
Diagnosability of Pushdown Systems

Christophe Morvan1 and Sophie Pinchinat2

1 Université Paris-Est,
INRIA Centre Rennes - Bretagne Atlantique

2 IRISA, Campus de Beaulieu, 35042 Rennes, France

Abstract. Partial observation of discrete-event systems features a set-
ting where events split into observable and unobservable ones. In this
context, the diagnosis of a discrete-event system consists in detecting
defects from the (partial) observation of its executions. Diagnosability is
the property that any defect is eventually detected. Not surprisingly, it is
a major issue in practical applications. We investigate diagnosability for
classes of pushdown systems: it is undecidable in general, but we exhibit
reasonably large classes of visibly pushdown systems where the problem
is decidable. For these classes, we furthermore prove the decidability of a
stronger property: the bounded latency, which guarantees the existence
of a uniform bound on the respond delay after the defect has occurred.
We also explore a generalization of the approach to higher-order push-
down systems.

1 Introduction

Absolute knowledge of the actual execution of a computer driven system
is, in most settings, impossible. However, since typical systems emit in-
formation while interacting with their environment, deductions of their
internal state can be performed on the basis of this partial observation.

From a mathematical point of view, a standard approach due to [17]
uses a discrete-event system modeling (see, e.g., [8]), provided with a par-
tition of the event set into observables and unobservables. In this formal
framework, diagnosing a system amounts to deducing, from its actual ob-
servation, the set I of its possible internal states, and to compare I with a
distinguished subset of states P representing some property of the execu-
tions (for example the occurrence of a failure event). Diagnosing thereby
brings about three different verdicts: the negative verdict when I does
not meet P , the positive verdict when I lies in P , and the inconclusive
verdict otherwise. The device which outputs the verdict is the diagnoser.

Building a diagnoser is not a difficult task, per se: it relies on classical
powerset construction. For finite-state systems, it induces an unavoidable
exponential blow-up [19], even for succinct representations [15]. Therefore

2

on-the-fly computation of the diagnoser is a key techniques for effective
methods. It incidentally offers an effective solution in infinite-state set-
tings [18,3]. Whatever method is used for the diagnoser, a central question
is whether the diagnoser will eventually detect any faulty execution (exe-
cution reaching P)? This property is the diagnosability, expressing intrin-
sic features of the system (together with P). Clearly, on-the-fly methods
cannot apply, since diagnosability requires an exhaustive analysis of the
model. PTIME decision procedures have been developed for finite-state
systems [12,11]; non-diagnosability is NLOGSPACE-complete [15]. Also,
SAT-solvers can be used for symbolic systems [9].

Beyond finite-state systems, very little exists in the literature on the
diagnosis of discrete-event systems: [18] considered a timed systems set-
ting, and established the equivalence between diagnosability and non-
zenoness, yielding PSPACE-completeness. Petri nets have been studied
in [20], where either classical techniques apply to finite nets (i.e. with
a finite-state configuration graph), or approximation methods yield only
semi-algorithms. Finally, [3] considered graph transformation systems,
and developed a general procedure to compute the set of executions cor-
responding to a given observation. Notice that this approach does not
provide any algorithm for the diagnosability whose statement universally
quantifies over the set of observations. Surprisingly, diagnosis issues have
never been addressed for pushdown systems, although acknowledged as
good abstractions for the software model-checking of recursive programs
[14]. Alternation-free (branching-time) µ-calculus, hence CTL, proper-
ties can be verified in EXPTIME [21], and fixed linear-time µ-calculus
properties can be checked in PTIME [4]. In addition, partial observation
of pushdown systems is simple to model since the class is closed under
projection1.

In this paper, we study diagnosability of pushdown systems (of arbi-
trary order) represented by (higher-order) pushdown automata. Diagnos-
ability is shown undecidable in general, via a reduction of the emptiness
problem for an intersection of context-free languages. In fact diagnosabil-
ity requires concomitant properties that arbitrary classes of pushdown
systems do not possess in general. Recently, Alur and Madhusudan in-
troduced visibly pushdown automata [1] with adapted features to handle
diagnosability. As we show here, arbitrary classes of visibly pushdown sys-
tems still do not yield decidability of the diagnosability, and our contri-
bution precisely exhibits a sufficient condition. This condition correlates

1 ε-closure of a pushdown automaton remains a pushdown automaton [2].

3

the observability of the system with its recursive structure: there must
exists a pushdown description of the system, where accesses to the stack
are observable. In this case, we adapt the non-diagnosability algorithm
for finite-state systems developed in [11], yielding a PTIME upper bound;
the NLOGSPACE lower bound for finite-state systems remains valid. The
results on decidability are furthermore generalized to the higher order, by
considering the higher-order visibly pushdown automata of [10]. We de-
velop a k-EXPTIME algorithm for the class of k-order pushdown systems
(k ≥ 2).

As explained further in the paper, diagnosability guarantees, for each
execution reaching P , a finite delay to detect it. However, it does not
provide a uniform bound on these delays. The bounded-latency problem
consists in deciding whether such a bound exists, and is fully relevant for
practical applications. In the literature, bounded latency has been mainly
investigated in the framework of finite-state systems, although it is a di-
rect consequence of diagnosability. [16,22] refer to the bound, and [11] refer
to n-diagnosability. Unexpectedly, to our knowledge, bounded latency has
not been studied for infinite-state systems, for which diagnosability does
not imply bounded latency.

In this paper, we consider the bounded-latency problem for pushdown
systems. We show its decidability for families of first-order pushdown sys-
tems where diagnosability is already decidable (otherwise it does not make
sense). For these families, bounded latency is equivalent to the finiteness
of a language accepted by a pushdown autamaton. The latter problem is
in PTIME [2]. Regarding higher-order pushdown systems, we conjecture
undecidability of the bounded-latency problem. As for first-order push-
down systems, checking bounded latency amounts to checking finiteness
of a higher-order pushdown language. For arbitrary higher-order push-
down language, the finiteness problem is still open, to our knowledge.

The paper is organized as follows. In Section 2 we define the diagnos-
ability and the bounded-latency problems, and recall the classic results
for finite-state systems. Pushdown systems are considered in Section 3,
and handled in the core Section 4 of the contribution to study their di-
agnosability and bounded-latency problems. In Section 5, we consider
higher-order pushdown systems.

4

2 Diagnosability and Bounded Latency

We first introduce some mathematical notations and definitions. Assume
a fixed set E. We denote by 2E its powerset, and by B the complement
of a subset B ⊆ E. For any k ∈ N, we write [k] := {1, 2, 3, . . . , k}. Given
an alphabet (a set of symbols) Σ, we write Σ∗ and Σω for the sets of
finite and infinite words (sequences of symbols) over Σ respectively. We
use the standard notation ε for the empty finite word, and we denote
by u, u′, v, . . . the typical elements of Σ∗, and by w,w1, . . . the typical
elements of Σω. For u ∈ Σ∗, |u| denotes the length of the word u.

Definition 2.1 A discrete-event system (des) is a structure S = 〈Σ,S, s0,
δ, Prop, [[.]]〉, where Σ is an alphabet, S is a set of states and s0 ∈ S is
the initial state, δ : S × Σ → S is a (partial) transition function, and
Prop is a set of propositions and [[.]] : Prop→ 2S is an interpretation of
the propositions. An execution of S is a word u = a1a2 . . . an ∈ Σ∗ such
that there exists a sequence of states s0, s1, . . . , sn such that s0 = s0 and
δ(si−1, ai) = si for all 1 ≤ i ≤ n. An execution u reaches a subset S′ ⊆ S
whenever δ(s0, u) ∈ S′, by extending δ to S × Σ∗. We naturally extend
these definitions to infinite executions; in particular, an infinite execution
w ∈ Σω reaches S′ if one of its prefixes reaches S′.

A proposition m marks the (elements of the) set [[m]], and an execution
reaches m if it reaches [[m]].

We now give an overview on diagnosis. Diagnosis is about synthe-
sis where one aims at constructing a device, a diagnoser, intended to
work on-line together with the system. While the system executes, the
diagnoser collects input data via sensors and outputs a verdict on the
actual execution. In classic diagnosis, the sensors are not formally de-
scribed, but instead simulated in a partial observation framework: the set
of events Σ is partitioned into Σo and Σo composed of observables and
unobservables respectively; words θ, θ1, . . . over Σo are observations. The
canonical projection of Σ onto Σo is written πΣo , or π when Σo is under-
stood; it extends to Σ∗ by erasing unobservables in words. An execution
u matches an observation θ whenever π(u) = θ. Two executions u and u′

are indistinguishable if they match the same observation.
Observations are the inputs of the diagnoser. Regarding the outputs,

faulty executions of particular interest (as opposed to safe ones) are dis-
tinguished a priori by means of a proposition f ∈ Prop: an execution
u is faulty if δ(s0, u) ∈ [[f]]. Moreover, we require that [[f]] is a trap:
δ([[f]], a) ⊆ [[f]], for every a ∈ Σ. This assumption means that we fo-
cus on whether some defect (a particular event or a particular pattern of

5

events) has occurred in the past or not; we refer to [8] for a comprehensive
exposition.

An instance of a diagnosis problem is a triplet composed of a des,
S = 〈Σ,S, s0, δ, Prop, [[.]]〉, an alphabet of observables, Σo, and a propo-
sition, f . For technical reasons, we need to consider information sets: an
information set I is the set of all states reached by a set of indistinguish-
able executions in Σ∗Σo. We write I ⊆ 2S for the set of all information
sets. Notice that {s0} ∈ I and is associated to the empty observation.
The associated diagnoser is a structure D := 〈Σo, I, I0, δ̂, diag〉 whose
states are either the initial state I0 :=

{
s0

}
or the transition function,

δ̂ : I ×Σo → I, is the extension of δ to sets of states in a canonical way,
and the output function diag is defined as follows. Given a set I ⊆ S,
three cases exist: (a) all states of I are marked by f ; (b) no state is
marked; and otherwise (c) where I is equivocal.

Formally,

diag : I → {(a), (b), (c)}
I 7→ (a) if I ⊆ [[f]], (b) if I ∩ [[f]] = ∅, and (c) otherwise

By extension, an observation θ is equivocal if δ̂(I0, θ) is equivocal, other-
wise θ is clear ; θ is clearly-faulty if it is clear and δ̂(I0, θ) is in case (a).
Since I0 = {s0} is not equivocal, the empty observation is clear.
D may be infinite-state in general (if S is infinite-state). However,

its computation can be avoided by simulating it on-the-fly, storing the
current information set I, and updating this object on each observable
step of the system. While the synthesis of the diagnoser is not necessary,
analyzing its behaviour is crucial: in particular, because equivocalness
(case (c)) precludes the instantaneous detection of a fault, latencies to
react are tolerated.

Diagnosability is a qualitative property of the diagnoser which ensures
a finite latency for any observation of a faulty execution; it corroborates
the completeness of the diagnoser. From a quantitative point of view, the
bounded-latency property ensure a uniform bound on the latencies. We
develop these two notions.

In accordance with [17], we use the following definition (where the
parameters Σo and f are understood).

Definition 2.2 A discrete-event system is diagnosable if every infinite
observation of an infinite faulty execution has a clearly-faulty finite prefix.

6

p q

f

r

f

s

f

a

γ a b

a, b

Safe executions of diagnosable systems may
have arbitrarily long equivocal observations as il-
lustrated here with a system whose initial state p,
and with the unobservable γ which leading to the
marked state q. Since any faulty execution only
yields an infinite observation with the clear prefix
anb, the system is diagnosable, but the infinite
observation aω of the the unique safe execution
loops in the equivocal information set {p, q}.

Lemma 2.3 [11] A des is not diagnosable w.r.t. the set of observables
Σo and the proposition f if, and only if, there exist two indistinguishable
infinite executions w1 and w2 such that w1 reaches f while w2 does not.

Notice that diagnosability considers only infinite executions that do not
diverge, where an infinite executions diverges if it has an unobservable
infinite suffix. In other words, we are only interested in fair behaviours of
the system w.r.t. observability.

We now consider the latency of a diagnosable system as the minimal
number of additional observation steps that is needed to detect a faulty
execution.

Definition 2.4 Let S = 〈Σ,S, s0, δ, Prop, [[.]]〉 be a des, Σo be an alpha-
bet of observables, and f ∈ Prop such that [[f]] is a trap. The latency of
an execution u is defined by: `(u) := max {|ϑ|, π(u)ϑ is not clearly-faulty}
if u reaches f , and 0 otherwise.
S is bounded-latency if there exists N ∈ N such that `(u) ≤ N , for every
execution u; the least such N is the bounded-latency value.

The bounded-latency value of the system above is 1: indeed, fix an
observed execution u that reaches f and whose observation is not clearly-
faulty (hence equivocal). This execution necessarily ends either in state q
or in state r. If in q, the only sequence of observations ϑ such that π(u)ϑ
is not clearly-faulty is ϑ = a; therefore `(u) = 1. If in r, we have `(u) = 0.

Remark that a system is diagnosable if, and only if, `(u) is a finite
value, for every execution u, but not necessarily bounded. Therefore any
bounded-latency system is diagnosable, but the converse does not hold in
general.

7

O

ι γ

4 4

O

ι γ

4 4

ι γ

� I

The system depicted here is diagnosable when ι and γ
unobservable and f (black) marking executions that con-
tain the faulty event γ. Indeed, every maximal execution
is finite, and its last event is I if, and only if, γ has oc-
curred. However, the system is not bounded-latency since
arbitrarily many 4’s can occur between γ and I.

Since, diagnosability and bounded latency only
depend on the set of executions of the system,
one is allowed to decide these problems over a
transformed system as long as executions are pre-
served.

For finite-state systems, it is easy to prove that diag-
nosability and bounded-latency properties coincide.

Theorem 2.5 [17,12,15]
For finite-state systems:
(i) Diagnosability is decidable in PTIME.
(ii) Non-diagnosability is NLOGSPACE-complete.

3 Pushdown systems

We now investigate the case of pushdown systems where the picture is
more involved. We recall that pushdown automata are finite-state ma-
chines that use a stack as an auxiliary data structure (see for example
[2]); pushdown systems are derived as configuration graphs of pushdown
automata and are infinite-state in general.

Definition 3.1 A pushdown automaton (pda) is a structure A = (Σ,Γ,
Q, q0, F,∆) where Σ and Γ are finite alphabets of respectively input and
stack symbols, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states, and ∆ ⊆ Q × (Γ ∪ {ε}) × (Σ ∪ {ε}) × Q × Γ ∗ is
the set of transitions.

We use p, q, . . . (resp. X,Y, . . ., and U, V,W, . . .) for typical elements
of Q (resp. Γ , and Γ ∗). Without loss of generality, we assume in normal
form: (1) pop transitions of the form (p,X, a, q, ε) pop the top symbol of
the stack, (2) push transitions of the form (p, ε, a, q,X) push a symbol
on top of the stack, and (3) internal transitions of the form (p, ε, a, q, ε)
leave the stack unchanged.

8

The pda A = (Σ,Γ,Q, q0, F,∆) is deterministic if: (1) ∀(p,X, a) ∈
Q×Γ ×Σ∪{ε}, there is at most one pair (q, V) such that (p,X, a, q, V) ∈
∆, and (2) ∀(p,X) ∈ Q×Γ , if there exists (q, V) such that (p,X, ε, q, V) ∈
∆, then there is no triple (q′, a, V ′) ∈ Q×Σ×Γ ∗ such that (p,X, a, q′, V ′) ∈
∆. An automaton A is real-time if ∆ ⊆ Q× (Γ ∪ {ε})×Σ ×Q× Γ ∗. A
configuration of A is a word qU ∈ QΓ ∗; q is the state of the configuration.
The initial configuration is q0ε, and a configuration qU is final if q ∈ F .
Transitions (between configurations) are elements of QΓ ∗×Σ∪{ε}×QΓ ∗:
there is a transition (qU, a, q′U ′) whenever there exists (q,X, a, q′, V) ∈
∆ with U = WX and U ′ = WV . A finite run of A is a finite se-
quence r = q0U0a1q1U1a2 . . . anqnUn such that U0 = ε is initial, and
(qiUi, ai, qi+1Ui+1) is a transition, for all 0 ≤ i < n. We say that a1a2 . . . an
is the word of r, or that r is a run on a1a2 . . . an. The run is accepting if
qnUn is final.

The language accepted by A is L(A) ⊆ Σ∗, the set of words u ∈ Σ∗
such that there is an accepting run on u.

Proposition 3.2 [2] Any pda is equivalent to a real-time pda. The con-
struction is effective.

Pda accept context-free languages (cf languages), while deterministic
pda yield the proper subclass of deterministic cf languages, containing
all regular languages. Moreover, cf languages are closed under union, con-
catenation, and iteration, but not under intersection, and their emptiness
is decidable.

Proposition 3.3 [2] The emptiness problem of an intersection of deter-
ministic cf languages is undecidable.

We finally need to recall the following theorem.

Theorem 3.4 [4] The emptiness problem of a Büchi pushdown automa-
ton is in PTIME.

A pushdown system (pd system) S is the configuration graph of a
real-time pda A = (Σ,Γ,Q, q0, F,∆), which represented S. Notice that
the set F of A is irrelevant for S. However, using standard techniques,
the statement that [[f]] is a regular set of configurations in S can be
transformed into [[f]] = FΓ ∗ (see appendix for details).

9

By Proposition 3.3, pd systems are not closed under product (usual
synchronous product), which causes limitations in effective methods for
their analysis, and in particular regarding diagnosis (Sect. 4). We there-
fore consider more friendly sub-classes of pda: the visibly pushdown au-
tomata [1].

Visibly pushdown automata are pda with restricted transition rules:
whether a transition is push, pop, or internal depends only on its input
letter.

Definition 3.5 A visibly pushdown automaton (vpa) is a pushdown au-
tomaton A = (Σ,Γ,Q, q0, F,∆), where ⊥ ∈ Γ is a special bottom-stack
symbol, and whose input alphabet and transition relation are partitioned
into Σ := Σpush ∪ Σpop ∪ Σint, where Σint is the internal alphabet,
and ∆ := ∆push ∪ ∆pop ∪ ∆int respectively, with the constraints that
∆push ⊆ Q×{ε}×Σpush×Q× (Γ \{⊥}), ∆pop ⊆ Q×Γ ×Σpop×Q×{ε},
and ∆int ⊆ Q× {ε} ×Σint ×Q× {ε}.

A [Σint]-vp language is a language accepted by some vpa whose in-
ternal alphabet is Σint.

Theorem 3.6 [1] (a) Any vpa is equivalent to a deterministic vpa over
the same alphabet. The construction is effective.
(b) Any family of vp languages with a fixed partition Σpush, Σpop, Σint
of the input alphabet is a Boolean algebra. In particular the synchronous
product A1 ×A2 of vpa is well-defined.

We now turn to the projection operation on languages with respect
to a sub-alphabet as a central operation for partial observation issues;
we recall that the class of cf languages is projection-closed, whereas vp
languages are not; more precisely,

Proposition 3.7
(i) Any cf language is the projection of a [∅]-vp language, and this is
effective.
(ii) The projection of a [Σint]-vp language onto Σ′∗, with Σ′ ⊆ Σint, is a
[Σint]-vp language (with Σpush, Σpop fixed). The construction is effective.

4 Diagnosability and Bounded Latency of pd systems

We show that diagnosability of arbitrary deterministic pd systems is un-
decidable. Next, we focus on vp systems whose diagnosability is also
undecidable in general, unless unobservable transitions leave the stack
unchanged.

10

Theorem 4.1 Diagnosability of deterministic pd systems is undecidable.

This theorem is a corollary of Proposition 3.3 and the following con-
struction together with Lemma 4.2. Let A1 and A2 be two deterministic
pda over Σ1 and Σ2 respectively, and let Σ = Σ1 ∪Σ2 ∪ {ι1, ι2,#}, with
fresh symbols #, ι1 and ι2.

q0

q01 q02

ι1 ι2

A#
1 A#

2

For i = 1, 2, let A#
i be a deterministic pda which ac-

cepts L(Ai)#Σ∗, the set of words u#v where u ∈ L(Ai).
Let A#

1 ⊕A
#
2 be the pda depicted on the right. Mark all

configurations of A#
1 ⊕ A

#
2 whose state is in A#

1 by f ;
[[f]] is a regular set and a trap, by construction. Notice
that A#

1 ⊕A
#
2 is deterministic.

Lemma 4.2 The pd system S represented by A#
1 ⊕A

#
2

is diagnosable w.r.t. Σ \ {ι1, ι2} and f if, and only if,
L(A1) ∩ L(A2) = ∅.

Indeed, consider w1 := ι1u#ω indistinguishable from
w2 := ι2u#ω with u ∈ L(A1)∩L(A2). Thus w1 reaches f but w2 does not.
Apply Lemma 2.3 to conclude. Reciprocally, if S is not diagnosable, then
by Lemma 2.3, there exist indistinguishable infinite executions w1 and w2

such that only w1 reaches f ; necessarily, w1 = ι1u#w and w2 = ι2u#w
for some u, entailing u ∈ L(A1) ∩ L(A2), which concludes the proof. ut

Theorem 4.3 (a) Diagnosability of vp systems is undecidable.
(b) Diagnosability w.r.t. a set of observables Σo and a proposition f is
decidable in PTIME over any class of [Σint]-vp systems whenever Σo ⊆
Σint and f marks a regular set of configurations.

Proof. Point (a) is an immediate corollary of the undecidability of diag-
nosability for pd systems (Theorem 4.1) and the fact that any cf lan-
guage is the projection of some vp language (Proposition 3.7 Point (i)).
For Point (b) of Theorem 4.3, let S be a vp system represented by a de-
terministic [Σint]-vpa A = (Σ,Γ,Q, q0, F,∆), and consider an alphabet
of observables Σo such that Σo ⊆ Σint, and a proposition f which marks
a regular set of configurations of A. We sketch an algorithm to decide the
diagnosability of S w.r.t. Σo and f . The proposed method extends the
solution of [11] for finite-state systems.

Consider the (non-deterministic) [Σint \ Σo]-vpa π(A) × π(A) (over
the stack alphabet Γ × Γ), obtained by Σo-projecting A and by building
the standard product of vpa [1].

11

Lemma 4.4 The vpa π(A) × π(A) with initial state (q0, q0) and final
states F × F accepts the equivocal observations.

Note that for π(A) × π(A), an infinite run remaining in the set of
configurations (F ×F)(Γ ×Γ)∗ denotes an infinite observation which has
no clear prefix. By Lemma 2.3, this equivalently rephrases as “the system
is not diagnosable”. Now, the existence of such a run is equivalent to check
the non emptiness of the Büchi automaton whose structure is π(A)×π(A)
and whose accepting states are all elements of (F ×F) (use the fact that
[[f]] is a trap). By Theorem 3.4, this can be decided in NLOGSPACE. ut

We now establish that for the classes of pd systems that yield effec-
tive methods to answer diagnosability problems, bounded latency is also
decidable.

Theorem 4.5 Given a [Σint]-vp system S, an observation alphabet Σo
with Σo ⊆ Σint, and a proposition f which marks a regular set of config-
urations, it is decidable in PTIME whether S is bounded latency or not.
Furthermore, the bound can be effectively computed.

Proof. Without loss of generality, we can assume S diagnosable (which
is decidable by the hypothesis and Theorem 4.3), otherwise it is not
bounded-latency.

Let the deterministic [Σint]-vpa A represent S. Derive from the vpa
π(A)×π(A) the (non-deterministic) pda A′ as follows: re-label with ε all
transitions leaving states in F ×F , remove all transitions leaving states in
F ×F , let (q0, q0) be the initial state, and let F ×F be the final states. As
such, A′ accepts the words ϑa (a ∈ Σo) where for some execution u that
reaches f , π(u)ϑa is clearly-faulty but π(u)ϑ is not. By Definition 2.4,
L(A′) is finite (which is decidable in PTIME [2]) if, and only if, S is
bounded-latency; if finite, the value is max{|ϑ| |ϑ ∈ L(A′)Σ−1}2. ut

5 Extension to Higher-order pushdown systems

Higher-order pushdown automata [13] extend pda and reach context-
sensitive languages. We only sketch their definition, following [7].

Let Γ be a stack alphabet. For any integer k ≥ 1, k level stacks, or
shortly k-stacks, (over Γ) are defined by induction: A 1-stack is of the
2 We use the standard notation UΣ−1 to denote the set of words v such that v.a ∈ U

for some a ∈ Σ.

12

form [U]1, where U ∈ Γ ∗, and the empty stack is written []1; 1-stacks
coincide with stacks of pda. For k > 1, a k-stack is a finite sequence of
(k−1)-stacks; the empty k-stack is written []k. An operation of level k acts
on the topmost k-stack of a (k + 1)-stack; operations over stacks (of any
level) preserve their level. Operations of level 1 are the classical pushX
and popX , for all X ∈ Γ : pushX([U]1) = [UX]1 and popX([UX]1) = [U]1.
Operations of level k > 1 are copyk and copyk, and act on (k + 1)-stacks
as follows (S1, . . . , Sn are k-stacks).

copyk([S1, . . . , Sn]k+1) := [S1, . . . , Sn, Sn]k+1

copyk([S1, . . . , Sn, Sn]k+1) := [S1, S2, . . . , Sn]k+1

Any operation ρ of level k extends to arbitrary higher level stacks accord-
ing to: ρ([S1, . . . , Sn]`) = [S1, . . . , ρ(Sn)]`, for ` > k + 1.

A higher-order pushdown automaton (hpda) of order k is a struc-
ture A = (Σ,Γ,Q, q0, F,∆) like a pda, but where ∆ specifies transitions
which affect operations on the k-stack of the automaton. We refer to [7]
for a comprehensive contribution on the analysis of hpda; following this
contribution, a set of configurations is regular whenever the sequences
of operations that are used to reach the set form a regular language,
in the usual sense. Higher-order pushdown systems (hpds) are configura-
tion graphs of hpda. By Theorem 4.1, their diagnosability is undecidable.
However, similarly to first-order pd systems, higher-order vpa (hvpa) can
be considered [10].

A k-order vpa has (2k + 1) sub-alphabets Σpush, Σpop, Σint, Σcopyr
,

and Σcopyr
, where r ∈ [k], each of which determines the nature (e.g. push,

pop, internal, copyr, copyr) of the transitions on its symbols. Transitions
on elements of Σint leave the stacks of any level unchanged. According
to [10], hvpa are neither closed under concatenation, nor under iteration,
and cannot be determinized; they are however closed under intersection.

Proposition 5.1 The projection onto Σ′∗ of a k-order vp language with
internal alphabet Σint is a k-order vp language, provided Σ′ ⊆ Σint.

Proof. The proof of Proposition 3.7 easily adapts here. Let L be a k-order
vp language accepted by the k-order hvpa A = (Σ,Γ,Q, q0, F,∆). We
again write p⇒ p′ whenever there exists (p, ε, a, p′, ε) ∈ ∆int with a ∈ Σo.

The hvpa π(A) which accepts π(L) is obtained by adding new tran-
sitions, and by letting p ∈ F ′ if p⇒∗ p′, for some p′ ∈ F . The transitions
in ∆′ are obtained by replacing, in a transition of ∆, the origin state p
by the state r, provided r ⇒ p in A. Notice that ∆ ⊆ ∆′.

This construction is correct in the sense that L(π(A)) = π(L). ut

13

Theorem 5.2 For any class of k-order vp systems with the sub-alphabets
Σpush, Σpop, Σint, Σcopyr

, and Σcopyr
(r ∈ [k]), diagnosability w.r.t. the

set of observables Σo and the proposition f is decidable in k-EXPTIME,
whenever Σo ⊆ Σint (the internal alphabet) and f marks a regular set of
configurations.

Proof. Let S be a k-order vp system represented byA = (Σ,Γ,Q, q0, F,∆).
By Proposition 5.1, π(A) is a k-order vpa, and Lemma 4.4 for first-order
vp system can be easily adapted.

Lemma 5.3 The non-deterministic k-order vpa π(A)×π(A) with initial
state (q0, q0) and final states F × F accepts the equivocal observations.

Assuming the vpa A is a k-order pushdown automaton, so is the vpa
π(A) × π(A). As in the proof of Theorem 4.3, checking diagnosability
amounts to decide the non emptiness of the language accepted by the
Büchi k-order pushdown automaton π(A) × π(A) with accepting states
in F×F . According to [5], this is decidable in k-EXPTIME, but the lower
bound is still an open question. ut

Regarding the bounded-latency problem, Theorem 4.5 does not easily
extend to hvp systems. Indeed, in the proof of this theorem, deciding the
finiteness of a cf language (namely L(A′) page 11) is a key point, and
fortunately this is decidable: the standard decision procedure makes the
assumption that the automaton to represent the language is real-time,
which is always possible for cf languages using an effective method. If
we were able to restrict to real-time hpda, we would have a similar result
since one can show the following.

Theorem 5.4 The finiteness of a real-time hpd language is decidable.

Nevertheless, it is an open question whether arbitrary higher-order
pushdown languages are real-time or not; in fact, [6] conjectures they are
not. At the moment, deciding the finiteness of an arbitrary hpd language
is a difficult question, and so is the bounded-latency property of a higher-
order pushdown system, as resolving the latter problem solves the former.

Proposition 5.5 Let L be a class of higher-order pushdown languages
which is closed under concatenation and union. For each L ∈ L, there
exists a des SL such that SL is bounded latency if, and only if, L is
finite.

14

Proof. Assume L ∈ L with alphabet Σ. The set of
events of SL is Σ ∪ {ι1, ι2,#, $}, with fresh symbols
ι1, ι2, #, and $. SL has two components L# and L$
(see figure next page). By construction, the set of ex-
ecutions of SL is in L. By letting ι1 and ι2 be un-
observable, and f mark the configurations of the L$
component, SL is diagnosable.
Indeed, event # or event $ always eventually oc-
cur along any execution, revealing the actual running
component of the system. It is easy to verify that SL
is bounded-latency if, and only if, L finite.

q0

q1 q2

ι1 ι2

L# L$

ut
As a consequence, Proposition 5.5 considerably lessens hopes to decide
the bounded latency problem for arbitrary hvp systems. We nevertheless
exhibit cases where the problem can sometimes be answered.

Consider a hvp system represented by the hvpaA = (Σ,Γ,Q, q0, F,∆).
By Lemma 5.3, the real-time hpda π(A)×π(A) (with initial state (q0, q0)
and final states F ×F) accepts the set Υ of equivocal observations, whose
finiteness is decidable by Theorem 5.4. We consider the possible cases:

If Υ is finite, then the system is bounded-latency and the bound is
max{|ϑ| | ∃θ ∈ Υ, θϑ is not clearly-faulty}.

Otherwise, we inspect the set C of configurations reached by Υ , which
by [7] is a regular set (that can be effectively computed). Now, decide
whether C is finite or not.

If C is finite, for each configuration C ∈ C, build the real-time hpda
AC as follows: (1) cut in the automaton π(A)×π(A) every transitions that
leaves F × F , (2) set C as the initial configuration, and (3) F × F as the
final states. Since L(AC) is a real-time hpda its finiteness is decidable. If
every L(AC) is finite (which can be check since C is finite), then the system
is bounded-latency and the bound is max{|ϑ| |ϑ ∈ (∪C∈CL(AC)).Σ−1}.
If C is infinite, nothing can be inferred.

References

1. R. Alur and P. Madhusudan, Visibly pushdown languages, in STOC 04, ACM,
2004, pp. 202–211.

2. J.-M. Autebert, J. Berstel, and L. Boasson, Context-free languages and push-
down automata, in Handbook of formal languages, Vol. 1, Springer-Verlag, 1997,
pp. 111–174.

3. P. Baldan, T. Chatain, S. Haar, and B. König, Unfolding-based diagnosis of
systems with an evolving topology, in CONCUR, F. van Breugel and M. Chechik,
eds., vol. 5201 of Lecture Notes in Computer Science, Springer, 2008, pp. 203–217.

15

4. Bouajjani, Esparza, and Maler, Reachability analysis of pushdown automata:
Application to model-checking, in CONCUR: 8th International Conference on Con-
currency Theory, LNCS, Springer-Verlag, 1997, pp. 135–150.

5. T. Cachat and I. Walukiewicz, The complexity of games on higher order push-
down automata, CoRR, abs/0705.0262 (2007).

6. A. Carayol, Notions of determinism for rational graphs. Private communication,
2001.

7. , Regular sets of higher-order pushdown stacks, in MFCS, J. Jedrzejowicz
and A. Szepietowski, eds., vol. 3618 of Lecture Notes in Computer Science, 2005,
pp. 168–179.

8. C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 1999.

9. A. Grastien, Anbulagan, J. Rintanen, and E. Kelareva, Diagnosis of
discrete-event systems using satisfiability algorithms, in AAAI, AAAI Press, 2007,
pp. 305–310.

10. S. Illias, Higher order visibly pushdown languages, Master’s thesis, Indian Insti-
tute of Technology, Kanpur, 2005.

11. T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier, Supervision pat-
terns in discrete event systems diagnosis, in 8th Workshop on Discrete Event Sys-
tems, Ann Arbor, Michigan, USA, July 2006.

12. S. Jiang, Z. Huang, V. Chandra, and R. Kumar, A polynomial time algorithm
for diagnosability of discrete event systems, IEEE Transactions on Automatic Con-
trol, 46 (2001), pp. 1318–1321.

13. A. Maslov, Multilevel stack automata., Problems of Information Transmission, 12
(1976), pp. 38–43.

14. C.-H. L. Ong, Hierarchies of infinite structures generated by pushdown automata
and recursion schemes, in MFCS, L. Kucera and A. Kucera, eds., vol. 4708 of
Lecture Notes in Computer Science, Springer, 2007, pp. 15–21.

15. J. Rintanen, Diagnosers and diagnosability of succinct transition systems, in IJ-
CAI, M. M. Veloso, ed., 2007, pp. 538–544.

16. M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and
D. Teneketzis, Diagnosability of discrete event systems, IEEE Transactions on
Automatic Control, 40 (1995), pp. 1555–1575.

17. , Failure diagnosis using discrete event models, IEEE Transactions on Control
Systems Technology, 4 (1996), pp. 105–124.

18. S. Tripakis, Fault diagnosis for timed automata, in FTRTFT, W. Damm and E.-
R. Olderog, eds., vol. 2469 of Lecture Notes in Computer Science, Springer, 2002,
pp. 205–224.

19. J. N. Tsitsiklis, On the control of discrete event dynamical systems, Mathematics
of Control Signals and Systems, 2 (1989), pp. 95–107.

20. T. Ushio, I. Onishi, and K. Okuda, Fault detection based on Petri net mod-
els with faulty behaviors, IEEE International Conference on Systems, Man, and
Cybernetics., 1 (1998), pp. 113–118 vol.1.

21. I. Walukiewicz, Model checking ctl properties of pushdown systems, in FSTTCS,
S. Kapoor and S. Prasad, eds., vol. 1974 of Lecture Notes in Computer Science,
Springer, 2000, pp. 127–138.

22. T.-S. . Yoo and S. Lafortune, Polynomial-time verification of diagnosability of
partially-observed discreteevent systems, IEEE Transactions on Automatic Control,
47 (2002), pp. 1491–1495.

