
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1648

THE CONTROL OF NONDETERMINISTIC SYSTEMS : A
LOGICAL APPROACH

SOPHIE PINCHINAT AND JEAN-BAPTISTE RACLET

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

The control of nondeterministic systems : a logical
approach

Sophie Pinchinat * and Jean-Baptiste Raclet **

Systèmes communicants
Projet S4

Publication interne n˚1648 — Octobre 2004 — 23 pages

Abstract: We answer a wide range of control problems for nondeterministic discrete-event
systems, relying on recent works based on a second order logic approach for deterministic
systems. We investigate a pair of transformations: the first transforms a nondeterministic
system into a deterministic one with a new unobservable event; the second transforms logical
statements. In particular, these transformations are used to reduce control problems for
nondeterministic systems to control problems under partial observation for deterministic
systems.

Key-words: discrete-event systems, nondeterminism, mu-calculus, model-checking, con-
troller synthesis.

(Résumé : tsvp)

* Sophie.Pinchinat@irisa.fr
** Jean-Baptiste.Raclet@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Une approche logique au contrôle des systèmes

non-déterministes

Résumé : Nous abordons une large famille de problèmes de contrôle pour les systèmes à
événements discrets non-déterministes en se basant sur les travaux récents qui utilisent la
logique du second ordre pour traiter les systèmes déterministes. Nous proposons deux trans-
formations : la première transforme un système non-déterministe en un système déterministe
comprenant un nouvel événement inobservable; la seconde adapte les énoncés logiques. En
particulier, ces transformations sont utilisées pour réduire un problème de contrôle d’un
système non-déterministe en un problème de contrôle d’un système déterministe.

Mots clés : système à événements discrets, non-déterminisme, mu-calcul, model-checking,
synthèse de contrôleur.

The control of nondeterministic systems 3

1 Introduction

Nondeterministic systems are usually understood as systems which have alternative reac-
tions to the same external stimulus. Although it might be argued that nondeterminism does
not have a realistic meaning, it occurs by abstracting concrete systems from unwanted infor-
mations : one can for example abstract from the value of messages along a communication
channel. Henceforth, formal methods such as controller synthesis deserve being investigated
for these models, as an intermediate step in the design of real systems.

In this paper, we show a polynomial reduction from the model-checking of a second order
logic on nondeterministic systems to the model-checking of similar but pore expressive logic
on some derived deterministic system. Both logics originate from [RP03b] and [RP03a],
they are adequate to specify controllers for Mu-calculus definable objectives. Decision issues
for both checking the existence of controllers and synthesizing them (when possible) are
already made clear by [RP03a] for deterministic systems. We show here how the method
can be adapted to nondeterministic systems according to the following : given a controller
specification α for a nondeterministic system S, we can transform both the nondeterministic
system S and the specification formula α respectively into a deterministic system S ′ with
an unobservable event τ and into a formula α′ which specifies a controller C ′ under partial
observation for the deterministic system S ′. It is proved that the two problems are equivalent
in the sense that there exists a controller C of S if and only if there exists a controller C ′ for
S ′. Moreover, the two problems have the same complexity, as well as the synthesis procedure
since the controller C is simply C ′ where the τ transition are removed.

This approach seems to be very closed to the pioneer work of [HL98] who used a similar
method. However, the models we propose are a lot more general. Firstly, our semantics is
finer : instead of considering trajectory-model specifications, we use transition systems mod-
ulo bisimulation. Secondly, with this finer semantics, we can consider Mu-calculus definable
properties - which would not be adequate for trajectory-model specifications. We recall that
the Mu-calculus is the most expressive formalism to handle branching-time specifications :
it subsumes regular languages, omega-regular languages, but also temporal logics like CTL,
LTL, CTL∗ (see [Eme90] for a survey).

As the work of [RP03a] permits the synthesis of controller under partial observation for
deterministic systems, we derive for free a model-checking (and a synthesis) method for the
nondeterministic world. Notice that the controllers we synthesize are required deterministic,
which perfectly fits the intuition we have of nondeterministic systems : nondeterminism
arises as an abstraction where some events should not be distinguished, even for applying a
control. Hence the solution should respect this perception.

The work is organized as follows : Section 2 presents the models; Section 3 describes the
transformation on nondeterministic systems in order to have deterministic ones; Section 4
introduces the second order logical formalisms, which are applied in Section 5 for the control
of nondeterministic systems. We give a short conclusion in Section 6.

PI n˚1648

4 Pinchinat & Raclet

2 Preliminary Definitions

All through this paper, we let Σ = {a, b, c...} be a finite set of events and AP = {p, q, ...} be
a finite set of atomic propositions.

Definition 1 (Process)
A process on Γ is a tuple S = 〈Γ, S, s0, t, L〉 where

• Γ ⊆ AP ,

• S is a finite set of states,

• s0 ∈ S is the initial state,

• t : S × Σ → 2S is the transition relation,

• L : S → 2Γ labels states by atomic propositions.

Given s and a ∈ Σ we freely write s′ ∈ t(s, a) or (s, a, s′) ∈ t or s
a
→ s′, in which cases s′ is

called a a-successor of s or a successor of s by a.
Moreover, a process S is finite if S is finite, S is complete if for all pair (s, a) ∈ S × Σ,

there exists s′ ∈ S such that s
a
→ s′. Finally S is deterministic if |t(s, a)| ≤ 1 for all

(s, a) ∈ S × Σ.
Processes are combined using the synchronous product, as to define a control by the

product of a plant with its controller :

Definition 2 (Synchronous product)
Let S1 = 〈Γ1, S1, s

0
1, t1, L1〉 and S2 = 〈Γ2, S2, s

0
2, t2, L2〉 be two processes with disjoint Γ1

and Γ2. Their synchronous product is S1 ×S2 = 〈Γ, S1 × S2, (s
0
1, s

0
2), t, L〉 over Γ = Γ1 ∪ Γ2

where

• (s1, s2)
a
→ (s′1, s

′
2) if s1

a
→1 s′1 and s2

a
→2 s′2;

• L(s1, s2) = L1(s1) ∪ L2(s2).

Since the processes are nondeterministic in general, we now explain a procedure to encode
such nondeterministic objects into deterministic ones. Notice that we cannot use a standard
determinisation algorithm as in language theory since we aim at preserving the branching-
time properties of the behaviors. To motivate this observation, let us consider the following
machines (example in Figure 1) : the machines can serve either coffee or tea.

However, when a customer introduces coins in a machine, and according to her choice,
the left handside machine can either offer coffee or tea, whereas the right handside machine
would chose by itself if coffee or tea would be delivered. Hence the behaviors are different
because of the point of choice in the execution. The branching-time feature of behaviors
is provided by the classic notion of bisimulation : a bisimulation is an equivalence relation
between processes which stands for “having the same behavior” and would distinguish the
two coffee machines above.

Irisa

The control of nondeterministic systems 5

coins coins

tea coffee

coinstea coffee

Figure 1: Two different “coffee” machines.

Definition 3 (Bisimulation)
Let S1 = 〈Γ, S1, s

0
1, t1, L1〉 and S2 = 〈Γ, S2, s

0
2, t2, L2〉 be two processes. A binary relation

R ⊆ S1 × S2 is a bisimulation between S1 and S2 if :

1. R is total;

2. R relates the initial states : (s0
1, s

0
2) ∈ R, and

3. for all s1 ∈ S1 and for all s2 ∈ S2, (s1, s2) ∈ R implies : L1(s1) = L2(s2), and

• ∀s1
a
→1 s′1, ∃s′2 ∈ S2 s.t. s2

a
→2 s′2 and (s′1, s

′
2) ∈ R;

• conversely, ∀s2
a
→2 s′2, ∃s′1 ∈ S1 s.t. s1

a
→1 s′1 and (s′1, s

′
2) ∈ R.

We write R : S1↔S2 whenever R is a bisimulation between S1 et S2, and S1↔S2

whenever there exists a bisimulation between S1 et S2.

We assume the reader is familiar with the notion execution tree of a process : it is
obtained by unfolding (possibly ad infinitum) the process. Given a process S we denote by
TS its execution tree. We always have S↔TS .

3 Encoding the Nondeterministic Processes by Deter-

ministic Processes

As announced, we propose now an encoding of nondeterministic processes; this encoding
is inspired from [Tho97]. We then establish the mathematical properties of this encoding.
Basically, a new event called τ is considered. Now if we observe a nondeterminism on a in a
node of the tree like in state s1 in Figure 2, we designate a a-transition to be kept (transition

s1
a
→ s′1 in the example) while the others are removed and the pending a-successors (namely

s′2, s
′
3) are traversed by the addition of τ -transitions between them (in dashed arrows in the

figure).
This principle is totally clear when applied on execution trees and as expected produces a

deterministic object. However, for this encoding to be effective, we would rather performed

PI n˚1648

6 Pinchinat & Raclet

s1

s′1 s′2 s′3

s1

s′1 s′2 s′3

a a a
a

τ τ

Figure 2: Encoding of the execution trees

it on the process itself. However, a naive approach as for trees, does not work. Figure 3
gives an example where the procedure applied on the process generates a nondeterminism
in τ in the encoded process :

s1

s2 s3 s4

s5

s1

s2 s3 s4

s5

a a

b

a a

a

τ
b

a

τ

Figure 3: Generation of nondeterminism in τ .

Alternatively, we propose two successive transformations that need being applied in gen-
eral to get a correct encoding. Intuitively, given a nondeterministic process S, we chose a
total order ≤ on its set of states and apply two transformations Tip and T≤, to obtain a
correct deterministic process Sτ , as in bisimulation with the encoded execution tree T τ

S,≤.

Remarks : we can notice that if we choose to keep the transitions s1
a
→ s2 and s5

a
→ s4

and to cut the transitions s1
a
→ s3 and s5

a
→ s3 in Figure 3, there is no generation of τ -

nondeterminism. A more complicated example such that a “good” way to cut transitions
doesn’t exist can be found in Appendix A.

Irisa

The control of nondeterministic systems 7

3.1 The Transformation Tip

Transformation Tip (“ip” for immediate past) consists in storing in the current state of an
execution the previous state and the last event. To obtain it, we have to unfold one level of
the process :

Definition 4 (Transformation Tip)

Let S = 〈Γ, S, s0, t, L〉 be a nondeterministic process. The process Tip(S) is Tip(S) =

〈Γ, S̃, s̃0, t̃, L̃〉 with the set of events Σ and where :

• S̃ = {s0} ∪ {s′(s,a) | s
a
→ s′}, s̃0 = s0 ;

• if s
b
→ s′ then s(r,a)

b
→ s′(s,b) for all r ∈ S and for all a ∈ Σ such that s(r,a) ∈ S̃

if moreover s = s̃0 then s̃0 b
→ s′

(
�

s0,b)
;

• L̃(s̃0) = L(s0) and L̃(s′(s,a)) = L(s′) .

The set of events of Tip(S) remains equal to the set of events of S.

s

s′

s(,)

s′(s,b)

b b
in S : in Tip(S) :

Figure 4: An illustration for Definition 4

Remark that for each transition in Tip(S) of the form r′(r,a)

σ
→ s′(s,b) we can deduce, by

construction of t̃, that s = r′ on the one hand, and that σ = b on the other hand.
Assume the process of Figure 5, with no atomic propositions and the result Tip(S). It

can be checked that the binary relation {(1, 1), (2, 2(1,b)), (2, 2(2,a)), (3, 3(2,a)), (4, 4(2,a))} is a
bisimulation between S and Tip(S), which leads us to the statement of Proposition 1 :

Proprosition 1
For any process S, we have S↔Tip(S).

Proof
One can check that R ⊆ S × S̃ defined by (s0, s̃0) ∈ R and (s′, s′(s,a)) ∈ R, for all s ∈ S,

and for all a ∈ Σ s.t. s(s,a) ∈ S̃, is such that R : S↔Tip(S).

♦

For complexity issues, it is clear that the size of Tip(S) is in O(|S| × |S| × |Σ|).

PI n˚1648

8 Pinchinat & Raclet

1

2

3 4

b

a a

a

1

2(1,b)

2(2,a)

3(2,a) 4(2,a)

b

a
a

a

a
a

a

Figure 5: Process S and process Tip(S)

3.2 The Transformation T≤

The principle for T≤ relies on the original method as in Figure 2.
Let S = 〈Γ, S, s0, t, L〉 and let ≤ be a total order on S. Define Succ(s, a) by {t(s, a),≤},

as the set of a-successors of s ordered by ≤. We write s1 <i s2 whenever s1 6= s2 are both
in Succ(s, a), and s1 ≤ s2, and there is nothing in between, that is no s3 ∈ Succ(s, a) s.t.
s1 ≤ s3 ≤ s2.

Definition 5 (Transformation T≤)
The process T≤(S) = 〈Γ, S, s0, tτ , L〉 on the set of events Στ = Σ∪ {τ} is essentially defined
by its transition relation tτ since the remaining is left unchanged : if |Succ(s, a)| ≤ 1 then
tτ (s, a) = t(s, a); otherwise let Succ(s, a) = {s1, s2, ..., sn} with s1 <i s2 <i ... <i sn. Then:

{
tτ (s, a) = s1 with s1 = min(Succ(s, a)), and
tτ (si, τ) = si+1, ∀i < |Succ(s, a)|

In the sequel, we shall say that s1, s2, ... sn belong to the same chain of τ (transitions)
from the source state s1.

The figure below Figure 6 shows an example of applying T≤ for the total order 5 ≤ 2 ≤
3 ≤ 4 ≤ 1. It has two cases of nondeterminism to solve, namely :

• Succ(2, a) = {3, 4, 5} with 5 <i 3 <i 4 ;

• Succ(3, a) = {3, 4, 5} with 5 <i 3 <i 4.

The complexity for the transformation T≤ is clearly linear since each τ transition added
comes from the removal of some original transition.

Now, Tip and T≤ are composed. Write cod≤ for the transformation (T≤ ◦Tip). and write
Sτ the result of applying cod≤ to S.

cod≤(S) = (T≤ ◦ Tip)(S) = T≤(Tip(S)) = Sτ .

The following fundamental result can be proved :

Irisa

The control of nondeterministic systems 9

1

2

3

4 5

b

a
a

a

a
a

a

1

2

3

4 5

b

a

a

ττ

Figure 6: Process S and process T≤(S)

Theorem 1
Let S be a nondeterministic process, then the process cod≤(S) is deterministic with size in
O(|S|2).

Proof
We put :

• S =< Γ, S, s0, t, L >

• S̃ = Tip(S) =< Γ, S̃, s̃0, t̃, L̃ >

• Sτ = T≤(S̃) =< Γ, S̃, s̃0, tτ , L̃ >

Assume that Sτ is not deterministic. Two cases can occur :
First case : we are in the following situation :

s′1(s1,b)

r′(r,a)

s′2(s2,c)

σ σ

• if σ 6= τ :
Necessarily, t̃(r′(r,a), σ) = s′1(s1,b) and t̃(r′(r,a), σ) = s′2(s2,c) because σ 6= τ .

By definition of tτ , we have :

PI n˚1648

10 Pinchinat & Raclet

s′1(s1,b) = min(Succ(r′(r,a), b)) and

s′2(s2,c) = min(Succ(r′(r,a), b))

because σ 6= τ . Then : s′1(s1,b) = s′2(s2,c).

• if σ = τ :

Assume that s′2(s2,c), r′(r,a) and s′1(s1,b) belong to the same chain of τ . Let q′(q,e) be the
source state such that :

{s′2(s2,c), r
′
(r,a), s

′
1(s1,b)} ∈ Succ(q′(q,e), d).

But according to the τ -transitions, we have also :

r′(r,a) <i s′1(s1,b) et r′(r,a) <i s′2(s2,c)

The τ -transitions belong to two different chains of τ . Then the process S̃ looks like
that :

s′1(s1,b) r′(r,a) s′2(s2,c)

q′1(q1,f) q′2(q2,g)

d d e e

By definition of t̃, we have on the one hand r = q′1 = s1 and b = d = a and, on the

other hand, r = q′2 = s2 and a = e = c. Then the process S̃ is :

s′1(q′

1
,a) r′(q′

1
,a) s′2(q′

1
,a)

q′1(q1,f) q′1(q2,g)

a a a a

According to the immediate past stored in the state, the process S should be :

Irisa

The control of nondeterministic systems 11

s′1 r′ s′2

q′1

q1 q2

a a a

f g

But, in S̃ , we should have :

Succ(q′1(q1,f)) = {s′1(q′

1
,a), r

′
(q′

1
,a), s

′
2(q′

1
,a)}

that is to say that s′1(q′

1
,a), r′(q′

1
,a) and s′2(q′

1
,a) belong to the same chain of τ . Contra-

diction ! This case is impossible.

Second case : we are in the following situation :

r′(r,a)

s′(s,b)

σ

σ

• if σ 6= τ :
By definition of tτ , we have necessarily t̃(r′(r,a), σ) = r′(r,a) and t̃(r′(r,a), σ) = s′(s,b)

because σ 6= τ . And moreover :

r′(r,a) = min(Succ(r′(r,a), a)) and

s′(r,a) = min(Succ(r′(r,a), a))

Then we have : r′(r,a) = s′(r,a).

• if σ = τ :
This case is impossible because, by definition of tτ we don’t create loops on τ :
tτ (r′(r,a), τ) = r′(r,a) means that r′(r,a) <i r′(r,a) which is impossible.

♦

PI n˚1648

12 Pinchinat & Raclet

4 The Logical Framework

In this section, we assume given a set V ar = {Y, Z, . . .} of variables.

Definition 6 (Syntax of Mu-calculus [Koz83])
Given Γ ⊆ AP , the set of formulas of the Mu-calculus over Γ, written Lµ(Γ), is inductively
defined by :

> | p |Y | 〈a〉β1 | ¬β1 |β1 ∨ β2 |µY.β1(Y)

with p ∈ Γ, Y ∈ V ar, a ∈ Σ, and β1, β2 ∈ Lµ(Γ). Moreover, in order to make consistent
the semantics of fix-point formulas, like µY.β1(Y), we require variable Y to range under the
scope of an even number of ¬ symbol in β1(Y). A variable Y is free in the formula β if it is
not under the scope of a fix-point operator µ.

Finally, we introduce the following simplifying notations :

• [a]β1 = ¬ 〈a〉 (¬β1)

• β1 ∧ β2 = ¬(¬β1 ∨ ¬β2)

• νY.β1(Y) = ¬µY.β1(¬Y).

• AG(β1) = ¬µY.
∧

a∈Σ 〈a〉Y ∧ ¬β1.
The notation AG comes from the temporal logic CTL; AG(β) means “β always holds”
or equivalently “β is an invariant”.

• 〈ab∗〉β = 〈a〉 (µY. 〈b〉Y ∨ β).

Mu-calculus formulas are interpreted over a nondeterministic process S = 〈Γ, S, s0, t, L〉.
Each formula interprets as a subset of states, which by convention are those which satisfy
the formula. Due to variable formulas like Y , we need to assume given a valuation val :
V ar → 2S .

Definition 7 (Semantics of Mu-calculus)
The semantics of a formula α is written [[α]]

[val]
S and is inductively defined by induction on

the structure of α :

[[>]]
[val]
S = S [[p]]

[val]
S = {s ∈ S | p ∈ L(s)}

[[Y]]
[val]
S = val(Y) [[¬β1]]

[val]
S = S \ [[β1]]

[val]
S

[[β1 ∨ β2]]
[val]
S = [[β1]]

[val]
S ∪ [[β2]]

[val]
S

[[〈a〉β1]]
[val]
S = {s ∈ S | ∃s′ : s′ ∈ t(s, a) and s′ ∈ [[β1]]

[val]
S }

Irisa

The control of nondeterministic systems 13

[[µY.β1(Y)]]
[val]
S =

⋂
{V ⊆ S | [[β1]]

[val(V/Y)]
S ⊆ V }

where val(V/Z) : V ar → 2S is the valuation defined by val(V/Z)(Y) = val(Y) if Y 6= Z,
V otherwise.

According to the definitions above, it can be shown that if a formula β does not contain
free variables, its semantics is independent of val, in which case we simply write [[β]]S . By
default, we consider formulas with no free variables.

As first proposed by [RP03b], the Mu-calculus extends to the Quantified Mu-calculus by
allowing quantifications of the form ∃Λ for a set of atomic propositions Λ. For simplicity
in this paper, we actually will focus on a fragment of the logic where Λ is a set of atomic
propositions indexed by Σ; however the results definitely generalize to any Λ ⊆ AP .

Definition 8 (Syntax of Quantified Mu-calculus)
The syntax of the (in this paper, restricted) Quantified Mu-calculus over Γ (⊆ AP), written
qLµ(Γ), is :

∃X. α|¬α1|α1 ∨ α2|β

where X ⊆ AP is a set of propositions X = {xa|a ∈ Σ} indexed by Σ and disjoint
from Γ, α is a formula of qLµ(Γ ∪ X), α1 and α2 are formulas of qLµ(Γ), and β ∈ Lµ(Γ).
Notice that it is not allowed to use quantification inside fix-point formulas; quantifications
and fix-point operators do not commute in general.

The semantics of qLµ(Γ ∪ X) is given by means of labeling processes :

Definition 9 (Labeling process)
An X-labeling process is a complete deterministic process over X . The set of X-labeling
processes is written LabX , and a typical element will be E .

For a process S = 〈Γ, S, s0, t, L〉 with Γ is disjoint from X , the synchronous product
S × E is a labeling of S (by E) over X or an X-labeling (of S by E over X). An X-labeling
of S hence is some unfolding of S with propositions xa put somehow.

Definition 10 (Semantics of Quantified Mu-calculus)
[[∃X. α]]

[val]
S is the set of states s ∈ S for which there exists E = 〈X, E, ε0, t′, L′〉 ∈ LabX

with (s, ε0) ∈ [[α]]
[val×E]
S×E , where (val × E) maps each Y ∈ V ar onto val(Y) × E.

We write S |= α, and say that S satisfies the formula α or S is a model of α, whenever
s0 ∈ [[α]]S , which we write S |= α.

Essentially, S |= ∃X. α ensures the existence of E ∈ LabX s.t. S×E |= α. In other words,
there is a way to place propositions of X in S so that formula α holds. Notice that although
processes might be nondeterministic, labeling processes are always deterministic. De facto,

PI n˚1648

14 Pinchinat & Raclet

the propositions added by the labeling are placed in a consistent way : a proposition x ∈ X
is put on some a-successor if and only if it is put on any of the a-successors.

We finally introduce “looping propositions” to the logic qLµ(Γ), as originally considered
by [AVW03], and later [RP03a]. Such propositions have the form 	a which semantics is the
existence of a looping a-transition. Actually, we will only need to interpret 	a onto labeling
processes, hence deterministic processes.

Definition 11 (Looping propositions)
[[a]]S is the set of states s.t. s is its own a-successor.

For example, a process which invariantly loops on τ -transitions (say because τ is unob-
servable) would satisfy the (Mu-Calculus + loops)-formula Loop(τ) defined by :

Loop(τ)
def
= AG(τ)

In the Loop Quantified Mu-Calculus, introduced by [RP03a, Rie03], which extends qLµ,
it is possible to enforce the membership of labeling processes in (Mu-Calculus + loops)-
definable classes, like Loop(τ) : assertions like ∃X. α are enriched to state ∃X ∈ β	 . α,
where β	 is a (Mu-Calculus + loops)-formula, possibly containing propositions 	a. The
full theory of this logic can be found in [Rie03] and [RP03a]. However, in the context of this
paper, we only need a limited syntactic fragment, which enables us to write the formula of
Theorem 2.

Let us denote by 	
qLµ(Γ) this logic.

5 The Control of Nondeterministic Systems

Assume that in the framework of deterministic processes there is a method for solving
control problems under partial observation when the objectives are given in the mu-calculus;
this is precisely the case in [RP03a] (and also [Rie03]) which we recall the principles in the
next section.

Now, by using Theorem 3 further, we infer in Section 5.2 a method for answering control
problems for nondeterministic processes.

5.1 The Control of Deterministic Processes

We briefly recall the narrow link between control problems under partial observation and
the model-checking of 	

qLµ(Γ)-formulas, as originally explained in details by [RP03a].
In order to ease the reading, we use Σ′, X ′, β′ ... instead of respectively Σ, X , β ... to

put the emphasis on the deterministic framework.
Basically, given an unobservable event τ ∈ Σ′, and a partition of Σ′ into Σ′

u] Σ′
c, the

following holds [RP03a, Rie03] :

Irisa

The control of nondeterministic systems 15

Theorem 2
Assume given a process S ′ with events in Σ′ = Σ′

u] Σ′
c which is deterministic, since for

example resulting from a transformation by cod≤ (see Section 3), assume also given an
unobservable event τ ∈ Σ′

u and a Mu-calculus formula β′. Then, there exists a controller C ′

of S ′ for β′ which does not observe τ ∈ Σ′
u
1 iff :

S ′ |= ∃X ′ ∈ (AG(
∧

a∈Σ′

u

xa) ∧ Loop(τ). f(β′, X ′)

where f(β′, X ′) ∈ Lµ depends on β′ and propositions xa ∈ X ′ (a ∈ Σ′); it expresses in
particular the uncontrollability of events in Σu.

According to [RP03a], ∃X ′ ∈ (AG(
∧

a∈Σ′

u

xa)∧Loop(τ). f(β′, X ′) means there exists an

X ′-labeling process, say E	 , s.t. : E	 loops on every τ -transition and all its states possess
propositions xa for a ∈ Σ′

u, in particular xτ .
[RP03a] have established a synthesis procedure for E	 , inspired from [AVW03]. To obtain

the controller C′, E	 needs being pruned : for each state and each proposition xa ∈ X ′, we
remove the outgoing a-transition whenever the state is not labeled by xa. We write (E)

X′ �

the resulting. In particular, because proposition xa always holds when a ∈ Σ′
u (see the

formula in Theorem 2), all uncontrollable remain in (E)
X′ �

. By construction, the process

(E)
X′ �

achieves S ′ × (E)
X′ �

|= β′ and always allows uncontrollable transitions. Hence it

is a controller of S ′ for β′.
We recall that (E)

X �
is such that S ′ × (E)

X �
|= β′, and that (E)

X �
has an a-loop in

each state for every a ∈ Σuo.
Actually, Theorem 2 can be made a lot more general : for example, several controllers

with different sets of observation can be specified (but not necessarily synthesized due to
undecidability reasons), or universal quantifications can be used to deal with maximally
permissive controllers [RP04].

5.2 The Control of Nondeterministic Processes

We first explain how the model-checking of a qLµ-formula α on a nondeterministic process S
reduces to the model-checking of some 	

qLµ-formula, written Tr(α), on the process cod≤(S).
Since the size of cod≤(S) is quadratic in the size of S and because the size of Tr(α), as

we will see, is linear in the size of α, this reduction is polynomial and the two problems
belong to the same complexity class.

We propose a translation Tr from qLµ to 	
qLµ which aims at telling a qLµ-statement

on a nondeterministic process S as a statement on cod≤(S) : for example, the existence
of a a-successor in S translates to the existence of an aτ ∗-successor in cod≤(S), hence the
translation for formulas like 〈a〉β1 below. Also, since cod≤(S) has now transitions labeled on
Σ′ = Σ ∪ {τ}, we turn existential quantifications ∃X into ∃X ∪ {xτ} ∈ (AG(xτ) ∧ Loop(τ))
so that τ -transitions in cod≤(S) will not be observed nor disallowed by the controllers. In

1Here, τ is also supposed uncontrollable.

PI n˚1648

16 Pinchinat & Raclet

the following, we take the convention that

loop(τ)
def
= AG(xτ) ∧ Loop(τ)

Definition 12
Let Tr : qLµ(Γ) →	

qLµ(Γ ∪ {xτ}) be the translation inductively defined by :

Tr(>) = > Tr(p) = p Tr(Y) = Y
Tr(〈a〉β1) = 〈aτ∗〉Tr(β1)
Tr(¬β1) = ¬Tr(β1)
Tr(β1 ∨ β2) = Tr(β1) ∨ Tr(β2)
Tr(µY.β1(Y)) = µY.Tr(β1(Y))
Tr(∃X. α) = ∃X ∪ {xτ} ∈ loop(τ). Tr(α)

The translation Tr indeed has the desired property :

Theorem 3
Let S be a process and let α ∈ qLµ,

S |= α if and only if cod≤(S) |= Tr(α)

The proof of Theorem 3 is done by induction over the structure of α. In particular, for
existential quantifications, which specify the existence of a labeling process such that some-
thing holds, the proof goes through an intermediate powerful result stated in Proposition 3.

Definition 13
Let E	 be an (X ∪ {xτ})-labeling process with event set Σ ∪ {τ} and satisfying loop(τ).
Notice that such a labeling process is specified by all formulas Tr(∃X. . . .). We apply the
τ -forgetting application l to get the X-labeling process written l(E): it has the same states
as E	 and its events set is Σ; moreover, tl(E)(e, a) = e′ whenever tE	 (e, a) = e′ and a 6= τ ,
and Ll(E)(e) = LE	 (e) \ {xτ}

The application l have the following property :

Proprosition 2
l(E	 × E ′) = l(E) × l(E ′)

Proof
We put E	 =< X ∪{xτ}, E, ε0, tE	 , LE	 > and E ′	 =< X ∪{xτ}, E

′, ε′
0
, tE′	 , LE′	 >, and

respectively S1 and S2 the systems l(E	 ×E ′) and l(E)× l(E ′). Let’s prove that S1 and
S2 are the same :

First, S1 and S2 have the same set of state in E ×E ′ and the same initial state (ε0, ε′
0
).

Moreover, by synchronous product, the set of atomic propositions for all states (ε, ε′) of
the systems S1 and S2 is : (LE	 (ε) ∪ LE′	 (ε′)) \ {xτ}.

Last, the transition relation (with a 6= τ) :

Irisa

The control of nondeterministic systems 17

tS2
((ε1, ε

′
1), a) = (ε2, ε

′
2) ⇔ tl(E)(ε1, a) = ε2 and tl(E′)(ε

′
1, a) = ε′2

⇔ tE	 (ε1, a) = ε2 and tE	 (ε1, τ) = ε1
and tE′	 (ε′1, a) = ε′2 and tE′	 (ε′1, τ) = ε′1

⇔ tE	×E′	 ((ε1, ε
′
1), a) = (ε2, ε

′
2)

and tE	×E′	 ((ε1, ε
′
1), τ) = (ε1, ε

′
1)

⇔ tS1
((ε1, ε

′
1), a) = (ε2, ε

′
2)

Then S1 and S2 have the same transition relation and the systems l(E	 × E ′) and
l(E) × l(E ′) are the same.

♦

Moreover, we can prove that the application l is such that :

Proprosition 3
For any process S and α ∈ qLµ,

E	 ∈ LabX∪{xτ} satisfying loop(τ) is s.t. cod≤(S) × E	 |= Tr(α)
iff

S × l(E) |= α

Proof
This proof is done by induction over the structure of α ∈ qLµ.

• case of the quantification α = ∃X ′.α′ :

Sτ × E	 |= Tr(∃X ′.α′) ⇔ Sτ × E	 |= ∃X ′ ∪ {xτ} ∈ loop(τ).Tr(α′)

⇔ ∃E ′	 ∈ LabX′∪{xτ} :

(Sτ × E) × E ′	 |= Tr(α′) ∧ E ′	 |= loop(τ)

⇔ Sτ × (E	 × E ′) |= Tr(α′)

∧ E ′	 |= loop(τ) and,
by assumption, E	 |= loop(τ)

⇔ Sτ × (E	 × E ′) |= Tr(α′) ∧ E	 × E ′	 |= loop(τ)
according to the definition of the synchronous product

⇔ S × l(E	 × E ′) |= α′

according to the induction assumption

⇔ S × l(E) × l(E ′) |= α′ according to Proposition 2
⇔ S × E × E ′ |= α′

⇔ ∃E ′ ∈ LabX′ : (S × E) × E ′ |= α′

⇔ S × E |= ∃X ′.α′

• Negation α = ¬α1 and disjunction α = α1 ∨ α2 are obvious cases : you have to go
back to the semantic of the logic and use the induction assumption to conclude.

PI n˚1648

18 Pinchinat & Raclet

• if α is a formula of the pure Mu-calculus :

By induction, one can easily prove that :

S |= α if and only if cod≤(S) |= Tr(α)

So we can deduce that :

S × E |= α if and only if cod≤(S × E) |= Tr(α)

Furthermore, we can prove, by examining their executive trees, that :

cod≤(S × E)
�

cod≤(S) × E	

Finally : S × E |= α if and only if cod≤(S) × E	 |= Tr(α)

♦

We can now prove Theorem 3 :

Proof
This proof is done by induction over the structure of α ∈ qLµ. First, the case of the
quantification :

S

S |= ∃X.α ⇔ ∃E ∈ LabX s.t. S × E |= α
⇔ ∃E	 ∈ LabX∪{xτ} s.t. Sτ × E	 |= Tr(α)

with E	 |= loop(τ)
⇔ ∃X ∪ {xτ} ∈ loop(τ).Tr(α)

Here again, the other cases are obvious : you have to go back to the semantic of the logic
and use the induction assumption to conclude.

♦

We can now relate controllers for nondeterministic processes to controllers with unob-
servable and uncontrollable event τ for the deterministic processes, since, already explained
in the previous section, controllers are simply pruned labeling processes. We can formally
demonstrate :

Corollary 1
There exists a controller of a nondeterministic process S for a mu-calculus definable control
objective β if and only if there exists a controller of cod≤(S) for Tr(β) which does not
observe nor control event τ . Moreover, the former controller is obtained by forgetting all the
τ -loops in the latter. Finally, the complexity classes of control problems for nondeterministic
processes are the complexity classes of control problems for deterministic processes with
partial observation.

We refer to [RP03a] for the complexity classes of control problems for deterministic
processes with partial observation.

Irisa

The control of nondeterministic systems 19

6 Conclusion

We have proposed two transformations that are used to reduce control problems for nonde-
terministic systems to control problems under partial observation for deterministic systems.
As a corollary, the classes of complexity are identical.

It is worthwhile noting that Theorem 3 actually says more, since it gives a polynomial
reduction of the model-checking of qLµ for nondeterministic system into the model-checking
of 	

qLµ for deterministic systems. Notice also that the key Proposition 3 is more powerful as
it holds for the full logic qLµ. Consequently, nested quantifications can be considered. Hence
Corollary 1 still holds when maximally permissive controllers are required [RP04]. In fact,
Proposition 3 holds of the full logic 	

qLµ of [RP03a], where maximally permissive controllers
in the class of controllers under partial observation can be specified and synthesized.

PI n˚1648

20 Pinchinat & Raclet

A Example : we can’t apply on systems the encoding

on trees from [Tho97]

This example points out that we can’t apply on systems the encoding on trees from [Tho97]:

0

1 2 3

0′

a
a, b

b

c

b
a

a, b

We enumerate the different cases according to the order between the states 1, 2 and 3
(we don’t need to sort the states 0 and 0′) :

1 ≤ 2 ≤ 3 : 1 ≤ 3 ≤ 2 :

0

1 2 3

0′

a
b

τc

b
a

τ

τ

0

1 2 3

0′

a
b

τ τc

τ
a, b

2 ≤ 3 ≤ 1 : 2 ≤ 1 ≤ 3 :

0

1 2 3

0′

a, b

τ τ

τ

c

a
b

0

1 2 3

0′

a, b

τ τ

τ

c

a
b

Irisa

The control of nondeterministic systems 21

3 ≤ 1 ≤ 2 : 3 ≤ 2 ≤ 1 :

0

1 2 3

0′

a

τ

τ

b

c τ

a, b

0

1 2 3

0′

τ

a
b

c τ

τ
a, b

There is no order between the states 1, 2 and 3 that doesn’t generate a nondeterminism
in τ .

PI n˚1648

22 Pinchinat & Raclet

References

[AVW03] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers
with partial observation. Theorical Computer Science, 303(1):7–34, 2003.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B, chapter 16, pages 995–1072. ELSEVIER,
1990.

[HL98] Michael Heymann and Feng Lin. Discrete-event control of nondeterministic sys-
tems. Proceedings of the IEEE; Transaction on Automatic Control, 43(1):3–17,
January 1998.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theorical Computer Science,
27:333–354, 1983.

[Rie03] S. Riedweg. Logiques pour le contrle d’automatismes discrets. PhD thesis, IRISA
Rennes, 2003.

[RP03a] S. Riedweg and S. Pinchinat. Loop quantified mu-calculus for control synthesis,
2003. To appear, a research report version is available as an INRIA-RR n4949.

[RP03b] S. Riedweg and S. Pinchinat. Quantified mu-calculus for control synthesis. In
Mathematical Foundations of Computer Science, Bratislava, Slovak Republic, aot
2003.

[RP04] S. Riedweg and S. Pinchinat. Maximally permissive controllers in all contexts. In
Proc of 7th Workshop on Discrete Event Systems, WODES 2004, Reims, France,
sept 2004.

[Tho97] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, ed-
itors, Handbook of Formal Languages, volume 3, Beyond Words. Springer-Verlag,
Berlin, 1997.

Irisa

The control of nondeterministic systems 23

Contents

1 Introduction 3

2 Preliminary Definitions 4

3 Encoding the Nondeterministic Processes by Deterministic Processes 5
3.1 The Transformation Tip . 7
3.2 The Transformation T≤ . 8

4 The Logical Framework 12

5 The Control of Nondeterministic Systems 14
5.1 The Control of Deterministic Processes . 14
5.2 The Control of Nondeterministic Processes 15

6 Conclusion 19

A Example : we can’t apply on systems the encoding on trees from [Tho97] 20

PI n˚1648

