
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1402

A FRAMEWORK TO ANALYSE SYNCHRONOUS DATA-FLOW
SPECIFICATIONS

MIRABELLE NEBUT , SOPHIE PINCHINAT

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

A Framework to Analyse Synchronous Data-Flow Speci�cations

Mirabelle Nebut , Sophie Pinchinat*

Thème 1 � Réseaux et systèmes
Projets Espresso et S4

Publication interne n�1402 � Novembre 2001 � 59 pages

Abstract: Presence and absence of signals inside a reaction are inherent to the synchronous paradigm, as well
as clocks which are sets of instants that indicate when a given condition is ful�lled over a sequence of reactions
(e.g. when a signal is present). Clocks are essential to capture the control in data-�ow speci�cations; more
generally relations between clocks should be analyzed to verify some properties, e.g. to detect inconsistencies
in speci�cations. These relations express particular safety properties many of which can be veri�ed without
considering the dynamic of systems, by means of a static abstraction. We propose a language CL to describe
such properties and prove it decidable. Model-checking is derived for Signal programs, on the basis of a
translation from the static abstraction of Signal into CL. Links with existing models and abstractions for the
analysis of Signal programs are largely discussed.

Key-words: synchronous paradigm, data-�ow language, clock, decision procedure, abstraction, safety prop-
erty, model-checking, Signal

(Résumé : tsvp)

Thanks are due to Paul Le Guernic for extensive comments about sections 2, 3 and 5 and useful discussions.

* {mnebut,pinchina}@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UPRESSA 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Un cadre pour l'analyse de spéci�cations �ot de données synchrones

Résumé : La présence et l'absence des signaux à l'intérieur d'une réaction sont inhérentes au paradigme
synchrone, de même que les horloges : ces ensembles d'instants indiquent quand une condition donnée est véri�ée
au cours d'une suite de réactions (par exemple quand un signal est présent). Les horloges sont essentielles à
la description du contrôle des spéci�cations �ot de données, mais d'une manière plus générale l'analyse des
relations entre horloges permet de véri�er certaines propriétés, par exemple de détecter des incohérences dans
les spéci�cations. Ces relations expriment des propriétés de sûreté particulières dont une grande partie peut
être véri�ée sans considérer la dynamique des systèmes, au moyen d'une abstraction statique. On propose le
langage CL pour décrire de telles propriétés. Une procédure de décision est donnée pour CL, de laquelle est
dérivé le model-checking de programmes Signal grâce à une traduction de l'abstraction statique de Signal en
CL. Le lien entre ce travail et les modèles et analyses existants pour Signal est largement développé.

Mots clés : paradigme synchrone, langage �ot de données, horloge, procédure de décision, abstraction,
propriété de sûreté, model-checking, Signal

A Framework to Analyse Synchronous Data-Flow Speci�cations 3

Table of Contents

1 Introduction 4

2 The Synchronous Data-Flow Paradigm 5
2.1 Notations . 6
2.2 Traces and Flows as Models for Speci�cations . 6

2.2.1 Events and Valuations . 6
2.2.2 Traces . 7
2.2.3 Flows . 7
2.2.4 Clocks . 9

2.3 Processes . 10
2.3.1 Informal Presentation . 10
2.3.2 Processes as Closed Sets of Traces . 12
2.3.3 Processes as Sets of Flows . 13
2.3.4 A Useful Theorem . 14
2.3.5 Clocks . 15

2.4 Classes of Processes . 15
2.4.1 Deterministic Processes on I . 16
2.4.2 Endochronous Processes on I . 16
2.4.3 Static Processes . 17

2.5 Transition Systems as Models for Speci�cations . 18
2.5.1 Synchronous Transition Systems (STS) . 18
2.5.2 Symbolic Labeled Transition Systems (slTS) . 20

3 Speci�cation and veri�cation using Signal 21
3.1 The Kernel of Signal . 21

3.1.1 Monochronous Operators . 22
3.1.2 Polychronous Operators . 22
3.1.3 Other Constructions . 23

3.2 Analyses on Signal . 24
3.2.1 Boolean Analysis of Trajectories . 24
3.2.2 Non-boolean Values Handling . 24

4 Abstraction-based Analyses 25
4.1 Notions of Abstract Interpretation . 25

4.1.1 Informal Presentation . 26
4.1.2 Theoretical Foundations . 26

4.2 Standard Abstract Domains . 27
4.2.1 Boolean Abstraction . 27
4.2.2 Non-boolean Abstractions . 28
4.2.3 Mixed Abstractions . 28

5 Abstractions and Analyses in Polychrony 28
5.1 Structural Abstractions . 29

5.1.1 Principle of Structural Abstractions . 29
5.1.2 Abstraction by Control . 30
5.1.3 Static Abstraction . 31
5.1.4 Abstraction by Synchronizations . 32
5.1.5 Composition of Abstractions . 32

5.2 Boolean Structural Abstractions . 33
5.2.1 Clock Algebra and Propositional Calculus . 34
5.2.2 Encoding into the Clock Algebra . 34
5.2.3 Link with Predicate Abstraction . 35

5.3 Analyses of Admissible Valuations . 36
5.4 Abstractions into Data Domains . 37

PI n�1402

4 M. Nebut & S. Pinchinat

6 A Clock Language 40
6.1 Notations . 40
6.2 Clock Terms . 40
6.3 Clock Formulas . 41
6.4 Boolean Abstraction . 42

7 A Decision Procedure 44
7.1 The Satis�ability Problem . 44
7.2 The Decision Procedure . 46

8 Model-checking for Data-�ow Speci�cations 46
8.1 Translation of SSignal into the CL Language . 46
8.2 Model-checking . 48

9 Conclusion and Perspectives 49
9.1 Related Work . 49

9.1.1 Analyses related to Signal . 49
9.1.2 Analyses related to Lustre . 49

9.2 Perspectives . 50

1 Introduction

Synchronous languages [26, 45, 28, 10] have been proposed to specify reactive systems, which interact contin-
uously with the environment they are connected to. The imperative, state-based and data-�ow programming
paradigms both involve the notion of logical instants and presence/absence of signals. It is particularly apparent
in imperative languages like Esterel [10], well adapted to problems for which the control-handling aspects are
prevalent. A signal of type pure event is only an �impulse�: the information it carries is limited to its status,
that is its presence or absence (valued signals also exist). Basic instructions specify that the system broadcasts
signals (emit S) or reacts to the presence or absence of signals (e.g. present S then p else q). The equa-
tional data-�ow languages like Signal [45] and Lustre [28] are better adapted to problems where data-�ow is
prevalent. Speci�cations are systems of equations which describe the possible values carried by signals along the
time. At a given instant, a signal (e.g. of type boolean, integer, etc) can be absent or present, hence carrying a
signi�cant value. The set of instants at which it is present is called its clock.

In the synchronous paradigm models of executions of the system are sequences of instantaneous reactions
along a logical time line, which attach a status to each signal (and possibly a value, accordingly). Such an
assignment is a valuation. For data-�ow programs, these time-indexed sequences of valuations are generally
called �ows, or traces. A program is then associated a particular set of possible �ows, called a process here.

Contrary to imperative languages, data-�ow speci�cations do not make the control explicit: hence it must
be synthesized. The powerful notion of clocks is essential for this purpose since clocks are sets of instants that
characterize the instants when given conditions hold. The clock of a signal is particularly important: it indicates
when the signal carries a signi�cant value which can then be involved in computations. But clocks of interest
can also be the set of instants when the sum of the values of two signals is positive, or more generally when an
input has to be read, when a particular computation has to be performed, etc.

Clocks are handled di�erently in Lustre and Signal. In Lustre a basic clock is attached to the program,
from which �slower� clocks are functionally extracted by means of boolean �ows: the new sequence is composed
of instants at which the �ow carries the value true. More generally in Signal equations state relations between
clocks, among which the extraction principle of Lustre. Then in the case of Lustre it is quite easy to derive
an order for computations which meets dependencies between variables, while the larger Signal expressiveness
makes necessary a deduction mechanism and a real synthesis. Nevertheless in both cases and even in the whole
synchronous paradigm, the analysis of relations between clocks allows to obtain code of higher quality and e.g.
to detect inconsistencies. Therefore powerful techniques to automate deductions and more generally perform
veri�cations need to be developed.

Relations between clocks express instantaneous properties, which describe only what happens inside a reac-
tion, with no reference to the preceding or following ones. E.g. �the level will never exceed 10� (for all instant
t, level at t is lower than 10), or �the alarm is never raised� (for no instant t, alarm is present), or �each time
the tank becomes empty, then the faucet is turned on� (for all instant t, if level at t is equal to 0 then faucet is
present) are instantaneous properties. They fall into the class of safety properties, which are the most important

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 5

ones concerning reactive systems. On the contrary, and as expected, liveness properties (e.g. �there exists an
instant when the train is stopped�) or properties that involve references to more than a single instant such as
�the value of x increases from one instant to the next one� are not instantaneous properties.

Standard approaches to establish safety properties rely on operational models which take account of the
dynamic of systems. It is also the case for instantaneous properties, e.g. the fact that �the level will never
exceed 10� likely strongly depends on the evolution of the signal level along the time. Nevertheless many of
them can be veri�ed while abstracting from dynamic aspects (e.g. �the emptiness of the tank turns on the
faucet�), but instead focusing on static features (obtained by a static abstraction of programs).

The present work proposes a language called CL (read �clock language�) to express instantaneous properties
of processes (that hold in all possible �ow of the process). Basically, the formulas of the language (presented
in Sect. 6) express inclusions between clocks inside �ows. Provided clocks are de�ned using a decidable theory,
the language CL is proved decidable and a decision procedure is given in Sect. 7. Moreover, Sect. 8 shows in the
case of Signal that the static abstraction of data-�ow speci�cations translates naturally in CL: model-checking
can then be easily derived from the decision algorithm. In this context the CL language as well as its decision
procedure strictly generalize existing works on Signal, where clocks are de�ned using only a boolean theory,
see e.g. [1]).

A large part of the document is �rst dedicated to the presentation of existing works applied to Signal

and provided by the environment Polychrony. In Sect. 2 are given two classical semantics for data-�ow
processes, useful to present the Signal language as well as two related analyses in Sect. 3. A �ow semantics
is �rst presented and used to describe particular classes of processes: deterministic, endochronous (usually
characterized by an operational semantics, see e.g. [57]) and static (so far informally de�ned). Then a semantics
of processes as transition systems is given and compared with the �ow semantics. In Sect. 4 are recalled a few
principles about abstraction-based analyses, in particular the framework of abstract interpretation, in order to
present in Sect. 5 abstractions (and related analyses) used in Polychrony.

These analyses are very diverse: e.g. authors of the work [11] claim its relation with abstract interpretation,
while other abstractions are described by means of syntactical transformations of Signal programs; some
analyses address dynamic features while others are dedicated to the veri�cation of instantaneous properties
over the static part of processes. Moreover the particularly important abstraction by synchronizations is quite
original in its principle, though it is only a particular case of boolean abstraction. For these reasons, the whole
set of studies involving abstractions in Polychrony can only gain clarity from a general survey which would
establish classi�cations and comparisons both between classes and with classical abstractions.

We propose in this document a classi�cation into on the one hand what we call structural abstractions and
in the other hand semantical abstractions into data-domains. Structural abstractions are emphasized: they
decompose a program into the parallel composition of two sub-programs, one of which is kept as an abstraction
of the original one. The link with abstract interpretation is highlighted and a few examples picked up from
the Polychrony environment are enumerated; in particular we present how some abstract processes involving
only boolean features are described by means of relations between particular clocks, in the �Clock Algebra�. It
gives rise to a discussion about analyses of admissible valuations of a system (admissible valuations contain the
information kept by the static abstraction): it is shown that in the general case any analysis of the trajectories
of a system necessitates an analysis of its admissible valuations.

When dealing with abstractions into data domains, it is pointed that one cannot do without determining
�rst the status of values before handling their values. Therefore clocks should practically be used as objects
of analyses even in the case of non-boolean systems, provided that values of variables are taken into account.
Examples motivate an extension of the Clock Algebra, which leads to the de�nition of the CL language in
Sect. 6.

2 The Synchronous Data-Flow Paradigm

Data-�ow synchronous languages (such as Signal [45, 25, 9] and Lustre [16]) specify a system by a set of
equations. An equation describes a set of data-�ows, i.e. sequences of �ows of data carried by variables called
signals. According to [7] the data-�ow formalism is well adapted to problems where data-�ow is prevalent, while
state-based formalisms (like Statecharts [33]) or imperative languages (like Esterel [10]) are well adapted
to problems where control-�ow is prevalent.

The content and notations of this section stand for the whole data-�ow paradigm, even if the presentation
is particularly adapted to Signal. Notations are �rst given in Sect. 2.1. A trace and �ow semantics is then
described: valuations, traces, �ows and clocks are presented in Sect. 2.2. Then processes are presented in

PI n�1402

6 M. Nebut & S. Pinchinat

Sect. 2.3. Standard classes of processes (deterministic, endochronous and static) are presented by means of the
�ow semantics in Sect. 2.4. Finally semantics of data-�ow speci�cations as transition systems is presented in
Sect. 2.5.

2.1 Notations

A data-�ow speci�cation describes a system by a set of equations involving typed variables (e.g. boolean, integer,
etc) named signals1. Informally a signal x is a data-�ow : a sequence of values (xt)t∈T, where T is a set of
instants called the time referential . To simplify, we choose T as a totally ordered and countable set2, say N.
S is a set of variables whose values have domain D. ? is a special value3 (it should be read as �absence� or
�bottom�) such that ? 6∈ D, and D? stands for D ∪ {?}. At a given instant t ∈ T, a variable x can be absent
(denoted by xt = ?) or present : xt = v for some value v ∈ D. The information of the presence or absence of a
variable at a given instant is called its status . It corresponds to the special data type of pure events {true, ?}
(present with value true or absent). The clock of the variable x, written x̂, is the set of its instants of presence

(x̂ ⊆ T). E.g. on the example given page 11 on Fig. 4, {ta3, ta4} ⊆ b̂ but ta2 6∈ b̂. Variables which have the same
clock are said to be synchronous (they are both absent or present at the same time).

2.2 Traces and Flows as Models for Speci�cations

Data-�ow languages are naturally given a trace semantics: a trace is a sequence of values carried by variables.
Speci�cations are then interpreted by a set of traces. A simple trace semantics partly taken up from works
about Signal is presented here. Other presentations can be found in [53, 8, 9]. Events and valuations are �rst
presented in Sect. 2.2.1 as components of traces (Sect. 2.2.2). Then �ows are de�ned in Sect. 2.2.3 as particular
traces. Finally the clock of variables is de�ned with respect to the trace semantics in Sect. 2.2.4.

2.2.1 Events and Valuations

A valuation on a subset A of S (or simply valuation) is a function which assigns a value in D? to each variable
in A. It is traditionally called an event (not to be confused with the type of pure events) but we prefer this
designation in accordance with notations of Sect. 6. # is the special blocking valuation which indicates an
inconsistency. Formally:

De�nition 2.1 (Valuation, Event) A valuation on A is a function V : A → D? (whose set is denoted by

VA) or #. V#
A stands for VA ∪ {#}, with typical elements V , V1, V2, etc.

The only valuation on the empty set of variables is denoted by 1V (V∅ is the singleton {1V}). The valuation
which maps every variable of A to ? is the silent valuation ?VA. A non-silent valuation is said signi�cant or
concrete. The restriction of a valuation V ∈ V#

A to A1 ⊆ A is denoted by V|A1 .

The synchronous product combines the valuations V1 ∈ V#
A1

and V2 ∈ V#
A2

in such a way that: if V1 and V2

agree on the values of variables in A1 ∩A2 then their composition gives V1 ∪ V2, else the blocking valuation.

De�nition 2.2 (Composition of valuations) The synchronous product of valuations · is de�ned by:

· : V#
A1
× V#

A2
→ V#

A1∪A2

(V1, V2) 7→

 # if V1 = # or V2 = # else
V1 ∪ V2 if ∀x ∈ A1 ∩A2, V1(x) = V2(x) else
#

For a given set of variables A, (V#
A , ·, 1V) is a commutative and idempotent monoid (a set endowed with an

associative internal law), whose absorbent element is #.

1Variables should rigorously be named ports, while the term signal refers to the set of values carried by a port. We abuse these
terms and generally use the term variable or signal variable in the following.

2[8] and more recently [44] show that a partial order is su�cient, provided that the subset of instants denoted by a signal is
totally ordered (then the previous value of a signal has a meaning).

3Absence is traditionally denoted by ⊥, not to be confused with the minimal element of a lattice.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 7

2.2.2 Traces

A trace is a model intended to represent an execution of the system. Since the system is not supposed to
terminate, it is an in�nite4 succession of valuations over the time referential N. Formally:

De�nition 2.3 (Trace) The set of traces on A is denoted by T #
A , with typical elements T , T1, T2. A trace in

T #
A is a function T : N→ V#

A .

A trace which maps no instant on # is said to be non-blocking . It corresponds to a coherent execution. The set
of non-blocking traces on A is TA. T∅ is the singleton {1T }, where the trace 1T maps all instants on 1V . The
trace which maps all instants on ?VA is called the silent trace ?Vω

A. A trace distinct from the silent one is said
signi�cant . The set of valuations associated to a trace is de�ned as follows:

De�nition 2.4 (Set of valuations associated to T) Given T ∈ TA, the set of valuations [[T]]VA ⊆ VA

associated to T is de�ned by:

[[T]]VA

∆= {V ∈ VA | ∃t ∈ N, V = T (t)}
The restriction of a trace T ∈ T #

A to A1 ⊆ A is denoted by T|A1 .

Example 2.1 Fig 1(a) shows a trace T ∈ T{a,b} whose restriction T|{a} ∈ T{a} is given on Fig. 1(b).

a 1 ? 4 ? . . .
b ? 2 3 4 . . .

(a) T ∈ T{a,b}

a 1 ? 4 ? . . .
b ? 2 3 4 . . .

(b) T|{a} ∈ T{a}

a 1 4 . . .
b ? 2 3 4 . . .

(c)
Q

{a}(T) ∈ Fa

Fig. 1: Restriction

The synchronous product between valuations is extended to traces, by the composition of valuations at each
instant.

De�nition 2.5 (Composition of traces) The synchronous product of traces � is de�ned by:

� : T #
A1
× T #

A2
→ T #

A1∪A2

(T1, T2) 7→ T such that ∀i ∈ N, T (i) = T1(i) · T2(i)

For a given set of variables A, (T #
A ,�, 1T) is a commutative and idempotent monoid. Informally, two traces

T1 ∈ TA1 , T2 ∈ TA2 are synchronizable if they agree on their common variables: T1 � T2 is non-blocking, that is
T1|A1∩A2 = T2|A1∩A2 .

Example 2.2 Traces given on Fig. 4(a) and 4(b) page 11 are not synchronizable: they disagree on the values
of b (e.g. at �rst instant b cannot be both absent (ta1) and present with value false (tb1)). On the contrary traces
T ′

a and T ′
o given on Fig. 6(a) and Fig. 6(b) page 13 are synchronizable: their composition is the trace given on

Fig. 5(a) page 11. �

Only non-blocking traces in TA are considered in the following.

2.2.3 Flows

Intuitively the passive observation of a system only produces signi�cant valuations, since by de�nition nothing
happens during the silent valuation. Nevertheless an observer is authorized to look at the system as frequently
as wished for, then at instants when the system does not necessarily act signi�cantly. These more frequent
observations insert in traces a �nite but not bounded number of silent valuations between signi�cant ones: the
date of valuations that occur after the inserted silent ones is increased in consequence but their relative order
is preserved. Densi�cation by observation makes traces denser and leads to a partial order between traces: two
densi�cations of the same trace are said to be equivalent. An equivalence class admits a minimal trace for the
densi�cation order which is called a �ow. Flows only keep in traces signi�cant valuations and their causality.

4It is also possible to design a semantics using �nite traces

PI n�1402

8 M. Nebut & S. Pinchinat

Densi�cation, Partial Order between Traces A densi�cation function is a monotonous function from N

to N. Let T ∈ TA and f be a densi�cation function. Then the densi�cation of T by f , denoted by f ↑ T , is
such that:

∀t ∈ N, (f ↑ T)(t) =
{
T (f−1(t)) if t ∈ f(N)
?VA else

Example 2.3 The densi�cation function f such that f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 7, f(5) = 8, and
f(6) = 10 densi�es T into T1 on Fig. 2. �

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 . . .

T1
?VA V1

?VA V2
?VA

?VA V3
?VA

?VA V4 . . .

T V1
?VA V2 V3

?VA V4 . . .

T2 V1
?VA

?VA V2
?VA V3

?VA V4 . . .

Fig. 2: Densi�cation of traces

In accordance with what was said before, a densi�cation function inserts a �nite but not bounded number of
silent valuations in traces. It therefore preserves signi�cance of traces (which would not be the case if the
number of inserted silent valuations could be in�nite).

Lemma 2.1 (Densi�cation function and composition) Given a densi�cation function f , and traces T1 ∈
TA1 , T2 ∈ TA2 :

f ↑ (T1 � T2) = (f ↑ T1)� (f ↑ T2)

Traces are partially ordered by densi�cation according to the principle �the denser the greater�. A trace T2 is
greater than a trace T1 if it is obtained by inserting silent valuations into T1.

De�nition 2.6 (Partial order between traces) For T1, T2 ∈ TA, T1 ≤? T2 if there exists a densi�cation
function f such that T2 = f ↑ T1.

Two traces are equivalent if they are the densi�cation of a common trace.

De�nition 2.7 (Equivalence between traces) For T1, T2 ∈ TA, T1 ≡? T2 if there exists T ∈ TA such that
T ≤? T1 and T ≤? T2. The equivalence class of T is denoted by T .

Remark 2.1 Note that ≤? is re�exive. Then

for all T, T1 ∈ TA and T ′ ∈ T , T1 ≤? T
′ implies T1 ∈ T (1)

Indeed T1 ≤? T1 and T1 ≤? T
′, therefore T1 ≡? T

′ and T1 ∈ T . �

Example 2.4 On Fig. 2, T ≤? T1, T ≤? T2, therefore T1, T2 ∈ T and T ≡? T1 ≡? T2. �

Flows The �most signi�cant� traces are now considered: they contain no silent valuations between two signif-
icant ones.

Property 1 For all T ∈ TA, T has a minimal element for ≤?, denoted by
∧

? T .

Proof Assume that there exist two non-comparable traces T1 and T2 such that for all T ′ ∈ T , T1 ≤? T
′ and

T2 ≤? T
′. By Eq. (1), T1, T2 ∈ T . Then by de�nition of ≡? there exists T ′′ ∈ TA such that T ′′ ≤? T1 and

T ′′ ≤? T2. Since by Eq. (1) T ′′ ∈ T , we obtain a contradiction. 2

A �ow is a particular trace, namely the minimal element of an equivalence class of traces.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 9

De�nition 2.8 (Flow) The set of �ows on A is denoted by FA, with typical elements F, F1, F
′, etc. When

A = {a}, we simply write Fa. A trace T ∈ TA is a �ow if it is the minimal element of T .

Property 2 Let F be a �ow in FA. Then:

• if there exists n ∈ N such that F (n) = ?VA then for all t ≥ n, F (t) = ?VA;

• if for some n ∈ N, F (n) 6= ?VA, then for all t ≤ n, F (t) 6= ?VA;

A �ow is then a particular trace T which is either silent (T (0) = ?VA), or entirely composed of signi�cant
valuations (∀t ∈ N, T (t) 6= ?VA), or else as shown on Fig. 3: there exists n ∈ N such that �rst instants
(0 ≤ t ≤ n) correspond to signi�cant valuations only, while �last� instants (t > n) correspond to an in�nite
sequence of silent valuations (the �ow is said to terminate). Intuitively, a �ow is obtained from a trace by
erasing all silent valuations that precede a signi�cant one.

T ?V ?V V1
?V ?V V2 . . . Vn

?V ?V . . .

F
V1 V2 . . . Vn

?V ?V . . .

t1 t2 . . . tn tn+1 . . .

Fig. 3: A typical �ow F obtained from a trace T

The restriction of a �ow is more complicated than the restriction of a trace: the minimal element must be
computed after the projection.

De�nition 2.9 (Restriction of a �ow) The restriction of F ∈ FA to A1 ⊆ A is de�ned by∏
A1

(F) =
∧

? F|A1

Example 2.5 Fig 1(a) on page 7 shows a �ow T ∈ F{a,b} whose restriction
∏

{a}(T) ∈ Fa is given on Fig. 1(c).
�

Informally two �ows F1 ∈ FA1 and F2 ∈ FA2 are synchronizable if
∏

A1∩A2
(F1) =

∏
A1∩A2

(F2). Like for traces,
this notion involves restriction: the two �ows must agree on the order and on the values of their common
variables, but unlike traces they do not need to agree on their exact instant of presence. Therefore synchronous
product is not the good tool for �ows.

Example 2.6 Like for Ex 2.2 the synchronous product of �ows F1 and F2 shown on Fig. 4(a) and 4(b) on
page 11 is blocking. Nevertheless the two �ows disagree only on the instants of presence of b: they agree on its
sequence of values false, true, false. Therefore there exist T1 ∈ F1, T2 ∈ F2 s.t. T1 and T2 are synchronizable.
Indeed

∏
A1∩A2

(F1) =
∏

A1∩A2
(F2) and F1 and F2 are synchronizable. �

2.2.4 Clocks

As de�ned informally in Sect. 2.1, clocks are subsets of the time referential. A typical example is the clock of
a variable x ∈ S, denoted by x̂, which is the set of its instants of presence; but the set of instants at which x
and y are present and their sum is positive is also a clock (which can be indirectly represented by the clock of
a variable). A set of instants alone has no meaning: the clock of x should be de�ned with respect to a given
observation of the system which provides a local time referential. According to the chosen semantics, such an
observation is a trace or a �ow. We use traces in this section: the counterpart for �ows is immediate since �ows
are particular traces. A clock is de�ned on the basis of a given trace by means of its characteristic function.
Generally speaking, the characteristic function of a subset X ′ ⊆ X de�nes X ′ by mapping any element x ∈ X
to true if x ∈ X ′, else to false. Similarly the clock of the variable x w.r.t. a trace T , denoted by x̂T , is de�ned
by examining valuations T (t) for any instant t ∈ N. If the valuation denotes an instant of the clock of x (i.e.
T (t)(x) 6= ?) then t ∈ x̂T and T (t) is said to switch on x̂T . If t 6∈ x̂T , T (t) is said to switch o� x̂T .

De�nition 2.10 (Clock of a variable w.r.t. a trace) For A ⊆ S, T ∈ FA and x ∈ A, the clock of x in T
is written x̂T and is de�ned as the least subset of N s.t.

∀t ∈ N, t ∈ x̂T i� T (t)(x) 6= ?.

PI n�1402

10 M. Nebut & S. Pinchinat

A natural pre-order ⊆T between clocks (w.r.t. to the trace T) is derived accordingly: x̂ ⊆T ŷ i� x̂T ⊆ ŷT . The
expansion of this de�nition in terms of characteristic function shows that in accordance this intuition, x̂ ⊆T ŷ
i� for any valuation T (t), T (t) switches on x̂ implies that T (t) also switches on ŷ:

x̂ ⊆T ŷ i� ∀t ∈ N, t ∈ x̂T implies t ∈ ŷT

i� ∀t ∈ N, T (t)(x) 6= ? implies T (t)(y) 6= ?

Thus x̂ ⊆T ŷ expresses a property of the trace which is true for all instant t (thus it is a safety property) and
describes only what happens inside the instant, with no reference to instants which precede or follow it: it is
an instantaneous property of the trace, as introduced in Sect. 1. Two variables x and y are synchronous (in T)
if x̂ =T ŷ, or x̂T = ŷT .

Clock Algebra Associated to a Trace Clocks can be described by the language 〈U,∩,∪, \〉, where U is
a symbol of constant and ∪,∩ and \ are symbols of relation. Assume given a �nite set of variables K. The
language is interpreted into clock algebras when U and variables in K are interpreted as sets of instants: U
denotes the time referential and elements of K denote subsets of U . Symbols ∩, ∪ and \ are interpreted as
classical set operators. We use the notation O to denote U \ U , that is the empty or null clock.

The clock algebra associated to a trace T ∈ TA is obtained as follows. U is interpreted as the local time
referential denoted by T , that is the set of instants t ∈ N at which T (t) is signi�cant:

U = {t ∈ N | T (t) 6= ?VA}

Then if the variable x̂ ∈ K denotes the clock of the variable x ∈ A, x̂ is interpreted as x̂T , and O as the empty
set.

2.3 Processes

Section 2.3.1 gives notations and intuitive semantics for processes. Their semantics in terms of traces (resp.
�ows) is given in Sect. 2.3.2 (resp. in Sect. 2.3.3). A useful theorem is given in Sect. 2.3.4, �nally clocks are
dealt with in Sect. 2.3.5.

2.3.1 Informal Presentation

The semantics of a data-�ow speci�cation on a set of variables A is given by a process . The set of processes
on A is denoted by PA, whose typical elements are $, $1, etc. A process describes the possible behaviors of
the speci�cation: it is a set of models each of ones represents a possible execution. It can therefore be seen as
a set of traces or a set of �ows. Both semantics are equivalent: the �ow one is well adapted to the description
of classes of processes (see Sect. 2.4) and data-�ow operators (see Sect. 3.1) while a weaker trace semantics is
commonly used to describe operational semantics (see Sect. 2.5).

Example 2.7 Processes described in this example will be used in the whole section 2.3. Let us consider a
boolean variable b and four integer variables a1, a2, o1, o2. The process $ba ∈ P{b,a1,a2} acts as follows:

• when present b carries alternatively values true and false;

• if b is present then a2 is absent; if b is absent then a2 is absent or present, in this case it carries a free
value in N;

• if b is present with value true then a1 is present and carries a free value in N; if b is absent or present with
value false then a1 is absent.

The process $bo ∈ P{b,o1,o2} acts as follows:

• when present b carries alternatively values true and false;

• if b is present then o2 is absent; if b is absent then o2 is absent or present, in this case it carries a free
value in Z;

• if b is present with value false then o1 is present and carries a free value in Z; if b is absent or present with
value true then o1 is absent.

A behavior of $ba (resp. $bo) is given on Fig. 4(a) (resp. Fig. 4(b)) where T (resp. F) is written for true (resp.
false). �

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 11

ta1 ta2 ta3 ta4 ta5 ta6 . . .

b ? ? F T ? F . . .
a1 ? ? ? 2 ? ? . . .
a2 12 13 ? ? 3 ? . . .

(a) A behavior of $ba

tb1 tb2 tb3 tb4 tb5 . . .

b F T ? ? F . . .
o1 1 ? ? ? 6 . . .
o2 ? ? 4 5 ? . . .

(b) A behavior of $bo

Fig. 4: Behavior for processes

Because processes are sets, inclusion and equivalence of processes are just set inclusion and set equivalence.
Operations of restriction and parallel composition already presented for traces and �ows are extended to pro-
cesses. Their precise semantics will be given for sets of traces (resp. �ows) in Sect. 2.3.2 (resp. Sect. 2.3.3): let
us describe informally here the restriction, then the parallel composition.

Restriction The restriction of $ ∈ PA to A1 ⊆ A is a process on A1 denoted by
∏

A1
($). Like for traces

and �ows, the restriction to A1 lets visible only variables of A1. Variables of A \A1 are hidden and correspond
intuitively to variables local to $.

Example 2.8 If one considers only the variable b in $bo and $ba, then processes behave similarly: both
alternate values true and false. Then

∏
{b}($bo) =

∏
{b}($ba). �

Parallel Composition Classically a synchronous speci�cation makes act in parallel two or more smallest sub-
speci�cations (or modules). It corresponds semantically to the parallel composition of processes. The parallel
composition of two processes $1 ∈ PA1 and $2 ∈ PA2 is denoted by $1 ‖ $2 ∈ PA1∪A2 , where ‖ is the operator
of parallel composition. $1 ‖ $2 contains behaviors of both $1 and $2 provided they agree on their common
variables in A1 ∩ A2: $1 and $2 communicate and synchronize each others by these variables. A behavior of
$1 ‖ $2 restricted to A1 (resp. A2) is therefore a behavior of $1 (resp. $2).

Example 2.9 Let us denote by $boa the process $bo ‖ $ba ∈ P{b,a1,a2,o1,o2}. $boa acts as follows:

• when present b carries alternatively values true and false;

• if b is present then a2 and o2 are absent; if b is absent then a2 is absent or present, in this case it carries
a free value in Z, and so does o2 ;

• if b is present with value false then o1 is present and carries a free value in Z and a1 is absent; if b is
present with value true then o1 is absent and a1 is present and carries a free value in Z. If b is absent
then a1 and o1 are absent.

Two possible behaviors of $boa are given in Fig. 5: they correspond to the composition of behaviors for $ba

and $bo given on Fig. 4(a) and Fig. 4(b). They di�er from the instant at which a2 carries the value 3: t5 or t6.
Let us now de�ne the process $boF ∈ P{b,o} (resp. $boT ∈ P{b,o}) which has the same behavior as $bo except

t1 t2 t3 t4 t5 t6 t7 . . .

a2 12 13 ? ? 3 ? ? . . .
a1 ? ? ? 2 ? ? ? . . .
b ? ? F T ? ? F . . .
o1 ? ? 1 ? ? ? 6 . . .
o2 ? ? ? ? 4 5 ? . . .

(a)

t1 t2 t3 t4 t5 t6 t7 . . .

a2 12 13 ? ? ? 3 ? . . .
a1 ? ? ? 2 ? ? ? . . .
b ? ? F T ? ? F . . .
o1 ? ? 1 ? ? ? 6 . . .
o2 ? ? ? ? 4 5 ? . . .

(b)

Fig. 5: Two possible behaviors for $boa

PI n�1402

12 M. Nebut & S. Pinchinat

that the �rst value carried by b is necessarily false (resp. true). Processes $baF ∈ P{b,a} and $baT ∈ P{b,a} are
de�ned similarly. Then:

• The process $boaF ∈ P{b,a1,a2,o1,o2} (resp. $boaT ∈ P{b,a1,a2,o1,o2}) de�ned by $boF ‖ $baF (resp.
$boT ‖ $baT) acts like $boa except that the �rst value carried by b is necessarily false (resp. true);

• On the contrary, the process $boTaF (resp. $boFaT) de�ned by $boT ‖ $baF (resp. $boF ‖ $baT) cannot
behave signi�cantly if b is present: neither $boT and $baF nor $boF and $baT can agree on its �rst value.
b is then constrained to be always absent in $boTaF and $boFaT : only a2 and o2 can be present;

• Let us now consider only a part of speci�cations and forget a2 and o2: let us assume that $ba (resp. $bo)
is de�ned on {b, a1} (resp. {b, o1}). In this case $boTaF and $boFaT cannot act signi�cantly at all: their
set of signi�cant behaviors is empty. Nevertheless processes cannot be empty: a process that cannot act
signi�cantly contains exactly the silent behavior ?Vω

A.

�

Let us now focus on the properties of parallel composition. Two processes $1 ∈ PA1 and $2 ∈ PA2 are
informally synchronizable at a given instant if they can act with agreement on their common variables A1 ∩A2.
If $1 cannot synchronize with $2 at a given instant then it stutters in the meanwhile: it �carries out� a silent
valuation (better said $1 is observed at an instant where it does not act signi�cantly) while $2 acts signi�cantly.
Processes are always authorized to stutter while waiting for synchronization: a process is said to be closed under
stuttering. On the other hand, synchronization only involves a �nite but not bounded stuttering: a process
cannot stutter in�nitely if waiting for a possible synchronization. Two processes that can synchronize will
eventually do so: parallel composition is fair and leads to true parallelism.

Example 2.10 Let us consider actions of Fig. 4. At instant t1b $bo can synchronize with $ba if b is present
with value false. But at instants ta1 and ta2 b is absent in $ba: synchronization can only occur at instant ta3 .
Since $bo and $ba cannot synchronize at instants t1 and t2, $bo stutters while $ba acts signi�cantly: it �carries
out� two silent valuations (see Fig. 5). But $bo is not allowed to stutter in�nitely.
Assume now that at ta3 b is present with value true. Then synchronization between these two behaviors is
impossible: either processes both stutter in�nitely, or according to notations of Sect. 2.2.1 and 2.2.2 there is a
blocking #. On the one hand behaviors we consider are non-blocking; on the other hand we must semantically
be able to make the di�erence between blocking behaviors (that begin normally then stutter in�nitely) and
an execution in which the system does not act as a normal behavior. Therefore the composition of two non-
synchronizable executions do not belong to the parallel composition. If all behaviors are non-synchronizable,
then the parallel composition reduces to the silent behavior. �

Two processes $1 ∈ PA1 and $2 ∈ PA2 are informally synchronizable if their parallel composition is not
reduced to { ?Vω

A}. This particular silent process resulting from a parallel composition denotes an impossible
synchronization between processes that �nds expression into an in�nite stuttering. The silent process must not
be confused with the process de�ned on the empty set of variables 1P , neutral element of the commutative and
idempotent monoid (PA, ‖, 1P).

2.3.2 Processes as Closed Sets of Traces

As said informally in Sect. 2.3.1, a process is a set of behaviors closed under stuttering . When models of
behaviors are traces, stuttering corresponds to densi�cation of traces: given A ⊆ S and $ ∈ PA, if T ∈ $ then
T ⊆ $. A process then contains a trace for each possible observation of the system. Formally,

De�nition 2.11 (Process as set of traces) Given A ⊆ S, a set of traces $ ⊆ TA is a process if

$ =
⋃
{T | T ∈ $}

It is easy to verify that the function $ 7→
⋃
{T | T ∈ $} is a closure operator5 on TA One must ensure that

operations on processes as sets of traces preserve their closure under stuttering. It is trivial for restriction:

5Formally, a closure operator φ : P(X) → P(X) on a set X is extensive: ∀X′ ⊆ X, X′ ⊆ φ(X′); idempotent : ∀X′ ⊆ X, φ(X′) =
φ(φ(X′)) and monotonous: ∀X1, X2 ⊆ X, X1 ⊆ X2 implies φ(X1) ⊆ φ(X2)

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 13

De�nition 2.12 (Restriction of a process as set of traces) Given A1 ⊆ A ⊆ S, the restriction to A1 of
$ ∈ PA is de�ned by ∏

A1
($) = {T|A1 | T ∈ $}.

Let us now de�ne the synchronous parallel composition between $1 ∈ PA1 and $2 ∈ PA2 . The intuition is very
natural using the synchronous product of traces. Informally $1 ‖ $2 contains the synchronous product T1�T2

of any synchronizable traces T1 ∈ $1 and T2 ∈ $2. Then we can write

$1 ‖ $2 = {T ∈ TA1∪A2 | there exist T1 ∈ $1, T2 ∈ $2 s.t. T1|A1∩A2 = T2|A1∩A2 and T = T1 � T2} (2)

Said di�erently, any trace of $1‖$2 is a posteriori the result of the composition of a certain trace of $1 with
a certain trace of $2.

De�nition 2.13 (Composition of processes as sets of traces) Given A1, A2 ⊆ S, $1 ∈ PA1 and $2 ∈
PA2 ,

$1‖$2 = {T ∈ TA1∪A2 | T|A1 ∈ $1 and T|A2 ∈ $2}.

It is not obvious that the above de�nition preserves closure under stuttering. Let us consider some traces
T ∈ $1‖$2 and T ′ ∈ T and prove that T ′ ∈ $1‖$2. By (2) there exist T1 ∈ $1 and T2 ∈ $2 s.t. T = T1 � T2.
By Def. 2.7 and 2.6, there exist a trace T ′′ ∈ T and a densi�cation function f (resp. f ′) such that f ↑ T ′′ = T
(resp. f ′ ↑ T ′′ = T ′). Let us write T ′

1 = T ′
|A1 , T

′
2 = T ′

|A2 , T
′′
1 = T ′′

|A1 and T ′′
2 = T ′′

|A2 . Then T
′ = T ′

1 � T ′
2

(resp. T ′′ = T ′′
1 � T ′′

2) and by Lem. 2.1 f ↑ T ′′
1 = T1 (resp. f ↑ T ′′

2 = T2) and f
′ ↑ T ′′

1 = T ′
1 (resp. f ′ ↑ T ′′

2 = T ′
2).

Therefore T1, T
′
1 ∈ T ′′

1 (resp. T2, T
′
2 ∈ T ′′

2) and T1 ≡? T
′
1 (resp. T2 ≡? T

′
2). But since $1 (resp. $2) is a process

at the sense of Def. 2.11, T ′
1 ∈ $1 (resp. T ′

2 ∈ $2). Because T
′ = T ′

1 � T ′
2, T

′ ∈ $1 ‖ $2 by (2).

Example 2.11 Let us consider again $boa given in Ex. 2.9 on page 11 and denote by Ta ∈ $ba (resp. To ∈ $bo)
the behaviors given on Fig. 4(a) (resp. 4(b)). Ta and To are not synchronizable: their synchronous product
produces a blocking. But $ba contains traces T ′

a and T ′′
a shown on Fig. 6(a), that are densi�cations of Ta; and

$bo contains the trace T ′
o shown on Fig. 6(b), that is a densi�cation of To. T

′
a � T ′

o is exactly the trace shown
on Fig. 5(a) while T ′′

a � T ′
o is exactly the trace shown on Fig. 5(b).

t1 t2 t3 t4 t5 t6 t7 . . .

a2 12 13 ? ? 3 ? ? . . .
a1 ? ? ? 2 ? ? ? . . .
b ? ? F T ? ? F . . .

t1 t2 t3 t4 t5 t6 t7 . . .

a2 12 13 ? ? ? 3 ? . . .
a1 ? ? ? 2 ? ? ? . . .
b ? ? F T ? ? F . . .

(a) T ′
a at the left, T ′′

a at the right

t1 t2 t3 t4 t5 t6 t7 . . .

b ? ? F T ? ? F . . .
o1 ? ? 1 ? ? ? 6 . . .
o2 ? ? ? ? 4 5 ? . . .

(b) T ′
o

Fig. 6: Densi�ed traces for Ex. 2.11

2.3.3 Processes as Sets of Flows

Since a �ow F is the minimal element of the set F , it is implicitly closed under stuttering, without enumeration
of all possible observations.

De�nition 2.14 (Process as a set of �ows) Given A ⊆ S, a process on A is any subset of FA.

PI n�1402

14 M. Nebut & S. Pinchinat

Firstly the restriction is de�ned similarly as it was for traces:

De�nition 2.15 (Restriction of a process as a set of �ows) Given A1 ⊆ A ⊆ S, the restriction of $ ∈
PA is de�ned by ∏

A1
($) = {

∏
A1

(F) | F ∈ $}.

The de�nition of parallel composition follows the parallel composition of sets of traces:

De�nition 2.16 (Composition of processes as sets of �ows) Given A1, A2 ⊆ S, $1 ∈ PA1 and $2 ∈
PA2 ,

$1‖$2 = {F ∈ FA1∪A2 |
∏

A1
(F) ∈ $1 and

∏
A2

(F) ∈ $2}

The intuition is nevertheless quite di�erent from the case of sets of traces. Of course, it is always possible to
densify �ows then to reason in terms of traces. Another intuition is highlighted in Ex. 2.12. Informally to obtain
all �ows in $1 ‖ $2 one should try all pairs (F1, F2) ∈ $1 ×$2. If F1 and F2 are synchronizable, let us denote
by F their restriction to A1 ∩A2. Flows F1,2 ∈ $1‖$2 induced by the composition of F1 and F2 are built from
F as follows:
1. Let us consider pairs of valuations (V1, V2) such that V1 (resp. V2) appears in F1 (resp. F2) and the pair
participates to F (meaning that V1|A1∩A2 = V2|A1∩A2 and V1|A1∩A2 6= ?VA1∩A2). Then their synchronous
product V1 · V2 appears in F1,2.
2. Let us now consider the others valuations V ′

1 (resp. V ′
2) that appear in F1 (resp. F2), i.e. s.t. V

′
1 |A1∩A2

=
V ′

2 |A1∩A2
= ?VA1∩A2). Inside F1 (resp. F2) such valuations form sub-sequences W i

1 (resp. W j
2) that appear

between two valuations mentioned at step 1. Inside a pair (W i
1 ,W

i
2) valuations that appear inW

i
1 and valuations

that appear in W i
2 are not constrained between themselves since variables they share are absent. Sub-sequences

W i
1,2 that appear in F1,2 between two valuations mentioned at step 1 result from the composition W i

1 ⊗W i
2

de�ned as follows. If nil denotes the empty sequence, then nil ⊗W2 (resp. W1 ⊗ nil) is obtained by replacing
in W2 (resp. W1) any valuation V2 (resp. V1) by

?VA1\A2 · V2 (resp. V1 · ?VA2\A1). Then if hd (resp. tl) denotes
the head (resp. the tail) of a sequence:

(1)
hd(W1 ⊗W2) = hd(W1) · hd(W2)

tl(W1 ⊗W2) = tl(W1)⊗ tl(W2)
or (2)

hd(W1 ⊗W2) = hd(W1) · ?VA2\A1

tl(W1 ⊗W2) = tl(W1)⊗W2

or

(3)
hd(W1 ⊗W2) = ?VA1\A2 · hd(W2)

tl(W1 ⊗W2) = W1 ⊗ tl(W2)

Example 2.12 Let us consider again $boa given in Ex. 2.9 and denote by Fa ∈ $ba (resp. Fo ∈ $bo) the
behaviors given on Fig. 4(a) (resp. 4(b)). Fa and Fo are synchronizable and let us denote by F ∈ Fb their
restriction to {b}. A �ow Fboa ∈ $boa is then built from F as follows and as illustrated on Fig. 7.
1. pairs of valuations whose synchronous product appears in Fboa are (Fa(ta3), Fb(tb1)), (Fa(ta4), Fb(tb2)) and
(Fa(ta6), Fb(tb5)) are indicated by dashed lines.
2. the pair of subsequences (Fa(ta1)Fa(ta2), nil) produces the subsequence Fboa(t1)Fboa(t2). The pair of subse-
quences (Fa(t5a), Fb(tb3)Fb(tb4)) produces possibly the two subsequences Fboa(t5)Fboa(t6) indicated by two boxes
on Fig. 7: the �rst one is obtained by application of case (1), the second by application of cases (3) then (1).
Three other possibilities are not represented: if V3 denotes Fa(ta3) · ?V{o1,o2}, V4 denotes Fb(tb3) · ?V{a1,a2} and

V5 denotes Fb(tb4) · ?V{a1,a2} then possible sequences are V3V4V5, V4V3V5 and V4V5V3. �

2.3.4 A Useful Theorem

Since the parallel composition corresponds to the intersection of sets of models, it is possible to express the
inclusion of two processes by the equivalence between one of them and their composition. The following theorem
will be widely used in Sect. 5.1.

Theorem 2.1 For A′ ⊆ A ⊆ S, $ ∈ PA and $′ ∈ PA′ ,

$ = $‖$′ i�
∏

A′($) ⊆ $′

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 15

ta1 ta2 ta3 ta4 ta5 ta6

a2 12 13 ? ? 3 ?
Fa ∈ $ba a1 ? ? ? 2 ? ?

b ? ? F T ? F
.

b F V ? ? F
Fo ∈ $bo o1 1 ? ? ? 6

o2 ? ? 4 5 ?

tb1 tb2 tb3 tb4 tb5

a2 12 13 ? ? or

{
3 ?

? 3
?

Fboa ∈ $boa a1 ? ? ? 2 ? ? ?
b ? ? F T ? ? F
o1 ? ? 1 ? ? ? 6
o2 ? ? ? ? 4 5 ?

t1 t2 t3 t4 t5 t6 t7

Fig. 7: Parallel Composition

Proof We consider that processes are set of �ows.
⇒) Assume that $ = $‖$′ and let us consider F ′ ∈

∏
A′($). Necessarily by Def 2.15 there exists F ∈ $

such that F ′ =
∏

A′(F). Moreover by hypothesis and by de�nition of the parallel composition (Def. 2.16)∏
A(F) ∈ $ and

∏
A′(F) = F ′ ∈ $′.

⇐) Assume
∏

A′($) ⊆ $′. If F ∈ $ then
∏

A′(F) ∈ $′, and since
∏

A(F) = F , we have F ∈ $‖$′. Conversely,
if F ∈ $‖$′, then

∏
A(F) = F ∈ $.

2

2.3.5 Clocks

The pre-order between clocks presented in Sect. 2.2.4 is naturally extended to processes, considered as sets of
traces:

De�nition 2.17 (Pre-order between clocks in a process) For A ⊆ S, $ ∈ PA and x, y ∈ A, the inclu-
sion of the clock of x into the clock of y is denoted by x ⊆$ y and de�ned by:

x ⊆$ y i� for all T ∈ $, x̂ ⊆T ŷ

Rewriting this de�nition like in Sect. 2.2.4 we obtain:

x ⊆$ y i� ∀T ∈ $, ∀t ∈ N, T (t)(x) 6= ? implies T (t)(y) 6= ?

Therefore an inclusion between clocks is an instantaneous property of a process, true in any trace (or �ow) of
the process. x and y are said to be synchronous in $ if ∀T ∈ $, x̂ =T ŷ.

2.4 Classes of Processes

A process $ ∈ PA is said to be monochronous if all variables in A are synchronous in $. Otherwise it is said
to be polychronous .

In the following of this section S is split into I and O, where I is the set of input variables assumed to
be totally ordered and O is the set of output variables (local variables are neglected). The semantics for
processes in PI∪O is given as a set of �ows.

PI n�1402

16 M. Nebut & S. Pinchinat

2.4.1 Deterministic Processes on I

Informally a process $ ∈ PI∪O is deterministic if any �ow F ∈ $ is entirely determined by its restriction to
input variables I.

De�nition 2.18 (Deterministic Process) A process $ ∈ PI∪O is deterministic on I if the function

FI∪O → FI

F 7→
∏

I(F)

is bijective on $.

As an example, Ex. 2.13 gives two versions of a counter, a deterministic and a non-deterministic one.

Example 2.13 Assume that A = {a,ma,N} is composed of integer variables. Assume given a process $ ∈ PA

that describes a counter as follows: the variable a decrements and reinitializes itself after it has reached 0,
with the positive input variable N . So N is needed only after a has reached value 0. Variables a and ma are
synchronous. The variable ma carries the previous value of a, initially 0. So N is synchronized with instants
where ma = 0. $ is deterministic on {N}. A �ow of $ is given in Fig.8(a). Its restriction to {N} (i.e. the
sequence of values beginning with 2,1,3) entirely determines the �ow on A. Let us now de�ne the process

t1 t2 t3 t4 t5 t6 . . .

N 2 ? ? 1 ? 3 . . .
a 2 1 0 1 0 3 . . .
ma 0 2 1 0 1 0 . . .

(a) A �ow of $

t1 t2 t3 t4 t5 t6 t7 t8 . . .

N 2 ? ? ? ? 1 ? 3 . . .
a 2 1 0 −1 −2 1 0 3 . . .
ma 0 2 1 0 −1 −2 1 0 . . .

(b) A �ow of $′

Fig. 8: A �counter�

$′ ∈ PA which describes a counter in which a and ma have the same behavior as in $, but the presence of N
is not synchronized with a particular value of ma. Re-initialization of the counter occurs in a non-deterministic
way therefore $′ is not deterministic. As an example: for the same sequence of inputs 2,1,3, a possible �ow in
$′ is the one of Fig.8(a), but also the one of Fig 8(b). �

2.4.2 Endochronous Processes on I

Informally, a process $ ∈ PI∪O is endochronous on I if any �ow F ∈ $ is entirely determined by the sequences
of signi�cant values carried by inputs variables, independently of their relative presence and absence. Therefore
F is uniquely determined by the tuple of its restrictions to single variables in I. In absence of synchronization
information, an endochronous process is able to reorganized this tuple of sequences into sequences of valuations
(valuation meaning tuple of values), that is in a single �ow. An operational characterization of endochrony can
be found e.g. in [57].

De�nition 2.19 (Endochronous Process) A process $ ∈ PI∪O is endochronous on I = {i1, i2, . . . , in} if
the function

FI∪O → Fi1 ×Fi2 × · · · × Fin

F 7→ (
∏

{i1}(F),
∏

{i2}(F), . . . ,
∏

{in}(F))

is bijective on $.

As an illustration, an endochronous process knows when it has to read its inputs, therefore is autonomous when
run in an asynchronous environment. In comparison, non-endochronous processes must be connected to an
operating system which imposes the status of inputs.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 17

Remark 2.2 An endochronous process is deterministic. Intuitively, if it is possible to infer �ows of a process
from the only values of input variables, it is also possible to infer them with the additional information of their
relative presence and absence. The converse does not hold since information of synchronization has been lost.
�

Example 2.14 The process$ which merges two inputs variables i1 and i2 on an output variable o with priority
given to i1 is not endochronous on {i1, i2}. Figure 9(a) shows how the pair of input sequences (1ω, 3ω) carried
by (i1, i2) can be reorganized in a �ow on {i1, i2, o}, resulting to the sequence 1, 3, 3, 3, 3 . . . for o. Note that
any other combination of values for i1 and i2 is possible. For example the �ow on {i1, i2, o} given on Fig. 9(b)
could also be obtained, resulting to the sequence 1, 3, 1, 3, 1 . . . for o. Let us now consider the process $′ in
which two synchronous input boolean conditions C1 and C2 are added. The truth values of C1 resp. C2 indicate
the presence of i1 resp. i2 and let no choice for reorganizing the tuple of four input sequences into a �ow: $′ is
endochronous. Note that the �ow shown on Fig 9(b) is the only possible given the input sequences for C1 and
C2: their values contain all the synchronization information.

i1 1 1 1 . . .
i2 3 3 3 3 . . .

i1 1 ? 1 1 ? . . .
i2 3 3 ? 3 3 . . .
o 1 3 3 3 3 . . .

(a)

C1 F T F T F T . . .
C2 F F T T T T . . .

i1 1 1 1 . . .
i2 3 3 3 3 . . .

i1 ? 1 ? 1 ? 1 . . .
i2 ? ? 3 3 ? 3 . . .
o ? 1 3 1 3 1 . . .

(b)

Fig. 9: A merge

�

2.4.3 Static Processes

A process $ ∈ PA is static if it is closed under permutations of valuations : �ows are then seen as sets more
than sequences of valuations. A process being a set of �ows, a static process in then characterized by a set of
valuations. As a consequence its behavior is independent of the evolution of time, the relation that characterizes
its actions is invariant over the time. Let us �rst de�ne the set of valuations associated to $, denoted by [[$]]VA ,
which contains all valuations that occur at any instant in any �ow of $.

De�nition 2.20 (Set of valuations associated to $) For $ ∈ PA,

[[$]]VA

∆=
⋃

F∈$[[F]]VA

The static closure of a process $ adds to $ any �ow composed of valuations Vi ∈ [[$]]VA .

De�nition 2.21 (Static closure) The static closure of $ ∈ PA denoted by $S ∈ PA is de�ned by

$S = {F ∈ FA | F ∈ [[$]]ωVA
}

A process $ is static if it contains its static closure.

De�nition 2.22 (Static process) A process $ ∈ PA is static if $ = $S . The set of static processes on A

is denoted by PSA .

It is easy to verify that the function $ 7→ $S is indeed a closure operator.
A static process $ can then be equivalently characterized by a set of �ows (that denote executions of the

system) or by the set of valuations [[$]]VA (with no reference to their instant of occurrence: a valuation denotes
a snapshot of the system). The counter given in Ex. 2.13 is not static since the value of a depends on the value
it carried at the previous instant, while the merge given in Ex. 2.14 is static.

PI n�1402

18 M. Nebut & S. Pinchinat

Clock Algebra Associated to a Valuation Since models of static processes are valuations more than
traces, the language 〈U,∩,∪, \〉 describing clocks presented in Sect. 2.2.4 should now be interpreted into a clock
algebra with respect to a valuation V ∈ VA. Since a valuation represents a snapshot of execution, the local
time referential it denotes contains at most one instant. Given V ∈ VS , the constant U is then interpreted as ∅
if V = ?VA, otherwise as a singleton we write {·}. x̂ ∈ K is interpreted as ∅ if V (x) = ?, otherwise as {·}. The
clock algebra associated to a valuation is then isomorphic to a boolean algebra with two elements.

2.5 Transition Systems as Models for Speci�cations

Numerous veri�cation analyses apply to transition systems (e.g. [24, 6, 14]). Synchronous speci�cations can
obviously be given a semantics by means of such transition systems, provided they can cope with the synchronous
paradigm. Several models have been proposed: two of them are presented in this section. The main di�erence
with the trace semantics is the formalization of the notion of the internal state of a process, via the introduction
of memory or state variables. Traces correspond to the classical notion of runs of a transition system, but a
process can be exactly described by a transition system only if properties of the parallel composition given on
page 11 (in particular closure under bounded stuttering) are speci�ed.

Synchronous Transition Systems (STS) are a very general model applied to the whole synchronous paradigm.
They extend the classical notion of transition systems with variables that can be absent or present (domains
are extended with the special value ?) and communication as synchronous composition. Persistent variables
(often called memory variables) are distinguished from volatile ones. STS are extended to Fair STS in [47]:
fairness conditions give a semantics close to the trace semantics, since stuttering with silent moves is �nite. In
the absence of fairness conditions, STS are rather used to give an operational semantics of languages: closure
under bounded stuttering is not ensured. Such a semantics is clearly adopted in e.g. some analyses dedicated to
Signal [38] and [11], that can be described in terms of Symbolic Labeled Transition Systems (slTS). An slTS
is like a STS a classical transition system extended with ?. Its originality in relation to STS relies on a clear
distinction between the static (labels) and the dynamic (transition relation) parts of a process. Moreover the
distinction between memory variables and others is made clearer: for these reasons slTS will by preferred to
STS in the following. Apart from these syntactical di�erences, STS and slTS have the same expressiveness.
STS and FSTS are presented in Sect. 2.5.1, slTS are presented in Sect. 2.5.2. In both cases examples are given
and the link with the trace semantics is discussed.

2.5.1 Synchronous Transition Systems (STS)

We �rst give notations for STS followed by an example, then present FSTS.

Plain STS Let us �rst present the terminology used for STS. Given a �nite set of (typed) variables S (whose
domain is extended with ?), a state is a (type-consistent) interpretation of variables (then states should be
thought as valuations in the sense of the trace semantics). The set of states is denoted by SS . An STS is a
tuple

Θ : 〈S, θ, ρ〉

where θ(S) is an assertion over variables that characterizes the set of initial states ; and ρ(S, S′) is the transition
relation, that is an assertion relating the current state s to the next one s′ (classically, primed (resp. unprimed)
variables refer to values in the next (resp. current) state). Given an assertion ϕ over variables S ∪S′ and states
si, sj ∈ SS , (si, sj) |= ϕ(S, S′) means that ϕ(si[S], sj [S′]) is true. A run (or a trajectory) is classically an in�nite
sequence of states s0s1s2 . . . in SS such that

s0 |= θ and ∀i ∈ N, (si, si+1) |= ρ

The composition of two STS Θ1 : 〈S1, θ1, ρ1〉 and Θ2 : 〈S2, θ2, ρ2〉 is given by:

Θ1 ‖ Θ2 : 〈S1 ∪ S2, θ1 ∧ θ2, ρ1 ∧ ρ2〉

The modeling of data-�ow speci�cations into STS distinguishes two kinds of variables:

• the reactive or volatile variables are initial variables (signals) of the speci�cation: they are absent or
present at a given instant;

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 19

• some auxiliary variables (called persistent or memory variables) are used to memorize the value of some
volatile variables from an instant to the next one. They represent the internal state of the process. Initially
they are absent and can stay absent, nevertheless they remain always present after their �rst instant of
presence.

Using notations of [47], the auxiliary memory variable x.a memorizes the value of the volatile variable a by:

θ implies x.a = ? , x′.a = if a′ 6= ? then a′ else x.a

meaning that if in state s′ a is present then x.a memorizes its value, while if a is absent x.a remains unchanged.
It ensures that x.a carries the value that a took at its last instant of presence.

Example 2.15 Let us consider again the counter given in Ex. 2.13. Since the volatile variable ma takes the
previous value of the volatile variable a, an auxiliary memory variable x.a is needed. If ma is present in the
state si+1 then either it was never present before (indicated by x.a = ? in state si) then takes the initial value
0, or it takes the value x.a had in state si. a takes the value of N when N is present i.e. when ma = 0, else
it decrements; i.e. takes the value ma − 1. Moreover a and ma are synchronous. We then obtain the STS
Θ = 〈S, θ, ρ〉 where

S = {a,ma,N, x.a} , θ(S) : (a = ? ∧ma = ? ∧N = ? ∧ x.a = ?)

The transition relation ρ is given on Fig. 10(a) in the style of [46]. A run for Θ is given on Fig. 10(b): note that
this in�nite succession of states is reminiscent of a trace. �

ρ(S, S′) :

a′ =
{
if N ′ 6= ? then N ′

else if ma′ 6= ? then ma′ − 1 else ?
∧ x′.a = if a′ 6= ? then a′ else x.a

∧ ma′ =
{
if a′ = ? then ?
else if x.a = ? then 0 else x.a

∧ ma′ = 0⇔ N ′ 6= ?⇔ N ′ ≥ 0

(a) Transition relation

N ? 1 ? ? 0 4 ? ? . . .
a ? 1 ? 0 0 4 3 2 . . .
ma ? 0 ? 1 0 0 4 3 . . .
x.a ? 1 1 0 0 4 3 2 . . .

(b) A run

Fig. 10: STS Θ of Ex.2.15

STS are very general and express the essential of the synchronous paradigm. As far as the state-based
formalism is concerned, they e.g. have been used to formalize the StateMate semantics of Statecharts [17].
The model has been applied to the data-�ow formalism, in particular to Signal. [57] uses them to describe
the construction of hierarchic normal forms for transition relations. A slight variant is used in [46] to formally
validate the translation from Signal speci�cations to C code performed by the Signal compiler.

The restriction of a trajectory to volatile variables is clearly related to a trace of the initial speci�cation, in
the sense of the trace semantics (Sect. 2.2.2). However note that so far STS express neither that processes are
closed under stuttering, nor that the parallel composition between processes is fair. However FSTS are much
closer to the trace semantics, as explained below.

Fair STS (FSTS) FSTS are presented in [47]. In order to cope with the complex Statecharts semantics
and independently of the fairness issue, the set of variables S used in STS is re�ned into a disjoint union
S = SL ∪ SE , where local variables in SL are distinguished from externally observable ones in SE . Among
variables in SE , the set of synchronization variables SS ⊆ SE is used by the process to synchronize with its
environment (as opposed to the set of controllable variables SC = S \ SS).

[47] focuses on realizable STS, i.e. such that every state s in a run has a successor by ρ in which all
synchronization variables in SS are absent. This means that the system can wait for the environment to be
ready for synchronization: it is a particular case of stuttering. General stuttering in the sense of the trace
semantics (see Sect. 2.3.2: processes are set of traces closed under stuttering) is also dealt with. A state s1 is
a stuttering variant of a state s if all volatile variables are set to ? and s1 and s agree on persistent variables:
the system remains in the same �memory� state. FSTS closed under stuttering are then presented.

PI n�1402

20 M. Nebut & S. Pinchinat

FSTS extend STS with fairness conditions. A controllable signal variable x ∈ SC is said to be enabled with
respect to SS in the state s of a run if there exists a successor of s in which

x 6= ? and ∀y ∈ SS , y = ?.

Intuitively, x is enabled to carry a non-? value without the need of a synchronization with the environment,
which means that the process can act signi�cantly according to its internal state. The justice requirement states
that if any controllable signal is continuously enabled from a given instant in a run, then it will eventually carry
a non-? value. It is a generalization to STS of the fact that in�nite stuttering can only come from an impossible
synchronization. [47] gives an extension of the linear temporal logic LTL and deductive rules which allow the
speci�cation and proof of liveness properties.

2.5.2 Symbolic Labeled Transition Systems (slTS)

Like STS, slTS formalize the notion of internal state of a process by memory variables. Nevertheless they are
clearly separated from classical variables that can be absent6. Memories are really persistent variables, and not
particular variables that are initially absent then always present like in STS.

A slTS Θ is denoted by

Θ = 〈S, ξ, θ, ρ, C〉
where ξ is a set of memory variables and S a set of (signal) variables. States7 of Θ are valuations on ξ and
transitions are labeled by valuations on S. Formally:

• θ(ξ) is the initialization predicate (over variables ξ);

• ρ(ξ∪ξ′∪S) is the transition relation (over variables ξ∪ξ′∪S); it characterizes the dynamic of the system:
the evolution of its memories, the change of its internal state;

• the constraint C(S) denotes an invariant property between signal variables. Its set of solutions is a subset
of VS , called the set of admissible valuations , and is the set of labels of Θ. C(S) is an upper-approximation
of the set of valuations that actually occur in an execution, when only reachable states are considered.
C(S) then characterizes the static aspects of the system.

A process $ ∈ PS can be associated to a slTS Θ = 〈S, ξ, θ, ρ, C〉, like illustrated in Ex. 2.16. Admissible
valuations are then an upper-approximation of [[$]]VA (see Sect. 2.4.3). In the following the memory variable
associated to the signal variable x ∈ S is denoted by ξx.

Example 2.16 Let us give an slTS Θ for the counter presented in Ex. 2.13. A memory variable ξa is used to
memorize the past value of a, as x.a does in the STS. Initially, ξa = 0. Then at each action of the system, if a
is present then its value is memorized in ξa which is updated, otherwise ξa does not change. Moreover if ma is
present it takes the value of ξa. We then have ξ = {ξa} and the evolution of the internal state of the counter
(its dynamic part) is described by:

θ(ξa) : (ξa = 0) (3)

ρ(ξa, ξ′a,ma, a) :

 ξ′a =
{
a if a 6= ?
ξa else

if ma 6= ? then ma = ξa

(4)

Let us discuss now the static part of Θ, i.e. the relations that hold between signal variables in any action.
Similarly to Ex. 2.15 we obtain:

C(ma, a) :

N = ? ∧ a = ? ∧ma = ?∨
N 6= ? ∧ma = 0 ∧ a = N ∧N ≥ 0∨
N = ? ∧ma 6= ? ∧ma 6= 0 ∧ a = ma− 1

(5)

Equations (3), (4) and (5) describe Θ, which can be equivalently described by the automaton given on Fig. 11.
Note the stuttering transitions labeled by a silent valuation that loop on each state. A trace of execution of Θ
is also given on Fig. 12 which �res all non-stuttering transitions. We explicit the values of state variables (they
are traditionally left implicit since redundant with values of ma). �

6the di�erence is clearly marked in e.g. [38] by the use of terms �memory variables� as opposed to �signal variables�.
7
slTS and STS use the same terminology to denote di�erent objects: for STS the term �state� denotes a valuation on the set of

persistent and volatile variables.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 21

ma = ?∧
a = ?∧
N = ?

ma = ?∧
a = ?

N = ?∧
ξa = 0

N = 0 ∧ a = 0 ∧ ma = 0

N 6= ? ∧ N > 0
ma = 0 ∧ a = N

ma = 1 ∧ a = 0
N = ?∧

ξa > 0

a = ma − 1
a 6= ? ∧ N = ?

Fig. 11: An automaton for Ex.2.16

N 1 ? 0 4 ? ? . . .
a 1 0 0 4 3 2 . . .
ma 0 1 0 0 4 3 . . .
ξa 0 −→ 1 −→ 0 −→ 0 −→ 4 −→ 3 −→ . . .

Fig. 12: A trace of execution for Ex.2.16

Example 2.16 highlights several di�erences between slTS and STS. slTS make a clear separation between the
static and the dynamic part of a process. The dynamic part addresses the evolution of memory variables: unlike
STS the initialization predicate only concerns memory variables and a primed signal variable in the transition
relation has no meaning. As a result, a run is an in�nite sequence of memory states, decorated by the in�nite
sequence of the valuations for signals variables that triggered the evolution from one memory state to the other.
There is no �vertical� representation like for STS.

The restriction of a run of Θ to variables in S is nevertheless related to a trace of the associated process,
with a weaker meaning than the trace semantics, as for STS with no fairness conditions. Note that it should
be possible to meet the trace semantics by considering a pair composed of a transition system and a fairness
hypothesis.

3 Speci�cation and veri�cation using Signal

In the following Signal [45, 25, 9] is used as a description language for data-�ow speci�cations. Notations given
in Sect. 2 are still valid. The kernel of Signal is �rst presented in Sect. 3.1, then two analyses that model a
Signal speci�cation by a symbolic transition system are described in Sect. 3.2.

3.1 The Kernel of Signal

A Signal program or speci�cation8 on a set of variables A is written P ∈ PgA. It denotes semantically a
set of �ows called a Signal process (then a subset of FA) written [[P]] or $P. 1PgA

∈ PgA denotes a program

that does not constrain variables in A (it can be thought as a program containing no equations): [[1PgA
]] = FA.

The kernel language is composed of four elementary equation patterns that denote elementary processes .
The instantaneous function and the delay presented in Sect. 3.1.1 are monochronous, while the �ltering and
the deterministic merge presented in Sect. 3.1.2 are polychronous. More complex programs are built using
the parallel composition operator |, which corresponds to the parallel composition of processes presented in
Sect. 2.3.1:

[[P1 | P2]]
∆= [[P1]] ‖ [[P2]]

The semantics of an elementary equation P is given as follows: [[P]] = {F ∈ FA | ∀t ∈ N, exp(F, t)} (where
exp(F, t) is an expression built on F and t) is written more concisely P ; exp(F, t). To simplify this expression,
F (a)(t) is written aF

t or at for a variable a ∈ A, whose domain is denoted by Da.

8The term �program� could imply that the speci�cation is executable, which is not necessarily the case.

PI n�1402

22 M. Nebut & S. Pinchinat

3.1.1 Monochronous Operators

As said in Sect. 2.4, a process $ on A = {ai}i=1...n is monochronous if all variables in A are synchronous. Then
F ∈ $ implies that for any i, j ∈ [1, n]: ∀t, ai

F
t = ?⇔ aj

F
t = ?. This constraint appears in the semantics of the

two monochronous operators instantaneous function and delay.

Instantaneous Function Let y, x1, . . . , xn be variables (not necessary distinct) of domain Dy and Dxi re-
spectively, A be the set {y, x1, . . . , xn} and g be a function from Dx1 × · · · × Dxn to Dy, such as addition
for instance. Such functions are extended to signals in a synchronous way: the function is applied i� all its
arguments are present; then the evaluation of an expression like ?+ 2 is irrelevant. The general semantics is:

[[y := g(x1, . . . ,xn)]] ;
yt = ?⇒ x1t = · · · = xnt = ?∧
yt 6= ?⇒ ∀i, xit 6= ? ∧ yt = g(x1t , . . . , xnt)

When y is present it takes the value g(x1, . . . , xn). Functions allow the construction of monochronous predicates
(e.g. c := x<y builds the predicate x < y; and c, x and y are always both absent or present at a given instant).
An equation can also describe a relation between variables: the process y := x or y on {y, x} states that when
y and x are present, their values verify xt ⇒ yt.

Delay The delay operator $ aims at de�ning the dynamic of systems (see Sect. 2.5.2). Let x, y be variables
(not necessarily distinct) such that Dx = Dy, and let v0 ∈ Dy. The elementary process on {x, y} (or delay
equation):

[[y := x $1 init v0]] ;
yt = ?⇔ xt = ?∧
(x0 6= ?⇒ y0 = v0)

∧
(t ≥ 1⇒ yt = xt−1)

de�nes the variable y as the delay of the (delayed) variable x. y and x are synchronous and when present, y
takes the previous/delayed non-? value of x, initially v0.

Remark 3.1 One can wonder why the �ow semantics of the delay is expressed by the sub-expression x0 6=
? ⇒ y0 = v0, and not by the one y0 = v0 which seems to express exactly an initialization at the �rst instant.
However the silent �ow must belong to the process : in this case the initial value v0 is never carried by y. Note
also that the trace semantics of the delay is far less easy to write than the �ow one. Indeed, it must be expressed
that y carries the last non-? value of x in case of presence. Let us consider a �ow F ∈ F{y,x} such that F ∈ [[
y := x $1 init v0]]. Then for all t ∈ N: yF

t 6= ? ⇔ xF
t 6= ?. Assume yF

t 6= ? for t > 0, then F (t) 6= ?V and
by de�nition of �ows, F (t− 1) 6= ?V. Therefore yF

t−1 6= ? and xF
t−1 6= ?: if yF

t 6= ?, the last non-? value of x is
xF

t−1. On the contrary a trace T does not have this property of �ows, and the search for the last non-? value of
x must be made explicit by:

yT
t 6= ? ∧ t′ = max{s. s < t ∧ yT

s 6= ?} ⇒ yT
t = xT

t′

Similarly the initial valuation must be expressed by: t′ = min{t. yT
t 6= ?} ⇒ yT

t′ = v0. �

If we reuse notations of Sect 2.5.2 the slTS associated to the above delay equation is such that:

θ(ξx) : (ξx = v0) , C(y, x) : (y = ?⇔ x = ?) , ρ(ξx, ξ′x, y, x) :

 ξ′x =
{
x if x 6= ?
ξx else

if y 6= ? then y = ξx

(6)

Note that C(S) states a clock equivalence between x and y that are synchronous.

Remark 3.2 The delay is used to represent Signal constants: the constant v is materialized by a signal zv
which carries v at each of its instants of presence. The constant v is by this way given a clock, which is ẑv and
is not constrained by the equation. E.g. for v equal to 2: z2 := z2 $ 1 init 2. �

3.1.2 Polychronous Operators

The �ltering and the deterministic merge operators are polychronous: the involved variables are not necessarily
synchronous nevertheless their clocks are constrained to verify a given relation, as shown below.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 23

Filtering Let x, y be variables (not necessarily distinct) such that Dx = Dy, and c be a boolean variable.
The elementary process de�ned on {x, y, c}

[[y := x when c]] ;
ct 6= true⇒ yt = ?∧
ct = true⇒ yt = xt

states that if c is present and true then y takes the value of x, otherwise y is absent. The when operator performs
a �ltering or an under-sampling: it extracts a sub-clock ŷ from x̂ according to the truth values of the predicate
c. This predicate is called the guard of the �ltering. The when operator constrains the clock of x and y as
follows: ŷ is equal to the intersection of x̂ with instants where c is present and true.

Deterministic Merge Let y, u, v be variables (not necessarily distinct) such that Dy = Du = Dv. The
elementary process de�ned on {y, u, v}

[[y := u default v]] ;
ut 6= ?⇒ yt = ut∧
ut = ?⇒ yt = vt

states that if u is present then y takes the value of u, otherwise the one of v. It corresponds to the merge with
priority given to the �rst argument as in Ex. 2.14. The default operator constrains the clocks of y, u and v as
follows: ŷ is equal to û ∪ v̂.

3.1.3 Other Constructions

The complete language o�ers also the hiding of variables. (| P |)/x hides x in P; it corresponds to a projection
of the process [[P]] on x making x a local variable:

for P ∈ PgA, [[(P / x)]] ∆=
∏

A\{x}([[P]])

Hiding is necessary when constants are involved, since as explained in Rem. 3.2 a constant v is represented by
a variable zv which is purely local to the use of v. For example

y := x + 2 stands for (| y := x + z2 | z2 := z2 $ 1 init 2 |) / z2.

Note that the clock of z2 is now clearly �xed since the instantaneous function + constrains z2 to be synchronous
with x and y.

The language provides powerful constructions for modular programming we shall not deal with here. We
just mention two very useful derived operators :

• The operator �= constrains its arguments to be synchronous:

[[x �= y]] = {F ∈ F{x,y} | xF
t = ?⇔ yF

t = ?}

x �= y stands for (| b1 := when x=x | b2 := when y=y | b := b1 = b2 |)/ b,b1,b2.

• event x stands for the boolean expression x=x. It denotes a pure event (of type {?, true}) synchronous
to x, that is x̂.

Example 3.1 The counter described in Ex. 2.13 and 2.16 can be speci�ed by the following system of equations,
where the last equation guarantees the determinism of the process. Note that the third equation speci�es a
constraint on the input N , which could be expressed by the Lustre expression assert(N>=0).

(| ma := a $1 init 1

| a := N default ma-1

| N ^= when N>=0

| N ^= when ma=0 |)

�

Example 3.2 The example of Fig. 13 shows a Signal program that computes an absolute value and one of its
�ows. The program de�nes the model of process abs (keyword process) on {y, a} whose integer input variable
(indicated by ?) is y, whose integer output variable (indicated by !) is a and whose integer local variables p
and n are declared by the keyword where. The system of equations assigns to p (resp. n) the value of y (resp.
-y) at all instants s.t. y is positive (resp. strictly negative). These two variables are exclusive (they cannot be
both present at the same time). Then a is assigned the value of p if p is present, else the value of n, so a is the
absolute value of y.

�
PI n�1402

24 M. Nebut & S. Pinchinat

process abs =

(? integer y;

! integer a)

(| p : = y when y>=0

| n := -y when y<0

| a := p default n

|) where integer p,n end

t0 t1 t2 t3 t4 . . .

y 3 4 -2 0 -5 . . .
p 3 4 ? 0 ? . . .
n ? ? 2 ? 5 . . .
a 3 4 2 0 5 . . .

Fig. 13: An absolute value in Signal

3.2 Analyses on Signal

Polychrony proposes a range of tools dedicated to particular analyses applied to speci�cations. Two analyses
are presented here in a concise way, which both consider a process as a symbolic transition system (the �rst
one uses explicitly slTS). An analysis [38] of the trajectories of a boolean system in described is Sect. 3.2.1 and
an analysis [11] on non-boolean values is described in Sect. 3.2.2.

3.2.1 Boolean Analysis of Trajectories

The analysis [38] implemented in the tool Sigali applies to boolean speci�cations. It uses systems of polynomial
dynamic equations over the �eld Z/3Z as a description of a slTS. The principle is to encode the three possible
status of a boolean variable y into a signal variable Y , with the following meaning:

Y y

+1 7→ present and true
-1 7→ present and false
0 7→ absent

E.g. for boolean signals a, b, c the equation c := a default b is denoted by the polynomial equation C =
A+(1−A2)B which represents exactly the admissible valuations of the equation. For non-boolean variables, the
equation is represented by the polynomial C2 = A2 +B2−A2B2, which only keeps track of the synchronization
constraint ĉ = â ∪ b̂. The polynomial dynamic system is formally reorganized into three sub-systems as in
Sect. 2.5.1, where Q0, P and Q are polynomials such that:

• Q0(ξ) = 0 corresponds to the initialization predicate θ;

• ξ′ = P (ξ, S) corresponds to the transition relation ρ, except that the value taken by the delay variable y
in y := x $ init v0 (if y 6= ? then y = ξx in Eq. (6)) is speci�ed in Q;

• Q(ξ, S) = 0 denotes the admissible valuations of the system in a given state.

Note that it is possible to specify that a signal variable x is always present via the polynomial equationX2−1 = 0,
what is out of the question in the trace semantics.

Sigali symbolically handles polynomial equations: they are e�ciently implemented by TDD (Ternary De-
cision Diagram) which are BDD (Binary Decision Diagram [51]) whose edges are labeled by 0, 1 but also -1.
Sigali provides analyses of the trajectories of systems: symbolic model-checking (e.g. safety, liveness properties)
and controller synthesis [41, 40].

3.2.2 Non-boolean Values Handling

The analysis [11] (not integrated to Polychrony) considers symbolic transition systems that contain linear
relations between values of the non-boolean variables of a speci�cation. In practice it uses a polyhedral encoding
inspired from [30] and extended to consider the special value ?. Firstly, an upper-approximation of the set of
admissible valuations (called �labels�) is computed, and used to represent the transition relation ρ. Secondly, ρ
is used to compute an upper-approximation of the set of reachable states, and a widening operator is proposed.
We focus here on the implementation of the �rst part.

A set of valuations for a program P is symbolically represented by a set of constraints sets, following directly
the intuition given in Ex. 2.16. An upper-approximation of the set of admissible valuations is extracted from
P, using deductive rules that express a behavioral semantics of the kernel of Signal. Practically, a set of

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 25

constraints sets is �rst associated to each equation. E.g. the equation y := x when c is encoded by the set
C = {C1, C2, C3} where

C1 : {y = x, c = true}, C2 : {y = ?, c = false}, C3 : {y = ?, c = ?}.

Each Ci denotes a set of valuations and C denotes their union. Then equations are put in parallel: valuations
associated to single equations are composed to obtain all possible con�gurations of a parallel composition. For
example:

if eq1 : {C1, C2} and eq2 : {C3, C4} then eq1 | eq2 : {C1 ∪ C3, C1 ∪C4, C2 ∪ C3, C2 ∪ C4}

A naive computation of the resulting set would yield an exponential number of constraints sets, among which
unsatis�able constraints should be discarded. A set of constraints can be unsatis�able for two reasons:

• a variable is constrained to be both present and absent, e.g. {x = ?, x = v} ⊆ Ci, where v ∈ D;

• a variable is present but the constraint on the value it carries has no solution, e.g. {x 6= ?, x > 3, x < 0} ⊆
Ci.

In practice, constraints sets are normalized and split according to the status of variables. As a result, any
normalised constraints set is implemented by a convex polyhedron stating constraints on present variables (and
memory variables) plus a list of absent variables.

Example 3.3 Let us consider Ex. 3.2. To the equation p := y when y>=0 is associated the set Cp =
{Cp

1 , C
p
2 , C

p
3} where

Cp
1 : {p = y, y ≥ 0}, Cp

2 : {p = ?, y < 0}, Cp
3 : {p = ?, y = ?}.

To the equation n := -y when y<0 is associated the set Cn = {Cn
1 , C

n
2 , C

n
3 } where

Cn
1 : {n = −y, y < 0}, Cn

2 : {n = ?, y ≥ 0}, Cn
3 : {n = ?, y = ?}.

The parallel composition of these two equations produces a set of 9 sets of contraints among which only 3 are
kept:

Cp
1 ∪ Cn

2 : {p = y, y ≥ 0, n = ?}, Cp
2 ∪ Cn

1 : {p = ?, y < 0, n = −y}, Cp
3 ∪ Cn

3 : {p = ?, y = ?, n = ?}.

The other ones are discarded either because one variable is constrained to be both present and absent (e.g.
y in Cp

1 ∪ Cn
3), or because the constraints y < 0 and y ≥ 0 appear in the set (e.g. in Cp

2 ∪ Cn
1). Finally the

normalization of constraints sets gives the following results:

C1 : {(y = p = n = a = ?)} , C2 : {(n = ?), (y ≥ 0 ∧ p = y = a)} , C3 : {(p = ?), (y < 0 ∧ n = −y = a)}

�

4 Abstraction-based Analyses

Abstractions are very classically applied to speci�cations to facilitate their veri�cation. Speci�cations are often
composed of a control and a data part: the state-space to be explored can be huge or even in�nite due to the
data part. Abstractions aim at reducing this state-space, or even to fall in a �nite one. Various aspects of
abstractions have been studied: mainly correctness (a safe abstraction ensures that some properties veri�ed
by the abstract speci�cation are also veri�ed by the concrete one, see e.g. [20]) and termination of analyses
(see [20] or e.g. [12]), compositionality (decomposition of problems into smaller independent ones, see e.g. [6]),
etc. A widely used theoretical framework to design abstractions and analyses, called abstract interpretation,
is presented in Sect. 4.1. Abstraction means abstract domains for computations: standard ones are given in
Sect. 4.2.

4.1 Notions of Abstract Interpretation

According to [19], �abstract interpretation is a general theory for approximating the semantics of discrete dy-
namic systems, e.g. computations of programs. In particular program analysis algorithms can be constructively
derived from these abstract semantics�. We give an informal presentation in Sect. 4.1.1 then present the formal
framework in Sect. 4.1.2.

PI n�1402

26 M. Nebut & S. Pinchinat

4.1.1 Informal Presentation

Static analysis9 aims at obtaining as much information and properties as possible about the possible runs of a
program without actually having to run it on all input data. It is fully automatic and based on non-standard
executions that perform the computations of the program using a description of values (or abstract values),
instead of the actual computed values. Abstract interpretation is a theory that expresses static analysis as a
formal correspondence between the concrete semantics of programs and an abstract semantics guided by the
property of interest. Most of the work aims at �nding a safe description of the behavior of programs (by
abstract computations in abstract domains), i.e. such that the result of the analysis can always be depended
on: the answer can be �yes�, �no� or �I don't know�. Pionner work of Cousot and Cousot [20] strongly in�uenced
following works on abstract interpretation since it de�nes a uni�ed framework for a number of program analyses.
A general and more intuitive introduction can be found in [36].

Given a program to be analyzed, the property under interest induces the choice of a concrete domain Conc

and of an abstract domain Abs. In an example given by [36], the problem is to determine whether the values of
some integer variable at some control point are all even, all odd, or both of them. Then the concrete domain
is (P(N),⊆,∩,∪) and the abstract domain (Abs,va,ua,ta) is such that Abs = {⊥, even, odd, >} is endowed
with the partial order ⊥ va {even, odd} va >. Abs and Conc are connected by an abstraction function
α : Conc→ Abs, and a concretization function γ : Abs → Conc. Any concrete function opc : Conc→ Conc (e.g.
addition) is modeled in Abs by an abstract function opa : Abs → Abs (e.g. a function that indicates the parity
of the result of an addition depending on the parity of its arguments) in such a way that any operation opc

on xc ∈ Conc is imitated by its abstraction opa(α(xc)). Finally a set acc ∈ Conc (resp. abs ∈ Abs) of concrete
(resp. abstract) reachable states is associated to each control point, resulting in a system of recursive equations
which remains to be solved (e.g. the set of states end reached at the end of the body of a loop is expressed in
function of the set of states begin reached at the beginning of the body, itself expressed in function on end and
on the condition of the loop).

4.1.2 Theoretical Foundations

The ideas informally presented in Sect. 4.1.1 are formalized in [20]. Very general solutions are proposed, and
illustrated on a simple �ow-chart language.

De�nition of the abstraction Abstract and concrete domains are complete lattices (Abs,va,ta,ua) resp.
(Conc,vc,tc,uc). The pair (α, γ) is a Galois insertion, that is it veri�es the following properties:

1. α and γ are monotonous, e.g. for all x1
c , x

2
c ∈ Conc, x1

c vc x
2
c implies α(x1

c) va α(x2
c);

2. ∀xa ∈ Abs, xa = α ◦ γ(xa) (a Galois connection must only ensure that α ◦ γ(xa) va xa);

3. ∀xc ∈ Conc, xc vc γ ◦ α(xc).

Point (1) is intuitive: comparisons in the concrete resp. abstract domains must be preserved by abstraction
and concretization. Point (2) means that concretization introduces no loss of information. Point (3) means as
expected that abstraction introduces a loss of information: abstraction followed by concretization gives a set of
con�gurations bigger than the original one.

A consistent (or safe, or conservative) abstraction of concrete functions can now be de�ned. Let opc : Conc→
Conc be a concrete function and opa : Abs → Abs the corresponding abstract one. The abstract interpretation
is safe if the result of an abstract operation at least contains the result of the concrete one:

∀xc ∈ Conc, opc(xc) vc γ ◦ opa ◦ α(xc), equivalently α ◦ opc(xc) va opa ◦ α(xc)

which correspond to the diagrams shown on Fig. 14.

Accumulating Semantics The principle of accumulating semantics is to compute for each control point the
set of possible reachable states (i.e. values for variables). Elementary constructions of the language are locally
interpreted by order preserving functions, then the static semantics of programs is generally expressed as a set
of recursive equations. The resolution is then a least �xpoint computation. On the one hand the Tarski �xpoint
theorem ensures that its least �xpoint exists. On the other hand the choice of safe abstractions ensures that
the least �xpoint in the abstract domain is an upper-approximation of the least �xpoint in the concrete one.

9not to be confused with analysis of a static speci�cation in the sense of Sect. 2.4.3

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 27

Conc Conc

opc

Abs

opa

Abs

⊆

α
γ

Conc

opc

Abs

opa

Abs

α

Conc

α

v

Fig. 14: Safe abstraction

Termination of the resolution An increasing iterative least �xpoint computation can yield to in�nite
computations if the abstract lattice contains in�nite increasing chains (what is generally the case excepted for
very restricted abstract domains). Assuming the iteration has the form

abs0 = ⊥Abs , absi+1 = Fa(abs i) (7)

[20] proposes to over-approximate the limit of the sequence (absn)0≤n using a widening operator ∇ : Abs×Abs→
Abs such that:

1. ∀x1
a, x

2
a ∈ Abs, x1

a ta x
2
a va x

1
a∇x2

a

2. for all increasing sequence (xn)0≤n the sequence (x′n)0≤n de�ned by x′0 = x0, x
′
i+1 = x′i∇xi+1 is not

strictly increasing.

The computation of Eq. (7) can then be replaced by the one

abs ′0 = ⊥Abs , abs ′i+1 = abs ′i∇Fa(abs ′i)

Applications Practically, abstract interpretation was mainly applied to the veri�cation of invariance proper-
ties on a wide range of speci�cation styles: transition systems [39], sequential, functional, logic, constraint logic,
synchronous programming, etc. As far as synchronous programming is concerned, [27] explains how compiling
speci�cations into interpreted automata and proving invariance properties by means of a synchronous observer
are related to abstract interpretation. Moreover [35] expresses formally a clock analysis for Lustre and proves
its correctness in the framework of abstract interpretation. It also emphasizes that abstraction of data-�ow
speci�cations can be formulated in the context of type systems.

4.2 Standard Abstract Domains

The precision of an abstraction depends on the choice of the abstract domain. The abstract state-space obtained
by boolean abstractions presented in Sect. 4.2.1 is �nite but abstractions are rather coarse. More expressive and
possibly in�nite abstract domains containing non-boolean values are shortly presented in Sect. 4.2.2.

4.2.1 Boolean Abstraction

This abstraction is well known in veri�cation problematics, see e.g. the predicate abstraction used in [24, 6, 52].
One considers a set of k predicates ϕi on the variables of the concrete speci�cation. A boolean variable Bi is
associated to each ϕi: it represents all concrete states that satisfy the predicate ϕi. Abs can therefore be chosen
as the set of all predicates on k boolean variables Bi. For exp (resp. ϕ) a concrete (resp. abstract) predicate,
the most precise Galois insertion (α, γ) is then:

γ(exp(B1, . . . , Bk)) = exp[Bi ← ϕi]

α(ϕ) =
∧
{exp(B1, . . . , Bk) | ϕ⇒ exp[Bi ← ϕi]}

[24] notes that α is not easily computable in general. It chooses then for Abs the set of monomials on the
boolean variables Bi (that is the set of conjunctions of Bi's and ¬Bi's that contain each Bi at most once). α
is then

α(ϕ) =
∧

1≤i≤k

{Bi | ϕ⇒ ϕi} (8)

PI n�1402

28 M. Nebut & S. Pinchinat

A particular choice for the abstraction predicates stands out, as pointed in [24, 52]. They consider dynamic
systems speci�ed in a Unity-like language where transitions are composed of guards and a�ectations. They
show on practical examples that choosing guards for abstract predicates produces a relatively precise global
control graph of the system. The precision of the abstraction is then su�cient to prove properties related to
the control of the speci�cation.

The development of symbolic techniques (e.g. symbolic model-checking [15]) has allowed to consider domains
larger and larger with the use of BDDs (or Ordered BDDs for which numerous libraries exist), BEDs (Boolean
Expression Diagrams [3, 58]), etc.

4.2.2 Non-boolean Abstractions

Well known abstract domains that contain non-boolean values are for example (roughly from the coarsest to
the �nest): intervals, regions, polyhedra, and formulas of the Presburger arithmetic (non-quanti�ed fragment
or full arithmetic). A few related analyses, data structures and tools are enumerated below, among others.

Intervals The abstract lattice of real intervals is well known: a widening operator was earlier de�ned in [20].
Intervals are used e.g. in the veri�cation of timed automata [54] by means of IDDs, a data representation derived
from BDDs [55]. Analyses based on intervals are not precise but also not costly: they can be applied as a �rst
stage in the veri�cation process.

Regions A set of constraints of the kind x + c ≤ y + d where x, y ∈ R and c, d ∈ N de�nes an area called
a region, by allusion to regions described by real clocks when time evolves in timed automata (see e.g. [56]).
Two data structures have been proposed to represent them: DDDs (Di�erence Decision Diagrams [43]) that
describe set of constraints of the kind x−y ≤ c and similar CDDs (Clock Di�erence Diagrams [4]). Both belong
to the family of interpreted BDDs, that refer to BDDs whose nodes are pseudo-variables that correspond to
non-boolean constraints.

Convex Polyhedra A polyhedron determines a linear subspace of Qn of the kind {X ∈ Qn |
∧
ai.xi ≥ bi}

for ai, aj ∈ Q. It can be used to represent a subset of R or Z. Polyhedra are very popular since they o�er a
good compromise between cost and accuracy. The lattice of convex polyhedra and a widening operator where
�rstly proposed in [21] and widely further used (see e.g. [31, 32]).

Presburger Formulas The Presburger algebra (or arithmetic) is a �rst order language that describes linear
constraints between integer variables. It is more and more practically used in analyses as tools evolve. For
example the tool Omega [48], based on polyhedral representations, was used e.g. in symbolic model-checking
[13] or constraint-based array dependence analysis [49]. Presburger formulas can also be represented by automata
[59]. Some algebraic properties of Presburger arithmetic are studied in [12], to e.g. restrict speci�cations to a
fragment of the arithmetic so that analyses terminate (therefore there is no need to apply a widening).

4.2.3 Mixed Abstractions

Real speci�cations often contain several data-types, at least a boolean part that represents control and a non-
boolean part that represents data. More and more veri�cation techniques mix boolean and non-boolean abstract
domains. Some of them use special data structures that mix interpreted and classical BDDs: IBDDs [22] for
intervals, and for polyhedra DDCs (Decision Diagram with Constraints [42]) and more recent works of [34].

5 Abstractions and Analyses in Polychrony

Very di�erent kinds of abstraction are widely used in Polychrony, described into very distinct formalisms.
Authors of the work [11] claim its relation with abstract interpretation, and use two steps presented in Sect. 4.1.2:
accumulating semantics and widening operator. On the contrary, some abstractions are described by means of
syntactical transformations of Signal programs. In these cases the correctness of abstractions is not explicitly
expressed in terms of the underlying Galois insertion. Moreover analyses that address only static processes are
not concerned with the accumulating semantics as de�ned by [20], thus neither with widening operators, though
they produce a set of recursive equations. Finally, the particularly important abstraction by synchronizations is
quite original in its principle, though it is only a particular case of boolean abstraction. For these reasons, the

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 29

whole set of studies involving abstractions in Polychrony can only gain clarity from a general survey which
would establish classi�cations and comparisons both between classes and with classical abstractions.

A data-�ow process can be seen as the parallel composition of two or more components (which are also
processes) that play a speci�c role in the system and have particular properties. Several decompositions into
pairs of components are classically used in Polychrony: one distinguishes in a process its dynamic part (which
makes memories evolve once values for signal variables are computed) composed with its static or combinatorial
part (responsible for the computation of these values for signal variables); its synchronization part (which
describes relations between clocks of variables) composed with its computational part (which deals with values
of variables); or its boolean part (which describes the control of the process) composed with a non-boolean
part (which describes the processing of data). Decompositions are orthogonal and their composition leads
to decompositions into tuples of components (for example decomposition of the data part into its static and
dynamic parts). Such structural decompositions induce structural abstractions, meaning that a component of a
process is considered alone as abstracting the whole process.

Historically, Polychrony has �rst proposed methods and tools that rely on structural abstractions, pre-
sented in Sect. 5.1. As shown in Sect. 5.2, these abstractions are boolean ones. But classical abstractions into
speci�c data domains start out: the analysis of [11] uses polyhedra and an analysis on intervals is in course of
design. These kind of abstractions are presented in Sect. 5.4. All along the section, the way absence is handled
is emphasized.

5.1 Structural Abstractions

The principle of structural abstractions is presented in Sect. 5.1.1, then the main abstractions and their com-
positions used in Polychrony are given: abstraction by control in Sect. 5.1.2, static abstraction in Sect. 5.1.3,
abstraction by synchronizations in Sect. 5.1.4 and composed abstractions in Sect. 5.1.5.

5.1.1 Principle of Structural Abstractions

Let us �rst recall the principle of the synchronous observer , widely used in the veri�cation process of Lustre
programs [29]. To determine whether a Lustre program P satis�es a safety property Q (speci�ed in Lustre

and whose truth value is materialized by a boolean signal B), a new program P′ made of the composition of P
and Q is built, whose only output is B.The Lustre compiler produces a graph (an automaton-like code), then
verifying the property consists just in verifying that in none of the states the code assigns the value false to
B. Another method is to compose P with the equation assert(Q) and to verify that P and P′ have the same
inputs and outputs. This approach by constraints is well adapted to Signal: given a program P ∈ PgA and a
property Q ∈ PgA′ concerning a subset A′ of A, the fact that Q does not constrain inputs and outputs of P is
expressed by [[P]] ‖ [[Q]] = [[P]]. Thanks to Th. 2.1 given on page 14, one obtains as expected that any �ow of P
restricted to variables of Q is a �ow of Q:

[[P]] ‖ [[Q]] = [[P]] i�
∏

A′([[P]]) ⊆ [[Q]] (9)

The principle of structural abstraction is similar to the one of synchronous observers: the abstraction of P is
a Signal program Pa which, composed with P, should not constrain it. An important di�erence is that the
structural abstraction is inferred from the program. Moreover a program and its abstraction are de�ned on the
same set of variables: restriction is then useless in (9) which becomes:

[[P]] ‖ [[Pa]] = [[P]] i� [[P]] ⊆ [[Pa]] (10)

Formally, a semantically preserving transformation Tr given as a set of rewriting rules turns a Signal

program P ∈ PgA into the parallel composition of two programs Pa, Pr ∈ PgA:

P
Tr−−→ Pa | Pr, with [[P]] = [[Pa | Pr]] (11)

where Pa aims at representing an abstraction of P, whereas Pr represents what �remains� as a non-abstracted
part of P. The abstraction consists then in keeping Pa to represent P. The property (10) is veri�ed:

[[P]] ‖ [[Pa]] = [[P]] (12)

As a matter of fact we have:

PI n�1402

30 M. Nebut & S. Pinchinat

[[P]] ‖ [[Pa]] = [[Pa | Pr]] ‖ [[Pa]]
= [[Pa]] ‖ [[Pr]] ‖ [[Pa]] by Def. of |
= [[Pa]] ‖ [[Pa]] ‖ [[Pr]] by commutativity of ‖
= [[Pa]] ‖ [[Pr]] by idempotence of ‖
= [[Pa | Pr]] = [[P]]

Moreover the transformation Tr veri�es:

• For P1 ∈ PgA1
, P2 ∈ PgA2

, if Tr(P1) = P1a | P1r and Tr(P2) = P2a | P2r then Tr(P1 | P2)
∆= Pa | Pr where

Pa
∆= P1a | P2a and Pr

∆= P1r | P2r;

• Tr is distributive over hiding : Tr((| P |)/x) ∆= (| Tr(P) |)/x;

• Tr is semantically idempotent for abstract programs:

if P
Tr−−→ Pa | Pr and Pa

Tr−−→ Paa | Par, then [[Paa]] = [[Pa]] (13)

Let us reformulate structural abstractions in the framework of abstract interpretation by using a Galois
insertion.

Theorem 5.1 Given a (rewriting) transformation Tr : PgA → PgA, the concrete and abstract domains Conc =

PA and Abs = {[[Pa]] ∈ PA | ∃P ∈ PgA. P
Tr−−→ Pa | Pr}, let αTr , γTr be such that:

αTr ([[P]]) : Conc → Abs

[[P]] 7→ [[Pa]]
γTr : Abs → Conc

$ → $

then the pair (αTr , γTr) is a Galois insertion.

Proof We write α (resp. γ) for αTr (resp. γTr).

1. γ is trivially monotonous. α is monotonous: assume given P1, P2 ∈ PgA such that [[P1]] ⊆ [[P2]], P1 Tr−−→ P1
a | P1

r

and P2 Tr−−→ P2
a | P2

r. By Th. 2.1, [[P1]] = [[P1 | P2]]. Moreover Tr(P1 | P2) = P1
a|P2

a | P1
r |P2

r. Therefore α([[P1]]) =
α([[P1 | P2]]) = [[P1

a | P2
a]] = [[P1

a]] ‖ [[P2
a]] = α([[P1]]) ‖ α([[P2]]), and by Th. 2.1 α([[P1]]) ⊆ α([[P2]]).

2. For P ∈ PgA, [[P]] ⊆ γ ◦ α([[P]]): γ ◦ α([[P]]) = α([[P]]) by de�nition of γ, and [[P]] ⊆ α([[P]]) since [[P]] ⊆ [[Pa]] by
(12).

3. For $ ∈ Abs, $ = α ◦ γ($): since $ ∈ Abs, $ = α($′) for some $′ = [[P′]] and P′ ∈ PgA. Therefore
$ = [[P′a]]. By de�nition of γ, γ($) = $. Since Tr is semantically idempotent for the abstract component (13),
α($) = [[P′a]] = $. Therefore α ◦ γ($) = α($) = $. 2

5.1.2 Abstraction by Control

The control part of a program is mainly boolean. The decomposition of a program P into its control part PC and
its data part PD also aims at isolating as much as possible a component composed only of boolean variables,
in order to apply well known boolean techniques to it. The decomposition by the transformation TrC is purely
syntactical and no new relations is inferred from P: any equation belongs either to PC or to PD. We obtain the
transformation TrC shown on Fig. 15

P
TrC−−−→ PC | PD

TrC trivially satis�es conditions (11) and (13).
Boolean variables that are not de�ned in PC are considered as inputs of the system and are called free

variables. This decomposition corresponds to a plain disconnection between control and data: no introduction
of predicate variables nor computations are performed like in [24] (this point will be discussed in Sect. 5.2.3). We
denote by PgC the set of programs {PC | P ∈ Pg}. An abstraction by control (also called boolean abstraction)
consists then in keeping only the control part of processes:

αTrC
([[P]]) = [[PC]]

As shown in the following sections, PC and PD can be further decomposed.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 31

P PC PD
x := expr and Dx 6= B 1Pg P

x := non_bool_expr and Dx = B 1Pg P

x := bool_expr and Dx = B P 1Pg

Fig. 15: Decomposition into Control and Data

5.1.3 Static Abstraction

It was explained in Sect. 2.5.2 that a symbolic transition system establishes a clear distinction between the dy-
namic part of a process (the transition relation ρ(ξ, ξ′, S)) and its static part represented by the constraint C(S).
The same decomposition is possible inside a Signal program P, which can be rewritten into the composition
of its dynamic part P$ and its static part PS . This decomposition is obtained by the transformation TrS such
that:

P
TrS−−−→ PS | P$

First note that all dynamic aspects in P are expressed by the delay operator $. Therefore if P is a non-delay
elementary process (instantaneous function, merge or �ltering), then PS = P and P$ = 1Pg. If P is the delay

equation y := x $1 init v0, the associated constraint C(S) states that y and x are synchronous (see Eq. (6)),
what is expressed in Signal by y �= x. Therefore P$ = P and PS = y �= x. The static abstraction consists
then in keeping only the static part of programs:

αTrS ([[P]]) = [[PS]]

Since [[P]] = [[PS | P$]], TrS satis�es (11). Moreover TrS satis�es (13): it is obvious for non-delay processes
since PS = P. As far as the delay is concerned, note that the expansion of y �= x into the kernel of Signal
given in Sect. 3.1.3 does not involve any delay operator, therefore [[y �= x]] = αTrS ([[y �= x]]). The static

abstraction is summarized on Fig. 16. The fragment of Signal which does not involve the delay operator is

P PS
y := g(x1, . . . ,xn) y := g(x1, . . . ,xn)

y := x $1 init v0 y �= x

y := x when c y := x when c

y := u default v y := u default v

P1 | P2 P1S | P
2S

Fig. 16: Static abstraction

called syntactically static.

De�nition 5.1 (Syntactically static Signal) The fragment of the kernel of Signal composed of the par-
allel composition | and of the elementary processes: instantaneous function, �ltering and deterministic merge is
called (the) syntactically static Signal (fragment), written SSignal.

The abstraction of P ∈ PgA induced by TrS exactly gives a static process in the sense of Sect. 2.4.3. If we
denote by $ the process αTrS ([[P]]), then $ = $S : indeed the �ow semantics of non-delay elementary processes

expresses in function of a single instant t, with no reference to instants that precede or follow it. Moreover in
the case of the delay: if P denotes y := x $1 init v0, Pa denotes y �= x and D is the domain of x and y,
then

[[$P]]VA = {(?, ?), (v0, vx), (vy, vx) | vy, vx ∈ D}
= {(?, ?), (vy, vx) | vy, vx ∈ D}
= [[$Pa

]]VA

PI n�1402

32 M. Nebut & S. Pinchinat

Note that a static program does not necessarily belong to the syntactically static fragment. Just consider
the process mx := x $ 1 | x := mx which is static in the sense of Def. 2.22. The following mainly deals with
static programs speci�ed in SSignal. When no confusion can occur, a static program refers to a syntactically
static one.

5.1.4 Abstraction by Synchronizations

The abstraction by synchronizations applies mainly to the data part PD of programs, since as shown in Sect. 5.2
the static control part can be expressed by synchronizations without loss of semantics. Any Signal equation
speci�es a relation between variables, that is a relation between their clocks (how their instants of presence are
related with each others) and their values (what relations hold between values at instants of presence). Relations
between clocks induced by a program P, called synchronizations of P, can be described by a Signal program
denoted by PCk, as follows. The clock of a variable x is obtained by the expression event x (see Sect. 3.1.3).
The synchronization between two variables y and x is expressed by event y �= event x or y �= x. Assume
to simplify that the considered processes do not involve any constant (or they are represented by a variable as
explained in Rem. 3.2, which allows to give them a clock). Synchronizations are shown on Fig. 17. We denote

P PCk
y := g(x1, . . . ,xn) (event y �= event x1) | . . . | (event y �= event xn)

y := x $1 init v0 event y �= event x

y := x when c event y �= ((event x) when c)

y := u default v event y �= ((event u) default (event v))

Fig. 17: Synchronizations

by PgCk the set of programs {PCk | P ∈ Pg}. The transformation TrCk is such that

P
TrCk−−−−→ PCk | P

This decomposition highlights the richness of Signal: it is easy to describe relations between clocks in a
program. The handling of clocks is direct, in accordance with their importance in data-�ow languages, and
is all the more �exible as numerous derived operators [23] are provided to simplify the speci�cation of clock
constraints (e.g. exclusiveness, inclusion, etc).

The abstraction by synchronizations consists then in only keeping relations between clocks (that correspond
to largest possible relations):

αTrCk ([[P]]) = [[PCk]]

This abstraction looses all information about the values carried by variables in case of presence. Note that it is
itself an abstraction of the static abstraction presented in Sect. 5.1.3: [[PS]] ⊆ [[PCk]].

Let us verify that the transformation satis�es conditions (11) and (13). TrCk is semantically preserving.
Let us show on the simple case of the delay that TrCk satis�es (13): if P is event y �= event x then the
abstraction of $ = [[P]] is equivalent to $. As a matter of fact P rewrites into (| b1 := when y=y | b2 :=

when x=x | b := b1 = b2 |)/ b,b1,b2, then PCk is

(| event b1 �= event y | event b2 �= event x

| event b �= event b1 | event b �= event b2 |)/ b,b1,b2

By applying the transitivity of �= and by forgetting variables b, b1 and b2, one checks that [[PCk]] = [[event y

�= event x]].

5.1.5 Composition of Abstractions

Abstractions presented in sections 5.1.2, 5.1.3 and 5.1.4 are not used as such in Polychrony but composed to
provide �ner ones which we generally call clock abstractions . Two main cases are presented here. Both take into
account the control and synchronization parts of programs. In the �rst case (Fig. 18(a)), the dynamic part is
kept to perform model-checking and controller synthesis in the tool Sigali [38]. A separation between control

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 33

(PC) and data (PD) is �rst performed, then synchronizations are extracted from the data part. The abstraction
consists then in only keeping PC | PDCk on P, where PDCk means (PD)Ck. In the second case (Fig. 18(b)) only
the static part is kept for a boolean analysis of admissible valuations. The static part is extracted from the
control and data part, then synchronizations are extracted from the static data part. The abstraction consists
then in keeping only PCS | PDSCk on P. Sect. 5.2 explains how it can be converted into a purely boolean
system.

P → PC | PD︸︷︷︸
↓ TrCk︷ ︸︸ ︷

PDCk | PD
→ PC | PDCk︸ ︷︷ ︸ | PD

(a)

P → PC︸︷︷︸ | PD︸︷︷︸
↓ TrS ↓ TrS︷ ︸︸ ︷

PCS | PC$
︷ ︸︸ ︷
PDS︸︷︷︸ | PD$
↓ TrCk︷ ︸︸ ︷

PDSCk | PDS
→ PCS | PDSCk︸ ︷︷ ︸ | PC$ | PDS | PD$

(b)

Fig. 18: Composition of Structural Abstractions in Polychrony

More generally, the idea is to obtain a chain of abstractions and veri�cation tools whose complexity is
increasing: abstractions are applied from the coarsest to the �nest until the minimal degree of complexity
to prove the property is found. For example, a static abstraction can be re�ned into a dynamic one; the
only consideration of synchronizations can be re�ned into the consideration of the full control part, etc. In the
framework of structural abstractions, it is also possible to over-step the boolean abstraction by e.g. decomposing
the data part PD into a decidable part PDd (e.g. all instantaneous functions fall into the Presburger algebra)
and a non-decidable one PDnd (e.g. containing non linear expressions). Finally, semantical abstractions can be
applied on data domains with an increasing complexity: intervals, regions, polyhedra etc.

5.2 Boolean Structural Abstractions

We show in this section that abstractions by control and by synchronizations presented in Sect. 5.1 are boolean:
abstract processes can be encoded into a purely boolean transition system.

In the classical sense a speci�cation is boolean if it involves only boolean variables (that is variables of the
type B = {true, false}) and boolean operators such as not, or, and. The boolean abstraction presented in
Sect. 4.2.1 produces boolean speci�cations with this meaning. More generally, a boolean reasoning involves
variables whose data type is not necessarily B, but contains only two values.

The description of a data-�ow speci�cation that contains only boolean variables (e.g. programs in PgC)
semantically necessitates three values, since all domains are extended with absence. A good illustration is the
encoding of a process into a three-valued logic performed by [38]. Nevertheless, any three-valued logic can be
encoded into a boolean algebra by arti�cially increasing the number of variables, as shown in Ex. 5.1.

Example 5.1 Assume given a domain D = {v1, v2, v3} for variables in S. The value v ∈ D of a variable x ∈ S
can be encoded into the domain D′ = {v1, v′1} with an auxiliary don't care variable x′, which plays no role in the
speci�cation other than indicating values taken by x. The value of x′ does not matter if x = v1, but indicates
whether x is v2 or v3 when x is assigned v′1:

x = v1, x
′ =? ; x = v1 x = v′1,

{
x′ = v1 ; x = v2
x′ = v′1 ; x = v3

�

On the other hand, the status of a variable x, expressed in the data type of pure events { true, ? } or more
generally in {present, absent}, is basically boolean. Therefore synchronizations and in particular programs in
PgCk can also be expressed into a boolean algebra. Dedicated to the description of static processes, the clock

PI n�1402

34 M. Nebut & S. Pinchinat

algebra associated to a valuation (see Sect. 2.4.3) encodes naturally synchronizations as well as the static part
of boolean programs. We explain in Sect. 5.2.1 how it can be encoded into the propositional calculus and in
Sect. 5.2.2 how programs in PgCCk = PgC∪PgCk are described. Finally the link between this boolean abstraction
and the predicate abstraction presented in Sect. 4.2.1 in discussed in Sect. 5.2.3.

5.2.1 Clock Algebra and Propositional Calculus

As mentioned in Sect. 2.4.3, the language 〈U,∩,∪, \〉 that describes clocks can be interpreted with respect to
a valuation into a boolean algebra with two elements (the empty set and a singleton). Such an algebra is
su�cient to describe static boolean processes. The propositional calculus is the most natural framework, and
is used in Polychrony. Out of habit and by abuse of terms, �the� Clock Algebra (with capital letters) refers
to the language composed of variables in K, the symbol O and operators ∪, ∩, \ and ⊆, interpreted into the
propositional calculus.
K is a �nite set of clocks called clock variables. The encoding of a program into the Clock Algebra is a

system of clock equations over K, called clock system. A clock system is encoded into the propositional calculus
as follows: any clock variable x̂ is encoded into the propositional variable b

bx. The semantics of the clock system
relates a valuation V to a distribution δV over bK: δV (b

bx) = 1 (resp. 0) means �x is present (resp. absent) in V �.
The relation x̂ ⊆ ŷ is then encoded into b

bx ⇒ b
by. By extension and using the natural semantics of characteristic

functions, x̂ ∪ ŷ is encoded into b
bx ∨ bby, x̂ ∩ ŷ into b

bx ∧ bby, and x̂ \ ŷ into b
bx ∧ ¬bby. The empty clock is encoded

by the constant that has no model, that is false. A more formal presentation is given in Sect. 6.4.

5.2.2 Encoding into the Clock Algebra

Let us �rst explain how the Clock Algebra encodes synchronizations. We use a mapping CA which encodes
directly Signal programs P into a clock system, in which a comma is used to separate equations. The encoding
is direct in the case of synchronizations inferred from the elementary processes instantaneous function, delay
and deterministic merge (cf Sect. 3.1): one just needs to replace in Fig. 17 expressions of the kind event y

(which delivers the clock of y) by ŷ, see Fig. 19(a). On the other hand, the �ltering involves a predicate (the

P CA(P)

y := g(x1, . . . ,xn) ŷ = x̂1, . . . , ŷ = x̂1

y := x $1 init v0 ŷ = x̂

y := u default v ŷ = û ∪ v̂

(a)

P CA(P)

y := x when c

ŷ = x̂ ∩ [c],
[c] ∪ [¬c] = ĉ,
[c] ∩ [¬c] = O

}
P1 | P2 CA(P1), CA(P2)

(b)

Fig. 19: Encoding of synchronizations into the Clock Algebra

guard), represented by a boolean variable in the kernel of Signal, say c ∈ S, that must be encoded into a clock
variable.

At a given instant c can be absent or present: it is indicated by the value of the abstract variable ĉ. When
present, c takes the value true or false. An auxiliary clock variable written [c] ∈ K is then associated to c:
it denotes the set of instants where c is present and true. The set of instants where c is present and false is
then denoted by another auxiliary clock variable written [¬c]. Such clock variables in square brackets are called
clocks-condition. Clocks [c] and [¬c] are mutually constrained since obviously in terms of set of instants they
form a partition of ĉ. This partition is speci�ed in the encoding of the �ltering into the Clock Algebra shown
on Fig. 19(b).

Remark 5.1 If we represent the domain {1, 0} by {present, absent}, we have the following scheme:

b
bc = b[c] = b[¬c] = absent ; c = ? b

bc = present ,
{
b[c] = absent , b[¬c] = present ; c = false
b[c] = present , b[¬c] = absent ; c = true

It is an encoding of the three values {true, false, ?} into the two ones {present, absent} by means of auxiliary
variables (condition-clocks). Compared to the one of Ex. 5.1, the encoding based on the Clock Algebra is very

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 35

natural: it fully respects the data-�ow principle which is to �rst wondering if a variable is present and next
considering its value. Note that the values of b[c] and b[¬c] are �xed and have a meaning when c is absent: they
are absent as well. Note also that actually only one auxiliary variable is needed: for example [¬c] = ĉ \ [c].

Example 5.2 We give the clock system associated to the absolute value (Ex. 3.2). Let us de�ne the boolean
variables cp and cn, that encode the predicates cp = y ≥ 0 and cn = y < 0. We have:

p̂ = [cp] ∩ ŷ [cp] ∩ [¬cp] = O [cp] ∪ [¬cp] = ŷ

n̂ = [cn] ∩ ŷ [cn] ∩ [¬cn] = O [cn] ∪ [¬cn] = ŷ

â = p̂ ∪ n̂
�

Let us now explain how synchronizations encode boolean relations between variables, e.g. speci�ed by pro-
grams in PgC . Filtering and merge processes are encoded by clock systems as follows, for boolean variables
y, u, v, c, x:

y := x when c
CA−−−→

{
ŷ = x̂ ∩ [c]
[y] = [x] ∩ [c] and y := u default v

CA−−−→
{

ŷ = û ∪ v̂
[y] = [u] ∪ ([v] \ û)

Then convenient Signal rewritings transform instantaneous boolean relations (built on operators and, or, not)
into synchronizations composed of expressions event c and operators default, when and �=. For example y

:= a and b rewrites into y := a when a when b default not event a default not event b. These syn-
chronizations are themselves encoded into the Clock Algebra using condition-clocks.

A dynamic system can be represented by a slTS (see Sect. 2.5.2) whose constraint C is encoded into the
propositional calculus. For a delay equation y := x $ 1 init v0 we obtain using the slTS Θ = (bK, bξ, θ, ρ, C)
where bK = {b

by, bbx, b[x], b[¬x], b[y], b[¬y]} and bξ = {ξb[x]}:

θ(bξ) : (ξb[x] = v0) , C(bK) :

b
by = b

bx

b[x] ∨ b[¬x] = b
bx

not (b[x] ∧ b[¬x])
b[y] ∨ b[¬y] = b

by

not (b[y] ∧ b[¬y])

 , ρ(bξ, bK) :

 ξ′b[x]
=

{
b[x] if bbx
ξb[x] else

if b
by then b[y] = ξb[x]

The following focuses only on static aspects.

5.2.3 Link with Predicate Abstraction

Guards predicates that appear in transition systems analyzed by [24, 52] have a direct counterpart in Sig-

nal: it is the guards of �ltering. For example, the equation p := y when y>=0 corresponds intuitively to the
conditional a�ectation if y is present then if y ≥ 0 then p := y, where y ≥ 0 plays indeed the role of a
guard. Composed abstractions presented in Sect. 5.1.5 are then a particular case of the predicate abstraction
presented in Sect. 4.2, in the sense that the abstract speci�cation contains only boolean variables, some of
which correspond to predicates of the concrete speci�cation. However the choice of abstract predicates is not
free but restricted to guards of �ltering, thus determined by the speci�cation. Therefore the abstraction is far
less precise than it could be.

As a matter of fact, in classical predicate abstraction any control point of the speci�cation is examined, and
it is checked whether variables satisfy the relations (or their negation) abstracted by predicates at this point.
On the contrary, clock abstractions of non boolean equations considers only control points that correspond to
�ltering. No formal work exists which applies the predicate abstraction to Signal programs. Nevertheless, let
us admit it can be done and consider an intuitive example.

Example 5.3 Let us consider the system (| y := x+1 when x>10 | z := 4 when y > 5 |). Predicates
x > 10 and y > 5 are distinguished and represented respectively by Bx>10 and By>5. The �rst equation
expresses that if x > 10 then y := x + 1. The abstraction function presented in Sect. 4.2.1 detects that just
after the a�ectation y := x+1 the predicate By>5 is satis�ed, since the formula (x > 10∧y = x+1)⇒ y > 5 is a
tautology. On the contrary, the abstraction by synchronizations leads to the only clock equation ŷ = x̂∩[Bx>10].
A �ow F such that for all t ∈ N: zF

t = ?, yF
t < 5 and xF

t > 10 is then a model of the abstract program. Without
loss of precision, one expects to obtain the following equations

PI n�1402

36 M. Nebut & S. Pinchinat

ŷ = x̂ ∩ [Bx>10] , ŷ = [By>5]

that indicate that y is always greater than 5. �

Clock abstractions are therefore coarser than predicate abstraction, nevertheless they still give a good ap-
proximation of the control of the system. Indeed, the clock of a variable can be seen as a guard for its values:
if x is present then compute on vx. By extension, synchronizations contribute to represent the control of the
program: the abstraction by control is indeed re�ned by an abstraction by synchronizations in Polychrony.

5.3 Analyses of Admissible Valuations

Recall that as explained while presenting slTS in Sect. 2.5.2, the static part of a process $ is characterized
by the set of its admissible valuations , that are solutions of the constraint C(S) in slTS. It is a super-set of
[[$]]VA , the set of valuations that can e�ectively occur along a trajectory. The analysis of trajectories is itself
fundamental, but the analysis of admissible valuations is also possible, though its usefulness is often misjudged.
We �rst give two reasons that motivate such an analysis, then brie�y present a practical analysis commonly
used in Polychrony.

Veri�cation of Properties As explained in introduction, it is sometimes already possible to verify some
instantaneous properties on the static part of a process, before the consideration of its trajectories. In the
general case the analysis of the static part is not su�cient, but it is worth trying it, since it has a complexity far
lower than the additional consideration of trajectories. It is all the more interesting since properties invariant
over the time are the most important ones in reactive systems.

Practically, the analysis of admissible valuations allows to verify �static properties�, meaning that do not
depend on the dynamic of the system, e.g. in Ex. 3.2 that a is always positive. As shown in Ex.8.3, it is
sometimes also possible to check some simple inductive invariant properties, i.e. safety properties true in the
initial state of the system and preserved by all transitions.

Role of C(S) in Analyses The second argument is proper to the synchronous paradigm and illustrated here
by the data-�ow formalism. As already said before, computations theoretically involve two implicit stages:
one must �rst determine which variables are present (the status of variables), and only then use these values
in computations. As an example, let us consider the classical execution of a step forward in a slTS, given a
particular valuation for memories. One must �rst look for a valuation VS that satis�es C(S) and such that
present delay variables are valued by memories (see Eq. (6): if x 6= ? then y = ξx). Then memories that
correspond to a present signal variable are updated (see Eq. (6): if x 6= ? then ξ′x = x else ξ′x = ξx). In
general, these two-stages computations force to adopt a special representation for the constraint C(S) that
indicates separately the status and the values of variables. The computation of this representation corresponds
to a preliminary resolution of C(S), that is to an analysis of the admissible valuations of the system.

In practice, the need for such a representation and resolution depends on the way absence in handled. It is
illustrated here by the analyses of [38] and [11] presented in Sect. 3.2.1 and 3.2.2, which di�erentiate themselves
by this handling, among other things.

[38] distinguishes three possible values for signal variables in a boolean slTS: absent, present and true, present
and false. It encodes these possibilities into the three-valued logic Z/3Z, in such a way that each value of the
logic contains in itself all information needed to use it: a status (absent for 0, present for 1 and -1) and a value
(no value for 0, true for 1 and false for -1). The encoding of absence and presence is therefore homogeneous.
The transition relation ρ(ξ′, ξ, S), the constraint C(S) and the initialization predicate are then encoded into
polynomials over the �eld Z/3Z. The encoding of a Signal equation is direct, and parallel composition yields
to easy aggregation of polynomials. All computations are then encoded into computations on polynomials
handling uniformly absence and presence: there is no need of the above mentioned decomposition into two
stages.

On the contrary [11] cannot use such a uniform representation: it is not possible to encode absence into
a particular value of N (or Q). The use of a representation that indicates the status of variables, and then
the value of present variables is imperative. [11] has chosen to encode the status into lists of absent variables,
combined with polyhedra that encode relations between present variables. The computation of such an hybrid
representation is called normalization. It is trivial for a single equation, but complex as soon as parallel
composition is involved, contrary to the case of polynomials. After the normalization, the two stages needed to
perform a step forward are: 1. Intersection of a polyhedron which represents a set of states with a polyhedron

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 37

which represents a set of valuations restricted to present variables; 2. Projection of the result on memories that
correspond to a present variable.

So in the general case, any analysis of the trajectories of a system necessitates an analysis of its admissible
valuations. Moreover, as shown below, such an analysis � thought not strictly necessary for [38] � allows to
increase signi�cantly its performances. Generally speaking, any analysis can take advantage of a preliminary
analysis of admissible valuations.

Clock Calculus The clock calculus [2] is historically the �rst analysis designed in Polychrony, implemented
in the Signal compiler. It is an analysis of the admissible valuations of a program P, applied to its abstraction
PCS | PDSCk presented in Sect. 5.1.5. This abstraction is described using the Clock Algebra and encoded into
a boolean system as explained in Sect. 5.2.1. Just as it uses a structural abstraction, the clock calculus performs
a structural analysis : it realizes a set of semantically preserving transformations of the clock system (or the
constraint C(K)), then modifying its structure. Just as [11] modi�es the structure of C(S) to distinguish status
of variables from relations between present variables, the clock calculus gives a �good� shape to the system.
�Good� means that after transformation it is easy to verify some properties and to perform given operations,
namely to

• determine if the process is endochronous (see Sect. 2.4.2), that is deterministic and executable in an
asynchronous environment (the analysis then contains a decision procedure);

• verify the equivalence or inclusion of some clocks, when needed during the decision procedure (it can then
perform a kind of model-checking);

• generate code (the decision procedure is constructive, since it synthesizes the control of the program from
which the code generation is direct).

Although the clock calculus applies to a plain system of boolean equations, it does not have as its ambition to
be a tool that, given a boolean property, checks if it is true or not of the system. The compiler is a formal proof
system which is both more than such a boolean tool (decision procedure for testing endochrony, generation of
code) and less (only some boolean properties exhibited by the new shape of the system are checkable, which
represent more or less the set of properties needed to test endochrony for the average of programs). E�ciency
is stressed and heuristics are used: the compilation time should remain acceptable.

The clock calculus involves many complex choices for data structures and algorithms which are not detailed
here: we just note that BDD are used. Experimentations show that the calculus induces a judicious order on
boolean variables of BDD that signi�cantly reduces their size. Just consider the measures showed in Fig. 20 that
can be found in [2]. For each sample Signal program the number of boolean variables is given, as well as the
total sum of nodes involved in BDD for: in �rst row the representation computed by the clock calculus (trees), in
second row the representation by the characteristic function of C(K) for some order of variables, in third row the
representation by the characteristic function of C(K) for the order determined by the calculus. The tool Sigali
is directly connected to the compiler: before the analysis of trajectories, the analysis on admissible valuations
is performed by the compiler and the order between variables is among others transmitted to Sigali. As for
BDD this order reduces signi�cantly the size of TDD used to encode the transition relation. Model-checking
and controller synthesis are then all the more e�cient. The analysis of static speci�cations is thus proved to
prepare e�ciently the analysis of trajectories.

5.4 Abstractions into Data Domains

Structural abstractions are attractive by their simplicity: the abstract program is obtained either by picking
some equations according to simple criteria (e.g. decomposition into control and data, isolation of equations
that involve only linear expressions) or by very simple transformations that do not necessitate semantical
computations (static abstraction, abstraction by synchronizations). More complex abstractions are needed,
in particular that approximate the behavior of processes using abstract data domains such as monomials on
boolean variables, real intervals or polyhedra.

As said in Sect. 2.5 and 3.2, a process can be represented by a symbolic transition system close to a classical
one whose domain is extended with the special value ? to denote absence of variables. Numerous analyses
dedicated to transition systems exist: one should only need to adapt them so that their consider extended
domains to obtain analyses for data-�ow programs. Following this idea [11] adapts the work of [21] on the
abstract domain of polyhedra. Similar analyses could be designed for other domains mentioned in Sect. 4.2
(intervals, regions, Presburger formulas, etc). In all cases clocks should not appear as objects of analyses.

PI n�1402

38 M. Nebut & S. Pinchinat

Trees Char. function Char. function
for some order for the tree order

Stopwatch 61893 unable-cpu unable-cpu
1318 var
Watch 34753 unable-cpu unable-cpu
785 var
Alarm 3428 unable-mem unable-cpu
465 var
Chrono 1548 unable-mem 422975
282 var

Supervisor 425 unable-cpu 226472
202 var

Pace Maker 50 53610 582
96 var
Robot 36 unable-cpu 415
99 var

Fig. 20: Nodes of BDD depending on analyses of C(K)

But the analysis of [11] shows that the adaptation is not so easy: the normalization of the constraint C(S)
was necessary. The problem is even encountered at the semantical level: let us illustrate it by considering the
simple abstract data domain of intervals (I,vI ,tI ,uI). The principle is to associate to a set of variables
A ⊆ S a set of abstract variables AI such that |A| = |AI | and xI ∈ AI is an variable of type I? whose value in
case of presence surrounds the possible values carried by x. The standard Galois insertion for intervals ignoring
notion of absence given by Cousot in [20] states that, for a set of values X = {vj ∈ N | j ∈ J}

α : X → [minX,maxX] , γ : [m,M] → {v ∈ N | m ≤ v ≤M}

Let us try to apply the same Galois insertion to our models that are valuations: Conc = P(VA) and Abs =
P(VAI). Concretization is easy: given V I ∈ VAI ,

γ({V I}) = {V ∈ VA | for all x ∈ A, if V I(xI) = ? then V (x) = ? else V (x) ∈ V I(xI)}
The handling of absence makes things more complicated to abstract a set Vc ∈ P(VA). For a given variable
x ∈ A: if x is absent in any V ∈ Vc then xI is absent in any V I ∈ α(Vc); if x is present in any V ∈ Vc then xI is
present and surrounds values taken by x in Vc. If x is absent and present in Vc then both previous cases should
be considered: one should abstract separately sets of valuations in which x is present resp. absent as follows

if V (x) = ? for all V ∈ Vc then V I(xI) = ?

if V (x) 6= ? for all V ∈ Vc then V I(xI) = [min {V (x)}V ∈Vc , max {V (x)}V ∈Vc]

More generally Vc should be split into partitions according to the status of variables: we recognize here again
the normalization of [11].

Because the problem of considering both status and values of variables is recurrent (since characteristic of
synchronous languages) and because the status of variables is naturally represented by clocks, we propose a new
approach for non-structural abstractions. Its principle is to introduce clocks as objects of analyses and use them
to handle synchronizations, while taking into consideration values of non-boolean variables, thus over-stepping
the expressiveness of the Clock Algebra. Only static aspects are addressed in a �rst approach: the extension to
dynamic aspects should use slTS. Notions informally presented here are an introduction to and motivate the
formalism of the clock language given in Sect. 6.

Let us consider for example the Presburger algebra as an abstract domain and see how data-�ow processes
can be described using synchronizations and Presburger formulas. We denote by gP : Z × · · · × Z → Z a safe
abstraction of g : D × · · · ×D → D. In a �rst attempt, let us intuitively approximate elementary processes as
shown on Fig. 21. The abstract speci�cation is composed on the one hand of a clock system as the one described
in Sect. 5.2.2 (which indicates the relative status of variables) and on the other hand of a Presburger formula
(which solutions indicate what values can be carried by present variables). This solution is simple but clearly
not satisfactory, as shown by the following example.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 39

y := g(x1, . . . ,xn) −→ ŷ = x̂1 = · · · = x̂n, y = gP (x1, . . . , xn)

y := x $ 1 init v0 −→ ŷ = x̂

y := x when c −→

ŷ = x̂ ∩ [c]
[c] ∪ [¬c] = ĉ
[c] ∩ [¬c] = O

, y = x

y := u default v −→ ŷ = û ∪ v̂, y = u ∨ y = v

Fig. 21: Synchronizations plus Presburger formulas

Example 5.4 Let us consider the program (| y := u default v | u := x+1 | v := u-2 |). The obtained
abstract clock system is ŷ = û ∪ v̂, û = x̂, v̂ = û and the Presburger formula relating values of variables is
(y = u ∨ y = v) ∧ u = x + 1 ∧ v = u − 2. They indicate that ŷ = x̂ and that when present their values satisfy
y = x + 1 ∨ y = x − 1. But the concrete program only authorizes y to take the value x + 1, since v is never
present when u is absent. �

To express a deterministic merge one must specify that y takes the value of u when u is present, else the value of
v. There is a causal relation between the presence of u and the satisfaction of y = u: it is the classical interaction
between control and values carried by variables. We then need to mix clocks and Presburger formulas.

Let us use the isomorphism between the Clock Algebra and the propositional calculus presented in Sect. 5.2.1.
If we assume given a theory that embeds the propositional calculus and the Presburger algebra, we should
abstract elementary processes by hybrid formulas of this theory as shown on Fig. 22.

y := g(x1, . . . ,xn) −→ b
by ⇔ b

cx1 ⇔ . . .⇔ b
cxn
∧ (b

by ⇒ (y = gP (x1, . . . , xn)))

y := x $ 1 init v0 −→ b
by ⇔ b

bx

y := x when c −→

 b
by ⇔ (b

bx ∧ b[c])
(b[c] ∧ b[¬c])⇔ b

bc

¬(b[c] ∧ b[¬c])
∧ (b

by ⇒ (y = x))

y := u default v −→ ((b
by ⇔ (b

bu ∨ bbv)) ∧ (b
bu ⇒ (y = u)) ∧ ((b

bv ∧ ¬bbu)⇒ (y = v))

Fig. 22: Synchronizations mixed to Presburger formulas

Hybrid formulas are intuitive but quite far from the �ow semantics: it is not easy to understand whether all
of them have a meaning, alternatively if they can be handled as standard formulas, as shown by Ex. 5.5.

Example 5.5 Assume given the formulas on {x, y, z} φ1: (b
bz ⇒ (x ≥ y)) ∧ (b

bz ⇒ (x < y)) and φ2:
((x ≥ y) ⇒ b

bz) ∧ ((x < y) ⇒ b
bz) that state a constraint on the values of x and y, and the status of z. We

have:

φ1 ⇔ b
bz ⇒ (x ≥ y ∧ x < y)

⇔ b
bz ⇒ false

⇔ ¬b
bz

φ2 ⇔ (x ≥ y ∨ x < y)⇒ b
bz

⇔ true ⇒ b
bz

⇔ b
bz

The result is expected for φ1: bbz is constrained to be false, what corresponds to ẑ = O (in terms of the Clock
Algebra). Intuitively, if z is present then x and y can only carry contradictory values, therefore z is always
absent. On the contrary, the result is surprising for φ2: this time b

bz is constrained to be true, what means that
z is always present ! In our mind φ2 just states that when x and y are present with a non-constrained value,
then z is present. It can be expressed by the formula (b

bx ∧ bby)⇒ b
bz. �

If one wishes that the handling of hybrid formulas like φ2 in Ex. 5.5 gives results in accordance with intuition,
one should remember that Presburger formulas actually denote relations between present variables: e.g. x ≥
y ∨ x < y denotes the clock x̂ ∩ ŷ and should be rewritten into b

bx ∧ bby. In this case the interaction between
clocks and values of variables must be explicitly managed and mixed formulas cannot be handled by standard
methods. Alternatively, one could consider only mixed formulas in which relations between values of variables
are syntactically binded to clocks: e.g. for Ex. 5.5 (((b

bx∧bby)⇒ (x ≥ y))⇒ b
bz)∧ (((b

bx∧bby)⇒ (x < y))⇒ b
bz)

is indeed equivalent to (b
bx ∧ bby)⇒ b

bz.

PI n�1402

40 M. Nebut & S. Pinchinat

These alternatives are two aspects of the same problem: any relation between values of variables implicitly
assumes that variables are present: e.g. if x and y are present then x < y. There already exists a formalism that
makes this assumption semantically explicit: the condition-clock [c] denotes instants where c is present and its
value is true. A natural formalization of hybrid formulas is an extension of the Clock Algebra by new clock terms
called relation-clocks. Denoted by 〈R(x1, . . . , xn)〉, they embed a general predicate R on variables {x1, . . . , xn}
and denote valuations such that variables xi are present and their values satisfy R. The remainder of this
document is fully dedicated to the formal de�nition of a clock language which provides such relation-clocks.

6 A Clock Language

Like the Clock Algebra presented in Sect. 5.2.1 the clock language describes instantaneous properties of processes
by clock inclusions in a �ow. Nevertheless it is far more expressive since it extends the Clock Algebra with clock
terms which embed predicates of a �rst order language and describe relations between variables. Notations are
given in Sect. 6.1, then the CL language is presented in Sect. 6.2 and 6.3, and a boolean abstraction of CL useful
to design its decision procedure is discussed in Sect. 6.4.

6.1 Notations

Notations presented in the previous sections remain valid. We focus here on notations needed to describe general
predicates that involve symbols of constant, variable and predicate. We assume given a �rst order language L
with equality (see e.g. [18, 37]) whose set of symbols of variable contains S. The set of formulas of L is denoted
by F(L), whose typical elements are R, R1, R2 (e.g. R is x1 < x2 + 10, where x1, x2 ∈ S). The set of free
variables of R ∈ F(L) is denoted by fv(R) and we note R(x1, . . . , xn) to emphasize that fv(R) = {x1, . . . , xn}.
A structure (or a realization)M for L is obtained by choosing a domain D and an interpretation for symbols
of predicate and function according to D (e.g. D is Z, + is the addition over integers). Given an interpretation
function l : S → D for variables in S, we writeM, l |≈R or simply l |≈R (whenM is clear) if R is satis�ed by
l, or (d1, . . . , dn) |≈R(x1, . . . , xn) for di ∈ D, i = 1 . . . n. In the following we assume chosen a �xed structure for
L.

All that concerns the CL language is clearly reminiscent of the Clock Algebra. In particular terms of the CL
language (clock terms) presented in Sect. 6.2 denote clocks, while clock formulas presented in Sect. 6.3 denote
inclusions between clock terms.

6.2 Clock Terms

Like in the Clock Algebra a clock term can be a clock variable, the empty clock, or a composition of terms by
set-like operators. The novelty resides in terms called relation-clocks that embed predicates of F(L). Then a
clock term h is described as follows10:

h ::= O | x̂ | 〈R(x1, . . . , xn)〉 | h1 ∩ h2 | h1 ∪ h2 | h1 \ h2

where R ∈ F(L). The empty clock O, clock variables x̂ and relation-clocks 〈R〉 are basic clock terms, whose
set is denoted by BCT, or BCTA when variables can only belong to A. An inductive clock term has the form
h1 op h2 where op ∈ {∪,∩, \}. The set of clock terms on A is denoted by CTA, whose typical elements are h,
h1, h2, h

1, etc. The set of all clock terms is denoted by CT.
Let us now interpret clock terms as snapshots of execution. Whereas the semantics of Clock Algebra was

informally given in Sect. 5.2.1 in terms of distributions since it is isomorphic to the propositional calculus, clock
terms involve values of variables and their semantics is given directly in terms of valuations.

It was shown in Sect. 2.2.4 that clocks are directly linked to valuations inside �ows by means of their
characteristic function: for x ∈ A a valuation V ∈ VA denotes an instant of the clock of x if V (x) 6= ?, and then
V is said to switch on the clock of x. A valuation V ∈ VA therefore induces an unary predicate onV (·) over
CTA: onV (h) is true i� V switches on h, for h ∈ CTA. Valuations described by clock terms are then de�ned by
means of this predicate, by induction over the structure of h:

De�nition 6.1 Given A ⊆ S and V ∈ VA, onV (·) is de�ned for basic clock terms by:

• not onV (O);
10We use BNF in which the symbol | denotes choice in the grammar and has nothing to do with the syntactical operator of

parallel composition |.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 41

• for x ∈ A, onV (x̂) i� V (x) 6= ?;

• for {x1, . . . , xn} ⊆ A, onV (〈R(x1, . . . , xn)〉) i� for i = 1 . . . n, onV (x̂i) and (V (x1), . . . , V (xn))|≈R;
Given A1, A2 ⊆ A, h1 ∈ CTA1 , h2 ∈ CTA2 , and V ∈ VA, onV (h1 op h2) is de�ned by:

• onV (h1 ∩ h2) i� onV (h1) and onV (h2);

• onV (h1 ∪ h2) i� onV (h1) or onV (h2);

• onV (h1 \ h2) i� onV (h1) and not onV (h2).

Example 6.1 Assume given A = {x, y} and let V be de�ned by V (x) = 3 and V (y) = ?. onV (ŷ) is false,
onV (x̂ \ ŷ) is true, 〈x > 0〉 is switched on in V but 〈x > 0 ∨ y > 0〉 is switched o�, since ŷ is switched o� (y is
absent in V). �

6.3 Clock Formulas

Clock formulas describe predicates over clock terms, namely inclusions. Like for processes, the CL language
supplies composition (corresponding to conjunction) and restriction (corresponding to existential quanti�cation),
but also negation. A clock formula φ is then described by:

φ ::= h1 ⊆ h2 | φ1 ∧ φ2 | ∃x.φ | ¬φ

where h1, h2 ∈ CT and x ∈ S. For A ⊆ S, the set of clock formulas on A is denoted by CFA, whose typical
elements are φ, φ1, φ

1, etc. The set of all clock formulas is denoted by CF. The clock term universe associated
to φ ∈ CFA and denoted by CT (φ) ⊆ CTA is de�ned inductively: CT (h1 ⊆ h2) is the set of clock sub-terms
that compose h1 and h2; CT (∃x.φ) = CT (¬φ) = CT (φ) and CT (φ1 ∧ φ2) = CT (φ1) ∪ CT (φ2). We denote
by BCT (φ) the set BCT ∩ CT (φ) and by CF (φ) ⊆ CF the set of sub-formulas of φ. The set of quanti�er-free
formulas (that contain no sub-formulas of the kind ∃x.φ) in CF (resp. CFA) is denoted by CFqf (resp. CFqf

A).
In the following, we simply write h1 ≡ h2 for h1 ⊆ h2 ∧ h2 ⊆ h1

11.
The semantics of clock formulas is as announced based on valuations.

De�nition 6.2 Given A ⊆ S, V ∈ VA, A1, A2 ⊆ A, h1 ∈ CTA1 , h2 ∈ CTA2 , φ, φ1 ∈ CFA1 and φ2 ∈ CFA2 :

• V |= h1 ⊆ h2 i� onV (h1) implies onV (h2);

• V |= φ1 ∧ φ2 i� V |= φ1 and V |= φ2;

• V |= ¬φ i� V 6|= φ.

Given x ∈ S, A3 ⊆ S s.t. A3 \ {x} ⊆ A, and φ ∈ CFA3 :

• V |= ∃x.φ i� there exists V ′ ∈ VA3 s.t. V ′ |= φ and V ′
|A3\{x} = V|A3\{x} .

A formula φ ∈ CFA is valid, written |= φ, whenever V |= φ for all V ∈ VA.

As expected the interpretation of clock formulas can be lifted to �ows (resp. to processes) as follows: given
a formula φ ∈ CFA, we say that a �ow F ∈ FA (resp. a process $ ∈ PA) satis�es φ, written again F |= φ (resp.
$ |= φ) whenever φ holds for all valuations V ∈ [[F]]VA (resp. V ∈ [[$]]VA).

To clarify notations we de�ne a function Υ(·) (read �clock of�) which associates a clock term to a formula
R ∈ F(L):

Υ(R) is the clock term
⋂
{x̂ | x ∈ fv(R)}.

Intuitively, �the clock of R� is the greatest set of instants (for the set inclusion) where all variables whose value
is required to strictly evaluate R are present. Note that Υ(¬R) is equal to Υ(R) (since formulas R and ¬R have
same free variables) and that by de�nition onV (Υ(R)) i� onV (x̂), for all x ∈ fv(R). By abuse of notations we
write V |≈R when all variables in fv(V) are present in V and carry values that satisfy R.

Example 6.2 Υ(x < 10) = Υ(∃z.(z ≥ 0 ∧ x < 10 + z)) = x̂ and in Ex 6.1 it is true that V |≈ x < 10, just as
V |≈ ∃z.(z ≥ 0∧ x < 10 + z). On the contrary, Υ(x > 0∨ y > 0) = x̂∩ ŷ and it is false that V |≈ x > 0∨ y > 0. �

11The new notation ≡ is introduced to denote equivalence of clocks, since = is kept to denote equality of the �rst order language
L.

PI n�1402

42 M. Nebut & S. Pinchinat

The semantics of relation-clocks can be rewritten more concisely using Υ:

onV (〈R〉) i� onV (Υ(R)) and V |≈R (14)

Therefore, for any valuation V , onV (〈R〉) implies onV (Υ(R)), namely |= 〈R〉 ⊆ Υ(R); also it can be proved
that |= Υ(R) ≡ 〈R〉 ∪ 〈¬R〉, as well as |= 〈R1〉 ∩ 〈R2〉 ≡ 〈R1 ∧ R2〉, etc. Such tautologies are very useful to
compute on clocks, and could address axiomatization issues, which is out of the scope of this document.

Example 6.3 The CL language can express various �ne instantaneous properties. Assume given x, y ∈ S.

1. �x is always positive� is expressed by the formula x̂ ≡ 〈x ≥ 0〉, or equivalently x̂ ⊆ 〈x ≥ 0〉, since
Υ(x ≥ 0) = x̂ hence |= 〈x ≥ 0〉 ⊆ x̂.

2. �x is always even� is expressed by x̂ ⊆ 〈∃y.x = 2y〉, and highlights the need for quanti�cation provided by
L.

3. �y is always equal to x� can be expressed by ŷ ≡ 〈y = x〉 or equivalently ŷ ⊆ 〈y = x〉: y can be absent
while x is present.

4. (a) �y is always equal to x when x is positive� can be expressed by 〈x ≥ 0〉 ⊆ 〈y = x〉, meaning �if x
is positive then y is present and equal to x, if x is absent then y can be absent or present with any
value, and similarly if x is present and negative�. In this last case y can even be equal to x, e.g.
V (x) = V (y) = −2.

(b) On the contrary 〈x ≥ 0〉 ≡ 〈y = x〉 expresses �x is positive i� y is equal to x�: y cannot be equal to
x when x is negative.

(c) Finally 〈x ≥ 0〉 ≡ 〈y = x〉 ≡ ŷ expresses �y is present i� x is positive, and y is always equal to
x�, which is the expected behavior of a statement like if x ≥ 0 then y := x in the case where it
completely de�nes y.

�

Remark 6.1 The clock language CL extends the Clock Algebra thanks to relation-clocks, that are a gener-
alization of condition-clocks [c] used to describe the boolean abstraction of programs in Sect. 5.2.2. If we
abuse notations the clock term [R(x1, . . . , xn)] implicitly constrains variables x1, . . . , xn to be synchronous (i.e.
Υ(R) ≡ x̂1 ≡ . . . ≡ x̂n), since the symbol R is interpreted as a Signal instantaneous function (or relation)
as de�ned in Sect. 3.1.1: such functions only allow the construction of monochronous predicates. It is not the
case of relation-clocks 〈R〉 (e.g. 〈x+ y > 0〉 lets free the clocks of x and y) since R is this time interpreted as a
symbol of L, thus ignoring notion of synchronization. �

Remark 6.2 The CL language provides the negation of a clock formula (useful in Sect. 8.2), as a meta negation
when CF is interpreted over valuations but not when interpretation is lifted to �ows: for φ ∈ CF, F |= ¬φ i�
∀V ∈ [[F]]VS , V |= ¬φ, which di�ers from F 6|= φ (∃V ∈ [[F]]VS .V 6|= φ). There is no counterpart in the Clock
Algebra. �

6.4 Boolean Abstraction

Unlike the Clock Algebra, the CL language also involves values of non-boolean variables, therefore it can only
be abstracted into the propositional calculus. Such a boolean abstraction is presented here. It uses notations
informally introduced while encoding the Clock Algebra into the propositional calculus in Sect. 5.2.2, then can
be seen as a clean formalization of this encoding if relation-clocks are forgotten.

Let us �rst give a few notations for the propositional calculus B. Given b a set of propositional variables,
δ : b → {0, 1} is a distribution of values on b which naturally extends to formulas of the full propositional
calculus in the standard way (e.g. δ(G1 ∧ G2) = 1 i� δ(G1) = 1 and δ(G2) = 1). ∆ denotes the set of
distributions on b, and 0 denotes the distribution mapping all variables to 0. For δ ∈ ∆ and G ∈ B, we write
δ |= G whenever δ(G) = 1.
CL can be abstracted into B, where b contains a variable b

bx (resp. b〈R〉) for each x̂ (resp. 〈R〉) in BCT. The
abstraction is a mapping B : CT ∪ CF→ B which maps h ∈ CT (resp. φ ∈ CF) to hB (resp. φB) instead of B(h)
(resp. B(φ)) as follows:

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 43

De�nition 6.3 (Boolean Abstraction) The mapping B is de�ned by induction on the structure of elements
in CT and CF on Fig. 23, where x ∈ S and ∃b〈Rx〉.φB is written for ∃b〈R1〉. . . . b〈Rn〉φB in which {Ri}i=1..n =
{R ∈ F(L) | 〈R〉 ∈ BCT (φ) and x ∈ fv(R)}.

h ∈ CT hB ∈ B
x̂ b

bx

〈R〉 b〈R〉
O false
h1 ∩ h2 h1

B
∧ h2

B

h1 ∪ h2 h1
B
∨ h2

B

h1 \ h2 h1
B
∧ ¬h2

B

φ ∈ CF φB ∈ B
h1 ⊆ h2 h1

B
⇒ h2

B

¬φ ¬ φB
∃x.φ ∃b

bx.b〈Rx〉.φB

φ1 ∧ φ2 φ1
B
∧ φ2

B

Fig. 23: Abstraction of CL

For h ∈ CT, we say that δ switches on h whenever δ(hB) = 1.
We now study properties of models of concrete and abstract quanti�er-free formulas. We consider the

concrete domain of sets of valuations (Conc = P(VA)) and the abstract domain of sets of distributions (Abs =
P(∆)). We �rst de�ne the abstraction of a valuation V as the distribution δV ∈ ∆ which indicates whether
variables are required to be present or absent in V , and which formulas R ∈ F(L) are required to be satis�ed
by the present ones, for 〈R〉 ∈ BCT (φ).

De�nition 6.4 (Abstraction) Let V ∈ VA. δV ∈ ∆ is de�ned by:

for all h ∈ CTA, δV (hB) = 1 i� onV (h).

Remark 6.3 It is easy to prove that Def. 6.4 delivers indeed a distribution, e.g. for h1, h2 ∈ CTA, δV (h1
B∧h2

B) =
1 i� δV (h1

B) = 1 and δV (h2
B) = 1. Indeed δV (h1

B ∧ h2
B) = 1 i� δV ((h1 ∩ h2)B) = 1 by de�nition of B, i�

onV (h1 ∩ h2), i� onV (h1) and onV (h2) by de�nition of onV (·), i� δV (h1
B) = 1 and δV (h2

B) = 1.

Theorem 6.1 states that a quanti�er-free clock formula φ is satis�ed by a valuation V i� its abstraction is
satis�ed by δV , the abstraction of V .

Theorem 6.1 For all φ ∈ CFqf
A and V ∈ VA, V |= φ i� δV |= φB.

Proof The proof is by induction on the structure of φ.
Basic Case For h, h′ ∈ CTA, assume V |= h ⊆ h′. Equivalently �onV (h) i� onV (h′)� by Def. 6.2. Equivalently
we have �δV (hB) = 1 i� δV (h′B) = 1� by Def. 6.4, i� δV (hB ⇒ h′B) = 1, i� δV ((h ⊆ h′)B) = 1 by Def. 6.3, i�
δV |= (h ⊆ h′)B.
Induction Step
Negation: for φ ∈ CFqf, assume V |= ¬φ, equivalently not V |= φ by Def. 6.2, and not δV |= φB by induction
hypothesis. Equivalently δV (¬φB) = 1, i� δV ((¬φ)B) = 1 by Def. 6.2, i� δV |= (¬φ)B.
Composition: Given A1, A2 ⊆ A, φ1 ∈ CFqf

A1 and φ2 ∈ CFqf
A2 , assume V |= φ1 ∧ φ2, equivalently V |= φ1

and V |= φ2, and δV |= φ1
B
and δV |= φ2

B
by induction hypothesis. Equivalently δV |= φ1

B
∧ φ2

B
, i� δV |=

(φ1 ∧ φ2)B. 2

Reciprocally, we de�ne the concretization of a distribution δ ∈ ∆ as the set of valuations Vδ. It contains all
valuations that assign to variables in A values in D?, when possible, in accordance with: on the one hand the
requirements of presence resp. absence of variables speci�ed by δ; on the other hand the satisfaction of some
formulas in F(L) imposed by the values of variables b〈R〉. Formally,

De�nition 6.5 (Concretization) Given δ ∈ ∆, Vδ ⊆ VA is de�ned by

Vδ = {V ∈ VA | ∀h ∈ BCTA, onV (h) i� δ(hB) = 1}.
Like for Def 6.4, the de�nition of Vδ generalizes to clock terms in CTA. Note that Vδ can be empty for
some δ ∈ ∆, what means that δ cannot be made concrete. It is the case e.g. if b is {b

bx, b〈x<0〉, b〈x>3〉} and
δ(b

bx) = δ(b〈x<0〉) = δ(b〈x>3〉) = 1. As a matter of fact, some V ∈ Vδ must be s.t. V (x) = v for some v ∈ Dx

(since δ(b
bx) = 1) with v < 0 (since δ(b〈x<0〉) = 1) and v > 3 (since δ(b〈x>3〉) = 1).

As one can expect, these abstraction and concretization of models de�ne a Galois insertion, useful in Sect. 7.1.

PI n�1402

44 M. Nebut & S. Pinchinat

Theorem 6.2 Let α and γ be the following mappings:

α : P(VA) → P(∆) and γ : P(∆) → P(VA)
{Vi}i∈I 7→ {δVi}i∈I ∆′ 7→

⋃
δ∈∆′ Vδ

then the pair (α, γ) is a Galois insertion.

Proof α and γ are trivially monotonous.

• IdConc ⊆ γ ◦α: let {Vi}i∈I be a set of valuations. Then α({Vi}i∈I) = {δVi}i∈I by de�nition of α. By Def. 6.4,
for each Vi and each h ∈ BCT, onVi(h) i� δVi(hB) = 1. Therefore, by Def 6.5, Vi ∈ VδVi

. As a consequence,
{Vi}i∈I ⊆

⋃
i∈I VδVi

. Since
⋃

i∈I VδVi
= γ({δVi}i∈I) = γ ◦α({Vi}i∈I) by de�nition of γ, {Vi}i∈I ⊆ γ ◦α({Vi}i∈I).

• α ◦ γ = IdAbs: let ∆′ be a set of distributions. γ(∆′) =
⋃

δ∈∆′ Vδ by de�nition of γ. By Def. 6.4 and 6.5, for
all V in some Vδ, we have δV = δ. Therefore α(Vδ) = {δ}, so α(

⋃
δ∈∆′ Vδ) = ∆′ = α ◦ γ(∆′). 2

7 A Decision Procedure

In this section we de�ne a decision procedure for the satis�ability of a clock formula φ ∈ CF. It answers Yes if
φ is satis�able: there exists a non-trivial �ow F (that contains at least a non-silent valuation) such that F |= φ;
and No otherwise. Since satisfaction for �ows relies on satisfaction for all valuations of a �ow, there exists a �ow
which satis�es φ i� there exists a valuation which satis�es φ. The procedure proceeds as follows: the boolean
abstraction φB of φ is computed and leads to a �nite number of decision problems in the theory F(L). It is
checked for each model of φB whether its concretization is not empty, hence contains a model of φ. Section 7.1
gives technical materials for the decision procedure which is discussed in Sect. 7.2.

For technical reasons we consider particular completed formulas:

De�nition 7.1 (Completed formula) The completion of the formula φ ∈ CF is the completed formula
φ ∧

∧
{Υ(R) ≡ 〈R〉 ∪ 〈¬R〉 | 〈R〉 ∈ BCT (φ)}

Note that the additional sub-formulas are a partial counterpart of the braced equations given on Fig. 19(b) for
condition-clocks. Restricting to completed formulas is no loss of generality since any formula and its completion
have the same models.

Theorem 7.1 For all V ∈ VS , V |= φ i� V |= φ ∧
∧
{Υ(R) ≡ 〈R〉 ∪ 〈¬R〉 | 〈R〉 ∈ BCT (φ)}.

Proof Let us prove that for all V ∈ VS and 〈R〉 ∈ BCT (φ), V |= Υ(R) ≡ 〈R〉 ∪ 〈¬R〉. By Def. 6.1
onV (〈R〉 ∪ 〈¬R〉) i� onV (〈R〉) or onV (〈¬R〉). Since Υ(R) is equal to Υ(¬R) and by Eq. (14), onV (〈R〉 ∪ 〈¬R〉)
is then equivalent to onV (Υ(R)) and (V |≈R or V |≈¬R), therefore to onV (Υ(R)) by the excluded middle.
Finally onV (〈R〉 ∪ 〈¬R〉) is equivalent to onV (Υ(R)) and V |= Υ(R) ≡ 〈R〉 ∪ 〈¬R〉. 2

7.1 The Satis�ability Problem

We now study the satis�ability problem for clock formulas.

Corollary 7.1 For all φ ∈ CFqf
A and for all V ∈ VA, V |= φ i� V ∈

⋃
δ|=φB

Vδ.

Proof ⇒) Assume given V ∈ VA s.t. V |= φ. By Th 6.1, δV |= φB and by Th. 6.2, V ∈ γ ◦ α({V }) =
γ({δV }) = VδV . Therefore V ∈

⋃
δ|=φB

Vδ.

⇐) Assume given δ ∈ ∆ and V ∈ Vδ. Then δV ∈ {δV ′ | V ′ ∈ Vδ} = α(Vδ). Since γ({δ}) = Vδ, δV ∈ α ◦ γ({δ}).
Then by Th. 6.2 δ = δV . If moreover δ |= φB, we obtain by Th. 6.1 V |= φ. 2

Corollary 7.1 states that if some V |= φ, then V ∈ Vδ for some δ |= φB , and vice versa. For each δ |= φB, we
establish a criterion for the non-emptiness of Vδ, which relies on the satis�ability of a �rst order formula Rδ

built up from φ and δ (see Th. 7.2). In the rest of this section, we assume given a completed formula φ ∈ CFqf
A.

We de�ne Rδ as the set of formulas R ∈ F(L) such that 〈R〉 ∈ BCT (φ) is switched on in δ. Such formulas
must be satis�ed by values of variables assigned by any valuation which is a concretization of δ.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 45

De�nition 7.2 Let Rδ be the set {R | 〈R〉 ∈ BCT (φ) and δ(b〈R〉) = 1}. When Rδ is not empty, Rδ denotes
the conjunction of all formulas in Rδ.

The following lemma ensures that distributions we consider are well-formed, that is the values of b
bx for x ∈ fv(R)

are coherent with the values of b〈R〉.

Lemma 7.1 Let δ |= φB. For all R ∈ Rδ and for all x ∈ fv(R), δ(b
bx) 6= 0.

Proof Since φ is completed, for each 〈R〉 ∈ BCT (φ) the sub-formula Υ(R) ≡ 〈R〉 ∪ 〈¬R〉, say ψ in the
following, occurs positively in φ. Hence δ |= φB implies δ |= ψB, where ψB is

(
∧

x∈fv(R)

b
bx)

︸ ︷︷ ︸
Υ(R)B

⇔ b〈R〉 ∨ b〈¬R〉. (15)

If R ∈ Rδ then δ(b〈R〉) = 1 and by Eq. 15 we conclude. 2

Theorem 7.2 gives a criterion for the non-emptiness of Vδ. Finally its corollary (Cor. 7.2) states that the
satis�ability of φ is fully determined by the pairs (δ,Rδ), where δ |= φB.

Theorem 7.2 Let δ |= φB. Then, Vδ 6= ∅ i� �Rδ = ∅ or else Rδ is satis�able�. Moreover ∀V ∈ Vδ, V |≈Rδ.

Proof When Rδ is an empty set the theorem simply states that Vδ is not empty. Indeed, one can choose an
arbitrary value v ∈ D and de�ne W by

W (x) =
{
v if δ(b

bx) = 1
? otherwise

(16)

which belongs to Vδ by construction. We can assume now that Rδ is not empty.
⇒) Assume Vδ 6= ∅ and let V ∈ Vδ. For all R ∈ Rδ, δ(b〈R〉) = 1 by Def. 7.2, then onV (〈R〉). Therefore V |≈R
by Eq. (14) and consequently Rδ is satis�able.
⇐) If Rδ is satis�able then there exist values vx for each variable x ∈ fv(Rδ) which satisfy Rδ. On their basis
we de�ne W ∈ VA (with v an arbitrary value) by:

W (x) =

 ? if δ(b
bx) = 0

vx if x ∈ fv(Rδ)
v for the remaining cases.

(17)

Notice that W is well de�ned since by Lemma 7.1, the three cases of Eq. (17) are disjoint. We prove now that
W ∈ Vδ, that is, for all h ∈ BCT (φ),

onW (h) i� δ(hB) = 1 (18)

By construction of W , (18) holds for clock terms O and x̂ (x ∈ A). Therefore

onW (Υ(R)) i� δ(Υ(R)B) = 1, for all 〈R〉 ∈ BCT (φ) (19)

We now show (18) for all 〈R〉 ∈ BCT (φ). Let 〈R〉 ∈ BCT (φ).
If δ(b〈R〉) = 1, then R ∈ Rδ by Def. 7.2, hence δ(Υ(R)B) = 1 by Lem. 7.1. As moreoverW |≈R by construction,
by Eq. (14) and (19) we have onW (〈R〉). Otherwise, δ(b〈R〉) = 0. Two cases can be distinguished:

• if δ(Υ(R)) = 0, then By Eq. (19) not onW (Υ(R)) necessary holds, which in turn entails not onW (〈R〉) by
Eq. (14).

• if δ(Υ(R)) = 1, then by Eq. (15) we necessarily have δ(b〈¬R〉) = 1, therefore ¬R ∈ Rδ. By the �rst case
of the proof, we have onW (〈¬R〉) which implies by Eq. (14) that W |≈¬R. Hence W 6|≈R and therefore
not onW (〈R〉).

2

PI n�1402

46 M. Nebut & S. Pinchinat

Notice that assuming that φ is a completed formula is necessary to get Th. 7.2: consider the non-completed
formula 〈x > 0〉 ⊆ x̂ ∧ 〈¬(x > 0)〉 ⊆ x̂. De�ne the distribution δ(b

bx) = 1, and 0 otherwise, in particular
δ(b〈x>0〉) = 0 and δ(b〈¬(x>0)〉) = 0. Although δ is a model of φB, it cannot be concretized into a valuation,
entailing emptiness for Vδ. And yet Rδ is also empty.

Corollary 7.2 φ is satis�able i� there exists δ ∈ ∆ s.t. δ |= φB and Rδ is satis�able.

Proof ⇐) Assume there exists δ s.t. δ |= φB and Rδ is satis�able. By Th. 7.2 there exists V ∈ Vδ, and by
Cor. 7.1 V |= φ.
⇒) Assume φ is satis�able and let V |= φ. By Cor. 7.1 there exists δ ∈ ∆ s.t. δ |= φB and V ∈ Vδ. So Rδ is
satis�able by Th. 7.2. 2

7.2 The Decision Procedure

Provided the �rst order language L is decidable, Cor. 7.2 induces a decision procedure for CL. The algorithm
of Fig. 24 takes φ ∈ CFqf as input, and returns Yes if φ is satis�ed by a valuation V 6= ?VA. Otherwise it
returns No. Note that a quanti�ed formula ∃x.φ is satis�able i� φ is satis�able.

Let DIST = {δ ∈ ∆ | δ |= φB and δ 6= 0} in
For all δ ∈ DIST do
if Rδ = ∅ then return Yes else
if Rδ is satis�able then return Yes;

return No.

Fig. 24: A decision procedure for the satis�ability of φ

Because the set DIST is �nite, the algorithm terminates. It is correct by Cor. 7.2. The decision procedure
above can be improved in order to e�ectively exhibit a model of φ, provided a constructive decision procedure
exists for L: the de�nition of the valuation W by Eq. (16) and Eq. (17) returns a model of φ.

Complexity issues can be brie�y answered as follows. De�ne |φ| as the number of all symbols occurring
in φ, included the symbols that appear in formulas R ∈ F(L) for 〈R〉 ∈ BCT (φ). First, solutions of φB are
enumerated. This runs in exponential time on |φB| (≤ |φ|), since checking that a distribution satis�es φB is
linear time. Hence, this enumeration is in O(2|φ|). Then, for each distribution δ, some decision procedure of
L is performed for Rδ; notice that |Rδ| ≤ |φ|. By calling CL(|R|) the complexity for deciding R ∈ F(L), we
obtain an upper bound complexity for the decision algorithm of CL in O(2|φ| ∗CL(|φ|)). For the lower bound,
the complexity is the maximum of (1) the lower bound for enumerating all solutions of a propositional formula
(at least NP-hard because of SAT problem) and (2) the complexity of the decision for L.

8 Model-checking for Data-�ow Speci�cations

In this section we derive from the decision procedure a model-checking algorithm for Signal programs. We
show in Sect. 8.1 how the static abstraction of programs translates into clock formulas, then model-checking is
discussed in Sect. 8.2.

8.1 Translation of SSignal into the CL Language

We give in Fig. 25 a mapping TCL which associates to a SSignal program P a clock formula TCL(P) ∈ CF. This
translation is correct thanks to Th. 8.1. Note that synchronizations translate directly into clock formulas, e.g.
x �= y translates into x̂ ≡ ŷ.

Theorem 8.1 For all SSignal program P and V ∈ VS,

V ∈ [[P]]VS i� V |= TCL(P).

Proof The proof is by induction. Let us consider V ∈ VS .
Basic Case:
• P = y := g(x1, . . . ,xn): by trivial rewriting of the Signal �ow semantics given on Sect. 3.1 we have:

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 47

SSignal program P TCL(P) ∈ CF

y := g(x1, . . . ,xn) ŷ ≡ x̂1 ≡ . . . ≡ x̂n ∧ ŷ ⊆ 〈y = g(x1, . . . , xn)〉

y := x when c ŷ ≡ x̂ ∩ 〈c〉 ∧ ŷ ⊆ 〈y = x〉

y := u default v ŷ ≡ û ∪ v̂ ∧ û ⊆ 〈y = u〉 ∧ v̂ \ û ⊆ 〈y = v〉

(P)/x ∃x.TCL(P)

P1 | P2 TCL(P1) ∧ TCL(P2)

Fig. 25: CL semantics for SSignal

V ∈ [[P]]VS i� V (y) = ?⇒ V (x1) = · · · = V (xn) = ?
∧ V (y) 6= ?⇒ ∀i, V (xi) 6= ? ∧ V (y) = g(V (x1), . . . , V (xn))

i� onV (y)⇔ onV (x1)⇔ . . .⇔ onV (xn)
∧ onV (y)⇒ ∀i, onV (xi) ∧ V |≈ y = g(x1, . . . , xn)

i� V |= ŷ ≡ x̂1 ≡ . . . ≡ x̂n ∧ ŷ ⊆ 〈y = g(x1, . . . , xn)〉.
• P = y := x when c: the simplest proof is to make explicit the set [[P]]VS . T stands for true and F for false.
V ∈ [[y := x when c]]VS i� V satis�es:

(V (c) = T ∧ V (y) = ? ∧ V (x) = ?)
∨

(V (c) = T ∧ V (y) 6= ? ∧ V (y) = V (x))
∨

(V (c) 6= T ∧ V (y) = ?)

i� (V (y) 6= ? ⇔ V (c) = T ∧ V (x) 6= ?)
∧

(V (y) 6= ?⇒ V (y) = V (x))
i� (onV (y) ⇔ onV (〈c〉) ∧ onV (x))

∧
(onV (y) ⇒ onV (x) ∧ V |≈x = y)

i� V |= ŷ ≡ x̂ ∩ 〈c〉
∧

ŷ ⊆ 〈y = x〉.
• P = y := u default v: similarly V ∈ [[P]]VS i� V satis�es

(V (u) 6= ? ∧ V (y) = V (u))
∨

(V (u) = ? ∧ V (v) 6= ? ∧ V (y) = V (v))
∨

(V (u) = V (v) = V (y) = ?)

i� (V (y) 6= ?⇔ V (u) 6= ? ∨ V (v) 6= ?)
∧

(V (u) 6= ?⇒ V (y) = V (u))
∧

(V (u) = ?⇒ V (y) = V (v))
i� V |= ŷ ≡ û ∪ v̂ ∧ û ⊆ 〈y = u〉 ∧ v̂ \ û ⊆ 〈y = v〉.
Inductive Step:

• P = (P1)/x where P1 ∈ PgA1
:

V ∈ [[P]]VS i� V ∈ [[
∏

A\{x}([[P1]])]]VS

i� ∃V1 ∈ [[P1]]VS . V1|A\{x} = V|A\{x}
i� ∃V1 ∈ VA1 . V1 |= TCL(P1) ∧ V1|A\{x} = V|A\{x} by induction hypothesis
i� V |= ∃x.TCL(P1).

• P = P1 | P2 where P1 ∈ PgA1
and P2 ∈ PgA2

:

V ∈ [[P]]VS i� V ∈ [[[[P1]] ‖ [[P2]]]]VS

i� V|A1 ∈ [[P1]]VS ∧ V|A2 ∈ [[P2]]VS

i� V|A1 |= TCL(P1) ∧ V|A2 |= TCL(P2) by induction hypothesis
i� V |= TCL(P1) ∧ V |= TCL(P2) since ∀x ∈ A1 ∩A2, V|A1 (x) = V|A2 (x)
i� V |= TCL(P1 | P2).

2

Two kinds of clock formulas appear in TCL(P). On the one hand we recognize relations between clocks
induced by the abstraction by synchronizations presented in Sect. 5.1.4 (e.g. ŷ ≡ x̂ ∩ 〈c〉). These relations
represent the control part of the program PC . On the other hand, its data part PD appears through clock
formulas of the kind h ⊆ 〈R〉. The formula R ∈ F(L) represents the relation between variables induced by a
de�nition activated by h (a de�nition is said to be activated by a clock h if the induced assignment is performed
at all instants of h). For example y is always de�ned by x (ŷ ⊆ 〈y = x〉) and y is de�ned by v at instants of
v̂ \ û (v̂ \ û ⊆ 〈y = v〉). It corresponds to the intuition that h is a guard for the activation of the de�nition (�R
holds at instants of h�).

Note that not all properties expressed by CL can be expressed in Signal, which does not provide negation.
As a consequence Signal can express neither that a clock is not empty, nor that a clock inclusion is strict.

PI n�1402

48 M. Nebut & S. Pinchinat

Remark 8.1 The inclusion ŷ ⊆ 〈y = g(x1, . . . , xn)〉 that appears in TCL(P) in the case of an instantaneous
function is indeed an equality: ŷ ≡ 〈y = g(x1, . . . , xn)〉. As a matter of fact, Υ(y = g(x1, . . . , xn)) = ŷ ∩ x̂1 ∩
· · · ∩ x̂n and trivially |= ŷ ∩ x̂1 ∩ · · · ∩ x̂n ⊆ ŷ, therefore |= 〈y = g(x1, . . . , xn)〉 ⊆ ŷ. It is also the case for
inclusions ŷ ⊆ 〈y = x〉 (in the case of a �ltering) and û ⊆ 〈y = u〉 (in the case of a merge). On the contrary,
the inclusion v̂ \ û ⊆ 〈y = v〉 induced by the second part of the default operator is not an equality: it might
be the case that u and v are present at the same time with the same values. Then for such a valuation V ∈ VS ,
not onV (v̂ \ û) but onV (〈y = v〉).

Example 8.1 We give on Fig. 26 the clock formulas φabs which represents the absolute value of Ex. 3.2 and
φct which represents the counter of Ex. 3.1. �

p̂ ≡ 〈y ≥ 0〉 ≡ 〈p = y〉 ≡ 〈a = p〉
∧ n̂ ≡ 〈y < 0〉 ≡ 〈n = −y〉
∧ n̂ \ p̂ ⊆ 〈a = n〉
∧ â ≡ p̂ ∪ n̂

(a) φabs

â ≡ m̂a ≡ 〈a = N〉 ∪ â
∧ 〈ma = 0〉 ≡ 〈a = N〉 ≡ N̂ ≡ 〈N ≥ 0〉
∧ m̂a \ N̂ ⊆ 〈a = ma− 1〉

(b) φct

Fig. 26: Clock Formulas for Ex. 3.1 and 3.2

8.2 Model-checking

We show here how to check whether a Signal program P satis�es an instantaneous property φ ∈ CFqf, thanks
to the decision procedure. We aim at answering the problem �does any �ow F ∈ [[P]] satis�es φ ?�, which reduces
to �does any valuation V ∈ [[P]]VS satis�es φ ?�, and in turn, by using the translation from SSignal to CL, to
� |= TCL(PS)⇒ φ ?�. The decision procedure for CL is then used to answer the satis�ability of TCL(PS)∧¬φ (in
which quanti�ers are pushed out, e.g. by renaming techniques). As expected, since an abstraction of P is used,
if the answer is �No� then P satis�es φ, otherwise nothing can be inferred.

Example 8.2 Let us consider the absolute value given on Ex. 3.2 and prove that �a is always positive�. This
instantaneous property can be expressed by φ: â ⊆ 〈a ≥ 0〉. Let us denote by φ′ the completion of φabs ∧ ¬φ.
Three distributions δ1, δ2, δ3 satisfy φ′

B
. They di�er depending on whether they �switch on� p̂ (resp. n̂) or

not. We show that none of them corresponds to a concrete valuation. Say δ1 switches on clocks p̂ and n̂, then
also 〈y ≥ 0〉 and 〈y < 0〉. Therefore the exclusive conditions y ≥ 0 and y < 0 belong to Rδ1 , then Rδ1 is not
satis�able. Hence Vδ1 = ∅. δ2 switches o� n̂ and switches on p̂, hence also 〈y ≥ 0〉, 〈p = y〉, 〈a = p〉 (see φabs)
and 〈¬y < 0〉 and 〈¬a ≥ 0〉 (due to completion); therefore Rδ2 is not satis�able, hence Vδ2 = ∅. The reasoning
is symmetrical for δ3 which switches on n̂ and switches o� p̂. Thus the property is proved. �

Example 8.3 Let us consider the counter given on Ex. 3.1. It is easy to prove like in Ex. 8.2 that �N is always
positive�. Similarly we prove the following inductive property: it is always true that 0 ≤ ma ≤ N . Initially, it is
veri�ed since ma = 0. We then prove the induction step, that is if 0 ≤ ma ≤ N then 0 ≤ a ≤ N (recall that ma
takes the past value of a). It is expressed by the clock formula φ: 〈0 ≤ ma ≤ N〉 ⊆ 〈0 ≤ a ≤ N〉. Let us denote
by φ′ the completion of φct ∧¬φ. δ1, δ2, δ3 satisfy φ′

B
. Both switch on â, m̂a, 〈0 ≤ ma ≤ N〉 and 〈¬0 ≤ a ≤ N〉

(due to completion). δ1 and δ2 also switch on 〈ma = 0〉 and 〈a = N〉 (re-initialization of the counter) therefore
Rδ1 and Rδ2 are not satis�able. δ3 corresponds to decrementation of the counter and switches on 〈a = ma− 1〉
and 〈¬ma = 0〉 (due to completion), therefore Rδ3 entails the formula ¬0 ≤ a ≤ N ∧ 0 ≤ a < N thus is not
satis�able. Thus the property is proved. �

Most of the reactive systems speci�ed in Signal use multiple theories: in this case L is multi-sorted and
the formula Rδ must be split into sub-formulas to perform separate satis�ability tests. On the other hand a
program does not use sophisticated theories for non-boolean variables, but e.g. the Presburger algebra or the
additive theory of reals. In particular relations between variables do not contain any quanti�er.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 49

9 Conclusion and Perspectives

The present work de�nes a language CL based on clock relations, which sentences (or formulas) are naturally
suitable for the synchronous paradigm. The CL language enables to express some safety properties, which
describe something happening inside a single reaction. In particular, as expected, the static abstraction of
synchronous data-�ow speci�cations can be translated into CL. The decidability of CL (i.e. the existence of an
algorithm deciding whether a formula is satis�ed by a non-trivial valuation) is proved, provided CL constructs
(clocks) rely on a decidable theory. The decision procedure is based on a boolean abstraction of CL formulas into
propositional calculus formulas: it �rst determines whether a boolean distribution is a model of the abstract
formula, and next if it can be made a concrete valuation from this distribution. Finally, model-checking is
derived for Signal programs and illustrated by two toy examples.

In the �ve �rst sections of the document we go back over abstractions used to analyze Signal programs.
Their link with classical abstract-based analyses is highlighed, in particular the concept of structural abstraction
is introduced and related to abstract interpretation. The way absence is handled is emphasized. It is shown that
analyzing the admissible valuations of speci�cations is necessary, and motivations are given for the introduction
of the CL language.

9.1 Related Work

We mainly focus on analyses related to Signal, then we brie�y consider Lustre.

9.1.1 Analyses related to Signal

The Clock Algebra used to encode the structural static abstraction and the abstraction by synchronizations of
Signal programs is a clear precursor of the CL language. Nevertheless it is isomorphic to the propositional cal-
culus, and deals only with boolean aspects of programs. Our CL induces a strict increase of expressiveness since
relations between non-boolean variables are also taken into account. As shown in Sect. 8.2, their consideration
is necessary to prove some properties.

A recent work [22] prepares the practical interaction of clocks and values of variables in the particular case of
the abstract domain of intervals. [22] de�nes i-formulas, that are formulas of the propositional calculus extended
with predicates of the kind x ∈ I (represented by a pair (x, I)), for x ∈ S and I ∈ I. Existential and universal
quanti�cations of i-formulas over variables in S are also provided. The propositional calculus is extended with
rules that apply to predicates of the kind x ∈ I and a canonical form for i-formulas is given. [22] explains
how i-formulas are implemented by IBDD, that are an extension of classical BDD with variables representing
predicates (x, I) (these variables are upper nodes of IBBD, leaves being BDD). The choice of BDD authorizes
a direct connection with the clock calculus. The representation of abstract programs by means of clocks and
predicates of the kind x ∈ I inserts naturally into the CL language as a particular case: the relation-clock
〈x ∈ I〉 can be de�ned as follows:

onV (〈x ∈ I〉) i� V (x) 6= ? and V (x) ∈ I

There is no need of function Υ since an interval states a property on one variable and not a relation between
several ones. An analysis of Signal programs by means of intervals is in course of de�nition.

The only other analysis that deals with values of non-boolean variables is the one of [11] mentioned in
Sect. 3.2.2 and 5.3. The normalization stage handles the static part Ps of programs: it can be seen as a
synthesis of instantaneous properties. Nevertheless clocks are not used as objects of the analysis: in practice
Ps is transformed into a set of pairs composed of a list of absent variables and a polyhedron stating a relation
between the present ones. There is a clear correspondence between absence of variables indicated by lists and
distributions, as well as between a polyhedron and our relation Rδ. Our work therefore can be seen as a clean
formalization of the normalization stage. Moreover [11] does not prove that constraints represent exactly the
set of admissible valuations of the speci�cation. It is only stated that they contain it. Our formalization is then
cleaner for this point.

9.1.2 Analyses related to Lustre

Lustre is the data-�ow language closest to Signal. Numerous analyses and veri�cation tools are dedicated to
Lustre programs (e.g. Lesar [29] for model-checking, Lurette [50] for test, and recently proofs using PVS [5]).
However models used are quite far from clocks, e.g. analyses apply to a control automaton obtained by partial

PI n�1402

50 M. Nebut & S. Pinchinat

evaluation of the boolean variables of the program [27]. In particular no signi�cant analysis of the static part
of programs is performed during the clock veri�cation [16], the analogous of the clock calculus for Signal (one
can refer to [35] for a general and formal presentation). As shown by this document, the application of works
on the CL language to Lustre is nevertheless theoretically possible.

9.2 Perspectives

The decision procedure we give addresses �rst boolean aspects and next numerical ones. It proves that a
mixing between �boolean� clocks and values is possible, but does not provide a real interaction between the
boolean resolution and the numerical one. This interaction is needed in practical algorithms to simulate the
interconnection between control and data, as much as possible. It is e.g. needless to perform a boolean reasoning
that involves distributions which clearly do not correspond to a concrete model, as well as to perform too early
expensive tests for the satis�ability of numerical formulas if no boolean model exists anyway. We currently
investigate algorithmic techniques based on the construction of a graph whose nodes are clocks and edges
denote the speci�ed inclusion between clocks. Subsets of F(L) are associated to nodes, in such a way that if
R is associated to h then h ⊆ 〈R〉. Therefore we can e.g. safely deduce from the non-satis�ability of R the
emptiness of h.

Once such a structure is built in a bottom-up approach (with an accuracy to be determined), it should
be exploited to solve various problems that concern the static part of processes. An immediate application
would be the improvement of the clock calculus, leading e.g. to higher quality executable code. As a second
application, it would worth modifying the normalization algorithm of [11] (admitted to be naive) to introduce
clocks as in our approach, and look if it yields to better results.

Irisa

Index

0, 47

A, 7
Abs, 29
absence ?, 7
abstract

domain Abs, 29
interpretation, 29

abstraction
boolean, 31
by control, 34
by synchronizations, 36
clock, 37
composition, 37
function α, 29
of a valuation, 48
of a clock formula, 47
predicate, 31
safe, 30
static, 35
structural, 33

accumulating semantics, 30
admissible valuation, 22, 40

analysis, 40
α, 29
auxiliary variables, 20

B, 47
B, 47
b, 47
basic clock term, 45
BCT, 45
BCT(φ), 46
BCTA, 45
blocking valuation: #, 7
bottom ?, 7
b〈R〉, 47
b
bx, 47

C(S), 22
[¬c], 39
[c], 39
CF (φ), 46
CF, 46
CFA, 46
CFqf, 46
characteristic function, 11
CL, 45
clock

abstraction, 37
algebra, w.r.t. a valuation, 19
algebra, w.r.t. a trace, 11
calculus, 41
characteristic function, 11

condition-clock, 39
empty O, 11
formula: φ, 46
language CL, 45
null O, 11
of x w.r.t. a trace: x̂T , 11
of x: x̂, 7
of a variable, 7
pre-order w.r.t. a process, 17
pre-order w.r.t. a trace ⊆T , 11
set of clock variables: K, 11
switched on/o�, 11
term, 45

clock formula
(set of): CFA, 46
abstraction, 47
completed, 49
φ, 46

clock term
h, 45
(set of): CTA, 45
(set of basic): BCT, 45
basic, 45
inductive, 45
universe of φ: CT (φ), 46

closure
operator, 14
under permutations, 18
under stuttering, 14

completion of a clock formula, 49
Conc, 29
concrete domain Conc, 29
concretization

function γ, 29
of a distribution, 48

condition-clock [c], 39
constant in Signal, 25
control part of a program, 34
CT (φ), 46
CT , 45
CTA, 45

D, 7
D?, 7
data part of a program, 34
data-�ow, 7

paradigm, 7
default, 25
delay

equation, 24
operator $, 24

∆, 47
δ, 47
δV , 47

51

52 M. Nebut & S. Pinchinat

densi�cation, 9
deterministic

merge, 25
process, 17

distribution
(set of): ∆, 47
δ, 47
concretization, 48

$, 24
domain

of values: D, 7
of variables D?, 7
abstract Abs, 29
concrete Conc, 29

=T , 11
endochronous, 18
equivalence

between processes, 12
between traces: ≡?, 9
class of T : T , 9

event, 7
event, 26
type of pure events, 7

event, 26
exclusive, 26

F(L), 45
fairness, 21
�ltering, 25
�rst order language
L, 45
set of formulas: F(L), 45

�ow
F , 10
data-�ow, 7
restriction:

∏
A1

(F), 10
set of: FA, 10
synchronizable, 10

FA, 10
F , 10
formula

φ, 46
of a �rst order language R, 45
quanti�er-free, 46

free variables, 45
function

abstraction α, 29
characteristic, 11
concretization γ, 29
densi�cation, 9
instantaneous, 24
interpretation: l, 45

fv(R), 45

Galois
connection, 29

insertion, 29, 31, 48
γ, 29
ua, 29
guard, 25, 31

h, 45
hB, 47
hiding, 25

va, 29
⊆T , 11
inclusion

between clocks, 11, 17
between processes, 12

inductive clock term, 45
initialization predicate

of an slTS: θ[ξ], 22
of an STS, 20

instant t, 7
instantaneous

function, 24
property, 11, 17

internal state, 20
interpretation

abstract, 29
function: l, 45

interval, 31

justice, 21

K, 11

l, 45
L, 45
ta, 29

M, 45
memory variable, 20

ξx, 22
(set of): ξ, 22
slTS, 22

merge, 25
|=, 46
|≈ , 45, 46
monochronous, 17

O, 11
onV , 45
1P , 14
1T , 8
1V , 7
1Pg

A
, 24

opa, 29
opc, 29

[[P]], 24
P, 24
|, 24

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 53

‖ , 12
parallel composition
‖, 12
between programs |, 24
of processes as sets of �ows, 15
of processes as sets of traces, 14

partial order
traces: ≤?, 9

PC , 34
PCk, 36
PD, 34
persistent variable, 20
PgA, 24
PgC , 35
PgCCk, 38
PgCk, 36
φ, 46
φB, 47∏

A1
($), 12, 14, 15∏

A1
(F), 10

[[$]]VA , 19
$, 11
polychronous, 17
polyhedron, 31
port, 7
pre-order between clocks w.r.t. a trace ⊆T , 11
predicate abstraction, 31
Presburger algebra, 32
process, 11

$, 11
as a set of �ows, 15
as a set of traces, 14
deterministic, 17
elementary, 24
endochronous, 18
equivalence, 12
inclusion, 12
monochronous, 17
parallel composition, set of �ows, 15
parallel composition, set of traces, 14
parallel composition: ‖, 12
polychronous, 17
restriction (set of traces), 14
restriction (set of �ows), 15
restriction:

∏
A1

($), 12
set of valuations associated to: [[$]]VA , 19
set of: PA, 11
silent, 14
static, 19
synchronizable, 13, 14

PA, 11
product

of traces: �, 8
of valuations: ·, 7

program, 24
P, 24
(set of) PgA, 24

pure events, 7

Rδ, 49
Rδ, 49
〈R〉, 45
reactive variable, 20
realization, 45
referential T, 7
region, 31
relation-clock 〈R〉, 45
restriction

of a trace, 8
of a valuation, 7
of a �ow:

∏
A1

(F), 10
of a process:

∏
A1

($), 12
process as a set of �ows, 15
process as a set of traces, 14

ρ(ξ ∪ ξ′ ∪ S), 22
run

of an slTS, 23
of an STS, 20

S, 7
s, 20
safe abstraction, 30
#, 7
signal, 7

set of: S, 7
variable in slTS, 21

signi�cant
trace, 8
valuation, 7

silent
process, 14
trace: ?Vω

A, 8
valuation: ?VA, 7

slTS
C(S), 22
dynamic part, 22
initialization predicate: θ[ξ], 22
memory variable, 22
signal variable, 21
state, 22
static part, 22
transition, 22
transition relation: ρ(ξ ∪ ξ′ ∪ S), 22

SSignal, 36
state

(set of, for an STS) SS , 20
initial, of an STS, 20
internal, 20
of an slTS, 22
of an STS: s, 20

SS , 20
static

Signal fragment, 35
closure, 19

PI n�1402

54 M. Nebut & S. Pinchinat

part in an slTS, 22
process, 19
property, 40

status, 7
structure, 45
STS, 20

initial states, 20
set of states SS , 20
state: s, 20
transition relation: ρ(S, S′), 20

realizable STS , 21
stuttering, 13

variant, 21
switch, 45
�=, 26
synchronizable

�ows, 10
process, 14
processes, 13
traces, 8

synchronization
abstraction, 36
of a program, 36

synchronous
language, 7
observer, 30
product of traces: �, 8
product of valuations: ·, 7
variables, 7
variables in a process, 17
variables in a trace, 11

synchronous observer, 33

[[T]]VA , 8
T , 8
t: instant, 7
θ(S), 20
θ[ξ], 22
time

instant t, 7
referential T, 7

T: time referential, 7
trace, 8

(clock of a variable x w.r.t.) x̂T , 11
equivalence: ≡?, 9
non-blocking, 8
on ∅: 1T , 8
partial order: ≤?, 9
restriction, 8
set of non-blocking: T #

A , 8
set of valuations associated to: [[T]]VA , 8

set of: T #
A , 8

signi�cant, 8
silent: ?Vω

A, 8
synchronizable, 8

TA, 8
T #

A , 8

?Vω
A: silent trace, 8

T , 9
trajectory, 20
transition relation

of an STS, 20
of an slTS: ρ(ξ ∪ ξ′ ∪ S), 22

TrC , 34, 35
TrCk, 36
TrS , 35

Υ, 46

Vδ, 48
VA, 7
?VA: silent valuation, 7
V , 7
valuation, 7

V , 7
set of: VA, 7
abstraction, 48
admissible, 22, 40
blocking: #, 7
on ∅: 1V , 7
restriction, 7
set of, associated to a process, 19
set of, associated to a trace, 8
signi�cant, 7
silent: ?VA, 7

value
domain: D, 7

variable
absent, 7
auxiliary, 20
clock, 7
controllable, 21
domain D?, 7
exclusive, 26
externally observable, 21
free, 45
local, 21
memory, 20
persistent, 20
present, 7
reactive, 20
set of: S, 7
signal, 7
status, 7
subset of: A, 7
synchronization, 21
synchronous, 7
synchronous in a process, 17
synchronous in a trace, 11
volatile, 20

$, 11
$P, 24
$S , 19
volatile variable, 20

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 55

when, 25

x̂, 7
x̂T , 11
ξ, 22
ξx, 22

PI n�1402

56 M. Nebut & S. Pinchinat

References

[1] Pascalin Amagbégnon, Loïc Besnard, and Paul Le Guernic. Implementation of the data-�ow synchronous
language SIGNAL. In Proceedings of the ACM SIGPLAN'95 Conference on Programming Language Design
and Implementation (PLDI), pages 163�173, La Jolla, California, 18�21 June 1995.

[2] T. Amagbégnon, L. Besnard, and P. Le Guernic. Arborescent canonical form of boolean expressions.
Technical Report 2290, Inria, June 1994.

[3] H. Andersen and H. Hulgaard. Boolean expression diagrams. In 12th Annual IEEE Symposium on Logic
in Computer Science (LICS'97), pages 88�98, Washington - Brussels - Tokyo, June 1997. IEEE.

[4] G. Behrmann, K. Larsen, J. Pearson, C. Weise, and W. Yi. E�cient timed reachability analysis using clock
di�erence diagrams. In Computer Aided Veri�cation, pages 341�353, 1999.

[5] S. Bensalem, P. Caspi, C. Dumas, and C. Parent-Vigouroux. A methodology for proving control programs
with Lustre and PVS. In Dependable Computing for Critical Applications, DCCA-7, San Jose. IEEE
Computer Society, January 1999.

[6] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of in�nite state systems
compositionally and automatically. In Conference on Computer Aided Veri�cation CAV'98, LNCS 1427,
pages 319�331, 1998.

[7] A. Benveniste and G. Berry. The synchronous approach to reactive and real�time systems. IEEE Trans.
Autom. Control, 9(79):1270�1282, September 1991.

[8] A. Benveniste, P. Le Guernic, Y. Sorel, and M. Sorine. A denotational theory of synchronous reactive
systems. Information and Computation, 1992.

[9] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous programming with events
and relations: the SIGNAL language and its semantics. Science of Computer Programming, 16(2):103�149,
September 1991.

[10] G. Berry and G. Gonthier. The Esterel synchronous programming language: design, semantics, imple-
mentation. Science of Computer Programming, 19(2):87�152, November 1992.

[11] F. Besson, T. Jensen, and J.P. Talpin. Polyhedral analysis for synchronous languages. In A. Cortesi and
G. Filé, editors, Static Analysis, volume 1694 of Lecture Notes in Computer Science, pages 51�68. Springer,
1999.

[12] B. Boigelot. Symbolic Methods for Exploring In�nite State Spaces. PhD thesis, Université de Liège, faculté
de sciences appliquées, 1998.

[13] Tev�k Bultan, Richard Gerber, and William Pugh. Symbolic model checking of in�nite state programs
using presburger arithmetic. Technical report, University of Maryland Institute for Advanced Computer
Studies Dept. of Computer Science, sept 1996.

[14] Tev�k Bultan, Richard Gerber, and William Pugh. Model checking concurrent systems with unbounded
integer variables: Symbolic representations, approximations and experimental results. Technical report,
University of Maryland Institute for Advanced Computer Studies Dept. of Computer Science, feb 1998.

[15] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142�170, June 1992.

[16] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative language for programming
synchronous systems. In Proc. of 14th ACM Conf. on Principles of Programming Languages, pages 178�
188. ACM Press, 1987.

[17] SACRES Consortium. The semantic foundations of sacres. Technical report, Esprit Project EP 20897:
Safety Critical Embedded Systems, March 1997.

[18] René Cori and Daniel Lascar. Logique mathématique, cours et exercices, volume 1. Masson, 1993.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 57

[19] P. Cousot. Abstract interpretation. Symposium on Models of Programming Languages and Computation,
ACM Computing Surveys, 28(2):324�328, June 1996.

[20] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static analysis of programs by
construction or approximation of �xpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238�252, Los Angeles, California,
1977. ACM Press, New York, NY.

[21] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. 5th
ACM Symposium on Principles of Programming Languages, 1978.

[22] Abdoulaye Gamatié. Abstraction de domaines totalement ordonnés et calcul d'horloge. Rapport de DEA,
IFSIC, Université de Rennes 1, 2000. In french.

[23] T. Gautier, P. Le Guernic, and F. Dupont. Signal v4 : manuel de référence. Technical Report 832, Irisa,
1994.

[24] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Conference on Computer Aided
Veri�cation CAV'97, LNCS 1254, Springer Verlag, 1997.

[25] P. Le Guernic and Thierry Gautier. Advanced Topics in Data-Flow Computing, chapter Data-Flow to von
Neumann: the Signal approach. JL. Gaudiot, 1991.

[26] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, 1993.

[27] N. Halbwachs. About synchronous programming and abstract interpretation. In B. LeCharlier, editor, In-
ternational Symposium on Static Analysis, SAS'94, Namur (belgium), September 1994. LNCS 864, Springer
Verlag.

[28] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data�ow programming language
lustre. Proceedings of the IEEE, 79(9):1305�1320, September 1991.

[29] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by means of the
synchronous data-�ow programming language lustre. IEEE Transactions on Software Engineering, Special
Issue on the Speci�cation and Analysis of Real-Time Systems, September 1992.

[30] N. Halbwachs, Y.-E. Proy, and P. Raymond. Veri�cation of linear hybrid systems by means of convex
approximations. In International Static Analysis Symposium, SAS'94, Namur (Belgium), September 1994.

[31] N. Halbwachs, Y.E. Proy, and P. Roumano�. Veri�cation of real-time systems using linear relation analysis.
Formal Methods in System Design, 11(2):157�185, August 1997.

[32] M. Handjieva. Abstract interpretation of constraint logic programs using convex polyhedra. Technical re-
port, LIX, Ecole Polytechnique, 1996. URL http://lix.polytechnique.fr/�handjiev/HANDJIEVpapers.html.

[33] David Harel and Amnon Naamad. The STATEMATE Semantics of Satecharts. ACM Transactions on
Software Engineering and Methodology, 5(4):293�333, October 1996.

[34] B. Jeannet. Dynamic partitionning in linear relation analysis and application to the veri�cation of syn-
chronous programs. PhD thesis, Institut National Polytechnique de Grenoble, 2000. in French.

[35] Thomas P. Jensen. Clock analysis of synchronous data�ow programs. In Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 156�167, La Jolla,
California, 21-23 June 1995.

[36] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semantics-based tool for program analysis.
In Handbook of Logic in Computer Science. Oxford University Press, 1994. 527�629.

[37] Richard Lassaigne and Michel De Rougemont. Logique et fondements de l'informatique. Hermès, 1993.

[38] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal veri�cation of signal programs: Appli-
cation to a power transformer station controller. In Proceedings of the Fifth International Conference on
Algebraic Methodology and Software Technology AMAST'96, pages 271�285, Munich, Germany, July 1996.
Springer-Verlag, LNCS 1101.

PI n�1402

58 M. Nebut & S. Pinchinat

[39] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the
veri�cation of concurrent systems. Formal Methods in System Design Volume 6, Issue 1, 1995.

[40] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event controllers based
on the signal environment. Discrete Event Dynamic System: Theory and Applications, 10(4):325�346,
October 2000.

[41] H. Marchand and M. Samaan. Incremental design of a power transformer station controller using controller
synthesis methodology. IEEE Transaction on Software Engineering, 26(8):729�741, august 2000.

[42] C. Mauras. Calcul symbolique et automates interprétés. Technical Report 96.10, Laboratoire
d'Automatique de Nantes LAN, nov 1996.

[43] J. Møller, J. Lichtenberg, H. Andersen, and H. Hulgaard. Di�erence decision diagrams. In Computer
Science Logic, 1999.

[44] D. Nowak. Spéci�cation et preuve de systèmes réactifs. PhD thesis, Université de Rennes 1, IFSIC, 1999.

[45] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming real-time applications with SIG-
NAL. Proceedings of the IEEE, 79(9):1321�1336, 1991.

[46] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 1998), volume
1384 of Lecture Notes in Computer Science, pages 151�166. Springer-Verlag, 1998.

[47] Amir Pnueli, N. Shankar, and Eli Singerman. Fair synchronous transition systems and their liveness proofs.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 1486 of Lecture Notes in Computer
Science, pages 198�209, Lyngby, Denmark, September 1998. Springer-Verlag.

[48] W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In
IEEE, editor, Proceedings, Supercomputing '91: Albuquerque, New Mexico, November 18�22, 1991, pages
4�13. IEEE Computer Society Press, 1991.

[49] William Pugh and David Wonnacott. Constraint-based array dependence analysis. ACM Transactions on
Programming Languages and Systems, 20(3):635�678, 1 May 1998.

[50] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems. In 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

[51] R.E. Bryant. Graph-based algorithms for boolean function manipulation. In Proceedings of the 27th
ACM/IEEE Design Automation Conference, 1990.

[52] V. Rusu and E. Singerman. On proving safety properties by integrating static analysis, theorem proving
and abstraction. In Proceedings of International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS'99, 1998.

[53] I. Smarandache. Transformations a�nes d'horloges: application au codesign de systèmes temps-réel en
utilisant les langages Signal et Alpha. PhD thesis, Université de Rennes 1, IFSIC, 1998. In french.

[54] Karsten Strehl. Using interval diagram techniques for the symbolic veri�cation of timed automata. Technical
Report 53, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, July 1998.

[55] Karsten Strehl and Lothar Thiele. Interval diagram techniques and their applications. In Proceedings of the
8th International Workshop on Post-Binary ULSI Systems, pages 23�24, Freiburg im Breisgau, Germany,
May 19, 1999. Invited paper.

[56] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-Time Systems.
In 7th. Symposium of Logics in Computer Science, pages 394�406, Santa-Cruz, California, 1992. IEEE
Computer Scienty Press.

[57] J.-P. Talpin, A. Benveniste, B. Caillaud, and P. Le Guernic. Hierarchic normal forms for desynchronization.
Technical Report 1288, Irisa, December 1999.

Irisa

A Framework to Analyse Synchronous Data-Flow Speci�cations 59

[58] Williams, Andersen, and Hulgaard. Satis�ability checking using boolean expression diagrams. In TACAS:
International Workshop on Tools and Algorithms for the Construction and Analysis of Systems, LNCS,
2001.

[59] Pierre Wolper and Bernard Boigelot. On the construction of automata from linear arithmetic constraints.
In Tools and Algorithms for Construction and Analysis of Systems, pages 1�19, 2000.

PI n�1402

