic state (M, w) will often be written w when
the modelM is clear from the context.

Example 1. The epistemic state of Figure 2 represents the
situation of Figure 1. Proposition left holds when the con-
tainer is on the left. In the actual world w, left is false since
the container is on the right and we assume that agents i, j
and k know this fact, but that ` does not: he does not distin-
guish between world w and the world u where the container
is on the left.

The semantics of LK is based on epistemic states.

pre: ¬lowEi

post:
lowEi := left

left := false

pre: true
post: lowEi := false

k, `

pushi

waiti

ijk`

ijk`

pre: ¬lowEj

post:
lowEj := ¬left
left := true

pre: true
post: lowEj := false

k, `

pushj

waitj

ijk`
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Figure 3: The action model of the two-robot example.

Definition 2 (Semantics of LK). Let (M, w) be an epistemic
state. We define the sentence “Formula ϕ holds in (M, w)”,
written (M, w) |= ϕ or w |= ϕ, by induction on ϕ: w |=
true; w |= p whenever p ∈ λ(w); w |= ¬ϕ whenever w 6|= ϕ;
w |= ϕ1∧ϕ2 whenever w |= ϕ1 and w |= ϕ2; and w |= Kiψ
whenever (M, u) |= ψ, for all worlds u such that w ≈i u.

2.2 Action Models and Epistemic Actions
Action models ([Baltag et al., 1998], [Van Ditmarsch et al.,
2007]) gather several “concrete” actions (with preconditions
and effects [van Ditmarsch and Kooi, 2006]) with epistemic
relations describing how the concrete actions are perceived.

Definition 3 (Action models). An action model is a structure
A = (A, (≈i)i∈Ag ,pre,post) where A is a nonempty finite
set of actions, ≈i⊆ A × A is the epistemic relation of agent
i ∈ Ag , the precondition function pre : A→ LK specifies the
guard for an action to be executable, and the postcondition is
a partial function post : A × AP ⇀ LK that describes the
effect of actions over atomic propositions; when post(a, p) is
undefined, p is not affected by a. An epistemic action is a pair
(A, a) where a ∈ A denotes the action actually executed.

Example 2. Figure 3 describes the action model for the two-
robot coordination example. Action pushi represents agent i
pushing the container to the right. Agent i can execute pushi
whenever its energy is high, i.e., when proposition lowEi is
false (lowEi and lowEj are initially false); this action con-
sumes energy if it is effective (i.e., the container was not
already on the right): in that case the postcondition makes
proposition lowEi true. Action pushj for agent j is defined
similarly. Finally, the waiting action of robots, represented
by waiti and waitj respectively, have the true precondition
and the effect of refilling energy (i.e. turning lowEi to false).
To keep our example simple, we suppose that all agents but `
distinguish between pushi and waiti even if the box is on
the right, and similarly for pushj and waitj .

We exhibit two particular kinds of epistemic actions.

Definition 4 (Propositional, public action). An action model
A is propositional if for every concrete action a ofA and each
proposition p, formulas pre(a) and post(a)(p) are proposi-
tional. An epistemic action (A, a) is public if for all agents i,
a ≈i a

′ if and only if a′ = a.
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Figure 4: Epistemic state after agent i pushed the container.

2.3 Update Product
Execution of epistemic actions may change the world but also
agents’ information. It is formalised by the update product
between epistemic models and action models.
Definition 5 (Update product). The update product of epis-
temic modelM = (W, (≈i)i∈Ag , λ) with action model A =
(A, (≈i)i∈Ag ,pre,post) is the epistemic model M⊗ A :=
(W⊗, (≈⊗i )i∈Ag , λ

⊗), where:
• W⊗ = {(w, a) ∈W × A | (M, w) |= pre(a)};
• (w, a) ≈⊗i (u, b) whenever w ≈i u and a ≈i b;
• p ∈ λ⊗(w, a) whenever (M, w) |= post(a, p).
We lift the product to epistemic states and epistemic ac-

tions: wheneverM, w |= pre(a), we let (M, w)⊗ (A, a) be
the epistemic state (M⊗A, (w, a)).
Example 3. Figure 4 shows (M⊗A, (w, pushi)), that de-
scribes the epistemic state after execution of action pushi
from the epistemic state of Figure 1 (strictly speaking, it only
displays worlds connected to the actual one). The physical
situation has not changed: the container is still on the right.
However agent `, who initially considered it possible that the
container is on the left, and cannot distinguish between pushi
and waiti, still considers it possible that the container is on
the left. Some information has changed though: initially,
agent ` knew that robots had energy, but now he considers
it possible that robot i’s energy has become low.

3 Concurrent Actions
Fix an epistemic state (M, w) and an action model A.
From now on, atomic propositions are partitioned into shared
propositions (APs) that all agents can modify, and private
ones: APp

i is the set of private propositions of agent i. As
a result, AP = APs ]

⊎
i∈Ag AP

p
i , where ] is the disjoint

union. An agent can play any action that does not modify
private propositions of others. We gather in set Ai those ac-
tions, namely those whose postconditions are undefined on
∪j 6=iAP

p
j . A joint action is a tuple ~a = 〈a1, . . . , aN 〉 ∈∏

i∈Ag Ai, and we let ~aj denote action aj . Finally, a joint ac-
tion ~a is available in w when every individual action ~aj can
be executed in w: (M, w) |= pre(~a1) ∧ · · · ∧ pre(~an).

3.1 Conflicts
We define a formula noconflict(~a)(p) expressing that all indi-
vidual actions of a joint action ~a agree on their effect (if any)

on proposition p. We first introduce the set Ag(~a, p) of agents
whose individual action in ~a has an effect on p. Formally,
Ag(~a, p) is the set {i = 1..N | post(~ai)(p) is defined}. We
then let noconflict(~a)(p) be the formula∧

i∈Ag(~a,p) post(~ai)(p) ∨
∧

i∈Ag(~a,p) ¬post(~ai)(p).

Now, in a situation where all individual actions of the joint
action ~a agree on their effect on each proposition, the ef-
fect of executing them concurrently can be determined un-
ambiguously. Such a situation is expressed by the formula
noconflict(~a) :=

∧
p∈AP noconflict(~a)(p).

Definition 6. A joint action ~a is non-conflicting in w if
M, w |= noconflict(~a). Otherwise ~a is conflicting in w.
Example 4. In our running example, 〈pushi, pushj〉 is con-
flicting in both worlds w and u.

To resolve conflicts, we resort to a scheduler.

3.2 The Role of the Scheduler
Given a conflicting available joint action, the scheduler se-
lects a maximal subset of consistent individual actions, and
inhibits the remaining actions by “cancelling” their effects on
shared variables. An inhibited action of agent imay still have
effects on APp

i , which may differ from the original ones. The
inhibiting mechanism is implemented by a ghost mapping
◦ : A → A with the following properties: for every agent
i ∈ Ag and every action a ∈ Ai, the ghost ◦(a) (written
a◦) must be in Ai and post(a◦) is undefined on APs. This
assumption ensures that no conflict arises when inhibiting ac-
tions. We also assume that ◦(a) is executable as long as a is,
i.e., that pre(a◦) is a logical consequence of pre(a).
Example 5. For the robots, APs = {left}, APp

i =
{lowEi}, APp

j = {lowEj}, and APp
k = APp

` = ∅. Fac-
ing the conflicting joint action 〈pushi, pushj〉, the scheduler
can choose between 〈pushi◦, pushj〉 and 〈pushi, pushj◦〉,
and we set pushi◦ := waiti and pushj◦ := waitj .

The epistemic relations from a ghost can be set in many
different ways, and the choice is a design matter. For exam-
ple, assume that ghost actions are distinct from those that can
be played by agents, and that ghosts are not epistemically re-
lated to those playable actions. Then the scheduler’s selection
is public: indeed, when for joint action ~a scheduler inhibits
the action of agent i, all agents are implicitly informed that
agent i is discarded.
Definition 7. If A = A•]A◦ is split between playable actions
A• and ghosts ones A◦, and A• and A◦ are not related by any
≈i, we say that the scheduler is public.

In the sequel, we consider that action modelsA are implic-
itly equipped with a ghost mapping.

3.3 Concurrent Update Product
To define the concurrent execution of possibly conflicting ac-
tions, we introduce a concurrent update product � that gen-
eralises the classic update product ⊗ (Definition 5).

Before defining this product, we formalise the possible
choices for the scheduler. We say that joint action ~b is a sub-
action of joint action ~a, written~b � ~a, whenever~b is obtained
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Figure 5: The model (M�A, 〈w, (pushi, waitj)〉) (for readability,
all reflexive edges are missing).

from ~a by replacing some individual actions by their ghosts.
Formally,~b � ~a if~bi ∈ {~ai, (~ai)◦}, for every 1 ≤ i ≤ N . Re-
mark that, by definition of the ghost mapping, if ~a is available
in w, so are its sub-actions.

Given a joint action ~a, we let Max(~a,w) be the set of joint
actions composed of the �-maximal sub-actions of ~a non-
conflicting in w. Elements of Max(~a,w) are therefore joint
actions non-conflicting in w where a minimal number of ac-
tions are inhibited. Notice that Max(~a,w) = {~a} as soon as ~a
is non-conflicting in w.
Example 6. The set Max(〈pushi, pushj〉, w) is
{〈waiti, pushj〉, 〈pushi, waitj〉}.

We now define the concurrent update product, that imple-
ments the execution of joint actions.
Definition 8 (Concurrent update product). The concurrent
update product ofM and A is the Kripke modelM � A =
(W�, (≈�

i )i∈Ag , λ
�), where:

• W� = {(w,~b) ∈W × AN | ~b ∈ Max(~a,w)

for some joint action ~a available in w};
• (w,~b) ≈�

i (u,~c) if w ≈i u and~bj ≈i ~cj for all j;

• p ∈ λ�(u,~b) if (M, u) |=
∧

i∈Ag(~b,p) post(bi, p).

We can now define the set of epistemic states that may re-
sult from executing a joint action ~a in (M, w):

(M, w) � ~a := {(M�A, (w,~b)) | ~b ∈ Max(~a,w)}.
This set is a singleton when ~a is non-conflicting in w. Re-
mark that the component-wise definition of concurrent epis-
temic relations ≈�

i in Definition 8 makes the identity of who
performs an action common knowledge.
Example 7. The pointed concurrent update product (M �
A, 〈w, (pushi, waitj)〉) of Figure 5 belongs to (M, w) �
(pushi, pushj). Action pushj was inhibited, but agent ` con-
siders it possible that lowEj is now true.

4 Concurrent DEL Games
In this section, we show how DEL can represent infinite con-
current game arenas, in which players act simultaneously. We
then show how, as for turn-based games [Maubert et al., 2019;
Maubert et al., 2020] these infinite game arenas can in some
cases be folded back into finite ones, when actions are all pub-
lic, or when they are all propositional. Finally, we show that

in these cases, one can model check the epistemic strategic
logic ATL∗K on DEL-represented concurrent games.

4.1 Concurrent Game Arenas
Here we recall (nondeterministic) concurrent game arenas
with imperfect information and related notions.
Definition 9. A concurrent game arena is a tuple G =
(Act, V, vini, (Acti)i∈Ag ,∆, (≈i)i∈Ag , λ), where
• Act is a non-empty set of actions,
• V is a non-empty set of positions,
• vini ∈ V is an initial position,
• Acti : V → 2Act \ {∅} is a repertoire function for i,
• ∆ ⊆ V × ActN × V is a transition relation,
• ≈i⊆ V × V is an indistinguishability equivalence rela-

tion for agent i, and
• λ : V → 2AP is a valuation function.
In a position v each agent i chooses an available action ai ∈

Acti(v), yielding a joint action ~a = 〈a1, . . . , aN 〉. The set of
joint actions available in v is written JAct(v). The game then
moves nondeterministically to some position v′ ∈ ∆(v,~a).
If, for every position v and joint action~a, {v′ | (v,~a, v′) ∈ ∆}
is a singleton, then G is deterministic and we may represent
the transition relation as a function δ : V × ActN → V .

A play π = v0v1v2 . . . is an infinite sequence of positions
such that for all k ∈ N, there exists ~a ∈ ActN such that
vk+1 ∈ ∆(vk,~a). We let πk = vk and π≤k = v0v1 . . . vk.
A history h = v0v1 . . . vn is a finite non-empty prefix of a
play, last(h) = vn is the last position in h, |h| = n + 1 is its
length, and HistG is the set of histories in G. We write λ(h)
for λ(last(h)).

As usual for agents with synchronous perfect recall (see for
instance [Fagin et al., 1995]), the indistinguishability relation
of each agent i is lifted to histories as follows: h ≈i h

′ if
|h| = |h′| and hk ≈i h

′
k for every k < |h|.

A (uniform) strategy σ for an agent i is a function σi that
associates an action to any history and such that, for every
pair of indistinguishable histories h ≈i h

′, σ(h) = σ(h′).
Classically, we assume that Acti(v) = Acti(v′) whenever
v ≈i v′. A strategy profile for a coalition of agents C ⊆ Ag
is a tuple σC = 〈σi〉i∈C , and ΣC is the set of strategy pro-
files for coalition C. Finally, an outcome of a strategy profile
σC from a position v0 is a play starting in position v0 and
in which agents in C follow the strategies in ΣC : formally, a
play π = v0v1 . . . is an outcome of 〈σi〉i∈C from v0 if, for ev-
ery k ∈ N, there is a joint action ~a such that vk+1 ∈ ∆(vk,~a)
and (~a)i = σi(v0 . . . vk), for all i ∈ C. We let out(h, σC) be
the set of outcomes of σC from position v.
Definition 10. Given a concurrent game arena
G = (Act, V, vini, (Acti)i∈Ag ,∆, (≈i)i∈Ag , λ),
we define the unfolding of G as the game arena
Gunf = (Act, V ′, v′ini, (Act′i)i∈Ag ,∆

′, (≈′i)i∈Ag , λ
′)

where V ′ = HistG, v′ini = vini, for every h ∈ HistG,
Act′i(h) = Acti(last(h)), λ′(h) = λ(last(h)), ≈′i is the
synchronous perfect-recall lifting of ≈i to histories, and
∆′ = {(h,~a, h · v) | (last(h),~a, v) ∈ ∆}.

We say that two game structures G and G′ are equivalent
whenever their unfoldings are isomorphic.



4.2 DEL Presentations of Game Arenas
We use DEL models to define infinite concurrent arenas:

Definition 11. A DEL game presentation, or DEL game, is a
tuple G = 〈M, w,A〉 where (M, w) is an initial epistemic
state and A is an action model.

The game starts in the initial epistemic state (M, w). In
each round, each agent i chooses an action a ∈ Ai available
in the current state (M′, w′), resulting in a joint action ~a (we
assume that each agent always has at least one available ac-
tion; if needed we may add a dummy action in the model).
The next epistemic state is nondeterministically chosen by
the scheduler among (M′, w′) � ~a (this choice is nontrivial
if ~a is conflicting), and the game goes on.

After n rounds in which the players chose joint ac-
tions ~a1, . . . ,~an, the epistemic state is of the form
MAn, (w,~b1, . . . ,~bn), where MAn is defined by let-
ting MA0 = M and MAn+1 = MAn � A, and
each ~bk+1 is a maximal sub-action of ~ak+1 consistent in
MAk, (w,~b1, . . . ,~bk). In the following we may write
w~b1 . . .~bn instead of (w,~b1, . . . ,~bn), and call it a history.
The length of a history inMAn is defined as |w~b1 . . .~bn| =
n. Since the length of a history determines the epis-
temic model to which it belongs, we may omit it and
write w~b1 . . .~bn |= ϕ instead of MAn, w~b1 . . .~bn |= ϕ.
We require that players know their available actions: if
w~b1 . . .~bn ≈i u~c1 . . .~cn, then the same actions are available
to i in both worlds.

A DEL presentation denotes a concurrent game arena,
where positions are epistemic states attainable from the ini-
tial one,and moves are obtained by applying the concurrent
update product of Definition 8. Because this product yields
several epistemic states, this concurrent game arena is non-
deterministic.

Definition 12. Given a DEL game presentation
G = 〈M, w,A〉 we define the concurrent game arena
GG = (A, V, vini, (Acti)i∈Ag ,∆, (≈i)i∈Ag , λ) where,
writingMAn = (Wn, (≈n

i )i∈Ag , λ
n) for every n:

• A is the set of actions in A,
• the set of positions is V = ∪n∈NWn,
• the initial position is vini = w,
• Acti(v) = {a ∈ Ai | v |= pre(a)},
• ∆ = {(v,~a, v′) | v′ ∈ v � ~a},
• v ≈i v′ if |v| = |v′| = n and v ≈n

i v′, and
• λ(v) = λ|v|(v).

We want to reason about strategic abilities and knowledge
on infinite concurrent games given as DEL game presenta-
tions. To do so we consider the logic ATL∗K.

Definition 13. The syntax of ATL∗K is given by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 |Kiϕ | 〈C〉ψ
ψ ::= ϕ | ¬ψ | ψ1 ∨ ψ2 | ©ψ | ψ1Uψ2

with p ∈ AP , C ⊆ Ag and i ∈ Ag .

Formula 〈C〉ψ reads as “coalition C has a strategy profile
to ensure ψ”, and the meaning of other operators is as usual.
We let ≈C = ∪i∈C ≈i, and define the semantics of ATL∗K.

Definition 14. LetG be a concurrent game arena, v a position
and π a play. The semantics of ATL∗K is defined as follows,
where h is a history in G, π is a play and i ∈ N is a point in
time (we omit boolean cases):

G, h |= p if p ∈ λ(h)

G, h |= Kiϕ if ∀h′ ∈ HistG s.t. h ≈i h
′, G, h′ |= ϕ

G, h |= 〈C〉ψ if ∃σC ∈ ΣC s.t. ∀h′ ≈C h,

∀π ∈ out(h′, σC), G, π |= ψ

G, π |= ϕ if π[0] |= ϕ

G, π |=©ψ if G, π≥1 |= ψ

G, π |= ψ1Uψ2 if ∃i ≥ 0 s.t. G, π≥i |= ψ2 and
∀ 0 ≤ j < i, G, π≥j |= ψ1

Remark 1. We use the uninformed semantics for the knowl-
edge operators, which does not depend on the strategies used
by the agents, and is the usual one used in epistemic planning
(see [Puchala, 2010; Maubert, 2014; Maubert et al., 2020]
for more details). Also, we use the subjective semantics for
strategic operators, in contrast with the objective one that only
asks strategies to be winning from the actual current history
(see [Bulling and Jamroga, 2014]).

Given a game arena G with initial position vini, we write
G |= ϕ if G, vini |= ϕ. We study the following model-
checking problem: given a DEL game presentation G and
a formula ϕ ∈ ATL∗K, do we have GG |= ϕ?

4.3 Decidability for Public Actions
A deterministic game arena with transition function δ is said
to have only public actions if, for all positions v, v′ and joint
actions ~a,~a′ such that ~a 6= ~a′, we have δ(v,~a) 6≈i δ(v′,~a′).
The following is known for ATL∗K on such arenas:

Theorem 1 ([Belardinelli et al., 2017]). Model checking
ATL∗K on finite deterministic concurrent game structures with
only public actions is 2-EXPTIME-complete.

First we prove that DEL games with public actions can be
finitely represented. Our proof yields nondeterministic game
arenas, that we will then transform into deterministic ones
that have only public actions in the sense of [Belardinelli et
al., 2017]. We will need the following result on the concur-
rent update product with public action models and a public
scheduler (see Definition 7):

Lemma 2. Let M be an epistemic model and A an event
model. If the scheduler is public, A has only public actions
and its ghost mapping ◦ : A• → A◦ is injective, then for all
worlds w,w′ ∈ M, all joint actions ~a,~a′, if ~a 6= ~a′ then for
all (w,~b) ∈ (M, w) �~a and (w′,~b′) ∈ (M, w′) �~a′, for all
agents i, (w,~b) 6≈i (w′,~b′).

The injectivity assumption means that two different played
actions cannot become the same after being inhibited, in
which case the actions of DEL games could not be public
in the sense of [Belardinelli et al., 2017].



The proof that the infinite game arena GG induced by a
DEL game G with public actions can be finitely represented
is very similar to that in [Maubert et al., 2020]. It relies on the
fact that updating an epistemic state with a joint action made
of public actions can only decrease the size of the obtained
epistemic states (when removing their disconnected compo-
nents) as long as their ghosts are public too. It follows that
only finitely many different epistemic models can be gener-
ated from a given initial state, up to isomorphism.

Proposition 3. Given a DEL game G = 〈M, w,A〉with only
public actions, one can build a finite game arenaG equivalent
to GG and of size exponential in |G|.

Because of the scheduler, the resulting arena is nondeter-
ministic. To obtain Theorem 4 below it essentially remains
to show that we can transform these nondeterministic arenas
into deterministic ones that have only public actions in the
sense of [Belardinelli et al., 2017].

Theorem 4. Model checking ATL∗K on DEL concurrent
games with public actions, public scheduler and injective
ghost mapping is 2-EXPTIME-complete.

Proof sketch. The lower bound comes from LTL synthe-
sis [Pnueli and Rosner, 1989]. For the upper bounds, let G be
a DEL presentation and Φ an ATL∗K formula. First, by Propo-
sition 3 we build in exponential time a finite nondeterministic
game arena G = (Act, V, vini, (Acti)i∈Ag ,∆, (≈i)i∈Ag , λ)
equivalent to GG. We build a deterministic game arena Gd

by adding a special agent, the scheduler s, who has perfect
information and whose possible actions Acts allow him to re-
solve the non-determinism. The agents choose their actions,
and then the scheduler resolves nondeterminism. To do so we
introduce intermediary positions of the form (v,~a): in each
round, in a position v, the agents in Ag choose a joint action
~a (the scheduler can only play some dummy action), and the
game moves deterministically to (v,~a). Now all “normal”
agents can only choose the dummy move, and the scheduler
can choose a maximal consistent sub-action ~b of ~a, which
determines the new position v′. Indistinguihability relations
for all normal agents are as in G for positions v, and we let
(v,~a) ≈i (v′,~a′) iff v ≈i v′ and ~a = ~a′. This definition is
correct because, by Lemma 2, when the agents choose dif-
ferent joint actions, they distinguish the resulting epistemic
states no matter the choices of the scheduler. One can check
thatGd has only public actions in the sense of [Belardinelli et
al., 2017]. We then duplicate all next operators in Φ to skip
artificial positions of the form (v,~a). To check Φ on Gd, the
procedure from [Belardinelli et al., 2017] takes time doubly
exponential in the size of Φ and exponential in the size ofGd,
which is itself of size exponential in the size of the original
DEL game presentation G.

4.4 Decidability for Propositional Actions
A DEL game presentation presents hierarchical information
if the set of agents Ag can be totally ordered (i1 < . . . < iN )
so that ≈ii⊆ ≈ii+1

for each 1 ≤ i < N , and similarly for
concurrent game arenas. We prove that when, in a DEL game
presentation, all actions are propositional actions and infor-
mation is hierarchical, model checking ATL∗K is decidable.

We first generalise to the concurrent setting a result
from [Maubert et al., 2019] which states that infinite turn-
based DEL games induced by propositional models can be
finitely represented. As for public actions, the game arena
that we obtain is nondeterministic.
Proposition 5. Let G = 〈M, w,A〉 be a DEL game where
A is propositional. One can build a finite nondeterministic
game arena G equivalent to GG, of size exponential in |G|.

We will invoke the following result, that was stated for de-
terministic game arenas:
Theorem 6 ([Berthon et al., 2017]). Model checking ATL∗K
with uninformed semantics is decidable on deterministic
game arenas with hierarchical information.

The result in [Berthon et al., 2017] is for ATL∗ with-
out knowledge operators, and for the objective semantics of
strategic operators. But their bottom-up algorithm can be
easily extended to deal with knowledge operators and sub-
jective semantics: one first performs a powerset construction
on the game arena to include sufficient information to eval-
uate knowledge operators positionally (for instance using k-
trees [van der Meyden, 1998]), and then one evaluates knowl-
edge and strategic modalities in a bottom-up fashion.

Thanks to Proposition 5 and a reduction to deterministic
arenas similar to the one presented in the proof of Theorem 4,
we can use Theorem 6 and obtain that:
Theorem 7. Model checking ATL∗K on DEL game presenta-
tions with propositional actions and hierarchical information
is decidable.

However the complexity is nonelementary, as it is already
the case for multiplayer reachability games with hierarchical
information [Peterson et al., 2001]. The number of exponen-
tials will be the maximum between the number of agents with
different observation power and the alternation of knowledge
operators in the formula.

5 Conclusion
We proposed a setting that permits the succinct specification
of concurrent game arenas with epistemic actions. Conflicts
are resolved by a scheduler that nondeterministically selects
consistent subsets of actions, and inhibits the discarded ones.
We established that on such games one can perform strategic
reasoning, or more precisely one can model check the strate-
gic epistemic logic ATL∗K, in two cases: when actions are
public (Theorem 4) and when actions are propositional and
information is hierarchical among the agents (Theorem 7).

Note that we could tune the scheduler differently: in
our robot example, a third choice for 〈pushi, pushj〉 could
be 〈waiti, waitj〉, which would capture blocking conflicts.
Technically, we could relax the selection to other sub-actions
than�-maximal ones, and the complexities established in our
main theorems would still hold for such different schedulers.

One could also consider fairness requirements to ensure
that the scheduler does not favor some agents in resolving
conflicts, for instance requiring that if an agent infinitely often
enters a conflict, then infinitely often his action is selected
by the scheduler. Fairness constraints can often be expressed
directly in ATL∗K, in which case our main results still hold.
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[Ågotnes and van Ditmarsch, 2011] Thomas Ågotnes and
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