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We consider the setting of multi-agent systems designed to achieve an objective e.g. a multi-node
distributed system that has to perform a task in a bounded amount of time. Whatever the objective is, a
way to enforce it can be to restrict the behaviour of a subset of its agents; we call this subset a coalition.
Note that, depending on the initial configuration of the system, the set of winning coalitions may vary.
This shows that the link between the initial configuration of the system and the winning coalitions is
tricky, therefore interesting to determine. In this work, we propose an algorithm which computes the set
of winning coalitions for any configuration.

Formally, we consider the problem of computing the set W of winning coalitions for every position in
a turn-based game with a reachability objective. Incidentally, the more general class of concurrent games
may have been considered, but the turn-based assumption makes the framework easier to handle. Let us
define a turn-based game as a structure G = (P,A, T,Goal) where P is a set of positions, each controlled
by an agent in the set of agents A, T is the transition function on these positions and Goal ⊆ P denotes
the set of goals. In real cases, the complexity of manipulating P and T is huge because |P | is exponential
in the number of agents. A play is an infinite sequence of positions pl s.t. for any position pl(i+ 1) is a
successor of pl(i) by T . A strategy for a set of agents A′ ⊆ A is a function s : P → P (since the winning
condition is reachability we can restrict to memoryless strategies) defined for every p s.t. the owner of p
is in A′ and s(p) is a successor of p in T . A position p ∈ P is winning for a coalition C (or C is winning
from p) if there exists a strategy s for C s.t. whatever the strategies of the agents in A \C are, any play
pl starting from p s.t. for every i, pl(i + 1) = s(pl(i)), if pl(i) is owned by an agent in C, pl contains a
position in Goal. Let us note that if a coalition C is winning from p then any coalition C ′ ⊇ C is winning
from p (we call this the winning monotonicity). The desired result W ⊆ (P × 2A) is W = {(p, C)|C is
winning from p}.

Deciding if a given coalition is winning from a set of position can be reduced to deciding if an agent
is winning in a 2-player game (in affecting the coalition to the first player and other agents to the second
player). Using the pre operation in the attractor algorithm of [3, pages 34-37] solves this problem.
Unfortunately, to our knowledge, no algorithm can answer in time less than O(d ∗ |T |) where d is the size
of the longest path without cycles, starting from the initial position to the goal.

In this contribution, we present an algorithm to compute W = {(p, C)|C is winning from p} ordered
first by positions and then by coalitions. Notice that such computation is worth: once W is computed,
model-checking if a coalition C is winning from a position p can be achieved in searching (p, C) ∈ W
in O(|A| ∗ log(|P |)) (a search by dichotomy), instead of model-checking it, in O(d ∗ |T |). W allows to
efficiently test sophisticated relations between initial position and the winning coalitions: given any set
S ⊆ (P × 2A), W ∩ S = ∅ or S ⊆ W are such interesting tests. For instance, given a formula f on the
positions and f ′ on the coalitions, S = {(p, C)|p verifies f and C verifies f ′}, S ⊆W answers the question
“does any coalition validating f ′ is winning from any position validating f?”.

In order to be more realistic, we may introduce a cost to form the coalition that we want to minimize
(i.e. computing the cheapest winning coalition). In the distributed system example, an optimal coalition
is a least set of nodes that performs the task in a bounded amount of time. Then, computing the cheapest
winning coalition from any position can be easily done in O((|A|+d∗ |T |)∗2|A|), in model-checking every
coalition. Notice that the problem we solve is an extension of the NP-complete problem presented in
[2]. Once W is computed, instead of model-checking if C is winning from p, we can test (p, C) ∈ W ,
cutting down the complexity. Consequently, computing the cheapest winning coalition can be achieved
in O(log(|P |) + |A| ∗ 2|A|). Since W is sorted by positions first, then by coalitions, the set of coalitions
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winning from p is obtained in O(log(|P |)), then we look for the cheapest coalition into this set. If the
initial position is in a set P ′ ⊆ P (e.g. because of a partial observation on the system), then, computing
the cheapest winning coalition that enforces victory from any position from P ′ can be easily achieved in
searching for the minimal coalition of ∩p∈P ′{C|(p, C) ∈W}.

Back to our contribution, our algorithm is dual to the attractor algorithm [3, pages 34-37] which
computes for a given coalition C, by iterating the pre operation, the set of winning positions from Goal
until stabilization. Let prei (resp. W i) be the set computed by the ith iteration of the pre (resp. our)
algorithm. We prove that for every pair (p, C), (p, C) ∈ W i iff p ∈ prei for C. This entails validity and
termination of our algorithm. The worse-case complexity of our algorithm is equivalent to computing the
pre algorithm for every coalition and for every position. This procedure has the same complexity as the
search for the cheapest winning coalition, but W can be used as pre-computation for multiple cheapest
coalition searches and interrogation operations.

We enhanced performances of our algorithm making it tractable: in representing the set of winning
coalitions by the minimal winning ones (thanks to the winning monotonicity) using a technique similar
to [4] and using OBDDs [1] to represent symbolically games and coalitions and to order W .

Empirically, tests showed that the runtimes are of the order of 2α|A| ∗ |T | with α < 1. Moreover, when
|T | increases, α seems to decrease. We believe the OBDDs variable ordering and the compression of the
OBDD data-structure play some role here.

To conclude, we have developed an algorithm to solve the problem of computing the set of winning
coalitions for every position in a turn-based game with a reachability objective. As explained, such
computation is worth as it can be exploited to compute efficiently the cheapest winning coalition of any
set of positions and to perform more elaborated analysis.
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