
Game Quantification Patterns?

Dietmar Berwanger1 and Sophie Pinchinat2

RWTH Aachen, Germany
IRISA Rennes, France

Abstract. We analyse two basic approaches of extending classical log-
ics with quantifiers interpreted via games: Propositional Game Logic of
Parikh and Alternating-Time Temporal Logic of Alur, Henzinger, and
Kupferman. Although the two approaches are historically remote and
they incorporate operationally orthogonal paradigms, we trace the for-
malisms back to common foundations and argue that they share remark-
able similarities in terms of expressive power.

1 Introduction

The metaphor of games is at the basis of a rich and intuitive language for reason-
ing about interaction. Over the past three decades, substantial efforts have been
made to integrate the elements of this language into logical formalisms (see [20]
for a comprehensive survey).

We discuss two basic approaches towards formal reasoning about games: the
Propositional Logic of Games introduced by Parikh [16] in 1983, which is the first
formalism to incorporate games into a logic of computation, and the framework
of Alternating-Time Temporal Logics of Alur, Henzinger, and Kupferman [2]
introduced 15 years later, which is arguably the most influential game-based
formalism in Computer-Science applications by today.

Both formalisms emerged from well-established logics for reasoning about
the dynamics of computation. Parikh’s Game Logic GL extends the Program
Dynamic Logic (PDL) of Fischer and Ladner [9] by adding a dualisation oper-
ation that turns the description of a program into one of an interactive pro-
tocol.1 The main representative of Alternating-Time Logics, ATL∗, generalises
the Computation-Tree Logic CTL∗ of Emerson and Halpern [8] to speak about
the course of events in a multi-agent system. The two formalisms at the out-
set represent different specification paradigms: PDL captures an internal view
on the execution of a program whereas CTL∗ reflects an external view on the
dynamics of a computation. Accordingly, PDL quantifies over relations between
program states, whereas CTL∗ quantifies over computation traces. Nevertheless,
when viewed as extensions of the basic monomodal logic K with recursion mech-
anisms [19], the two formalisms turn out to have similar expressive power: they
? This research was supported by the Deutsche Forschungsgemeinschaft (DFG), the Eu-

ropean COMBEST project, and the Indo-French research network Timed-DISCOVERI.
1 The term Game Logic with the abbreviation GL has also been used in [2] to denote

a formalism that is unrelated to Parikh’s Game Logic.

can both be embedded into the second alternation level and into the two-variable
fragment of the µ-calculus; moreover, PDL with an additional loop-operator sub-
sumes CTL∗.

The casting of PDL and CTL∗ into logics of interaction occurs at two levels.
At a local level, the basic modal quantifier which ranges over possible outcomes
of a computation step is replaced in GL and ATL∗ with atomic-game opera-
tors associated to the outcome of an interactive event. However, atomic games
a priori do not feature utilities; these arise only at a global level as winning con-
ditions over plays, i.e., sequences of interactive events. To build rules for forming
plays and winning conditions, GL and ATL∗ use logical constructs which largely
preserve their meaning from the underlying logics of computation: Boolean and
linear-time connectives, choice and iteration operators, and higher-order quan-
tifiers over sequences of events.

On a first view, GL and ATL∗ may be seen as formalisms for reasoning about
complex games composed from atomic ones. However, the analysis of rational
behaviour in a game embedded within another game is notoriously difficult, if
not hopeless. (Most of the questions raised 1971 in the seminal work of Howard
on metagames [13] have remained unsolved so far.) In fact, the logics we consider
do not pursue this aim; as the atomic games to which their semantics refer lack
utilities, they are not games in the strict sense, but rather game forms, that
is, descriptions of outcome functions. Essentially, both GL and ATL∗ lead a cut
between two basic elements of game-oriented reasoning: the local outcome of an
interactive event which is represented in the model, and the global utility drawn
from a sequence of events which is determined by the formula. This separation
between interdependent action and interactive decision-making reflects in the
fundamental semantic constructs of the two formalisms. In Game Logic, the du-
alisation operation corresponds to a swap of capabilities, rather than utilities,
between the players. In Alternating-Time Logics, atomic-game events are per-
formed by (coalitions of) agents that are not equipped with subjective utility
functions. The formal interpretation of these constructs sometimes contradicts
the game-theoretic intuition delivered by the natural-language description of the
logics. For a critical discussion on such aspects and recent approaches towards
defining more natural semantics for ATL∗, see [1] and [5].

Nevertheless, there is a sense in which GL and ATL∗ recover the proposition of
compositional game-based reasoning: the semantic games of these logics do arise
as compositions of atomic game forms via logical formulae. Semantic games, also
called model-checking games, are zero-sum games associated to the question of
whether a formula holds in a model or not [12]. Typically, there are two players,
a Verifier who performs existential choices (e.g., decomposition of disjunctions,
assignment of existentially quantified variables) and a Falsifier who performs
universal choices (e.g., decomposition of conjunction, assignment of universally
quantified variables); the Verifier can ensure to win if, and only if, the formula
holds in the model. The correspondence between logics of computation and their
semantic games is usually mediated via a specific automata model. For a general
background on model-checking via games and automata see [11].

2

In this paper, we discuss terminological and technical challenges arising from
the combination of interactive and compositional reasoning. We put forward
the thesis that the formalisms of Game Logic and Alternating-Time Logics are
effectively confined to the scope of determined two-player games with perfect
information composed from atomic game forms. Game-theoretic concepts beyond
this scope, e.g., those inherent to non-zero-sum games, imperfect information,
or to games with more than two players essentially cannot be captured.2 To
substantiate this claim, we argue that the model-checking games for GL and
ATL∗ —which characterise their semantics— are determined two-player games
with perfect information.

The first part of the paper, Section 2, details the concept of an atomic game
which is at the basis of the semantics of the two logics. We introduce distinct
terms for notions that tend to be confounded in the literature. We maintain that
a partial description of a game which lacks a utility function shall be called a
game form. Likewise, an actor who can choose an action but who is not equipped
with a utility function shall rather be called agent than player. We introduce the
notion of an untyped game to denote abstract descriptions of interactive situation
where actions are not yet assigned to the players. This representation subsumes
the notions of effectivity function and that of concurrent game which underlie
the semantics of Game Logic and Alterntating-Time Logics, respectively.

The definition of GL and ATL∗ is deliberately postponed until the termino-
logical issues are settled. Originally, the semantics of the two logics is defined on
different kinds of models: neighbourhood structures, or Montague-Scott models,
and concurrent game structures. We introduce a common interpretation domain
of extensive game structures based on untyped game forms, which generalise
both neighbourhood and concurrent game structures. In Section 3, we present
the semantics of GL and ATL∗. To relate their expressive power, we show that
ATL∗ is invariant under replacing atomic game forms while preserving the ef-
fectivity. As a consequence, it follows that the meaning of a ATL∗-formula is
determined by its meaning over neighbourhood models, that is, over the inter-
pretation domain of GL-formulae. This invariance result relies on the notion of
sequentialisation of an untyped game form which represents the only scenarios
where choices are made and communicated to the other agents in a certain order.

Finally in Section 4, we introduce an automata-theoretic formalism that sub-
sumes both GL and ATL∗ to describe how the recursion mechanisms of GL and

2 This statement may seem to contradict the purpose of Alternating-Time Logics
which is motivated as a formalism for speaking about (concurrent) games with sev-
eral players. The contradiction can be traced back to a common terminological in-
accuracy. A player incorporates different functions in a game: he is an agent with
the capacity to perform actions, and, at the same time, he is a rational decision
maker able to choose which action to perform. When we have game models of com-
putational systems in mind, there are good reasons to distinguish between the two
functions. The range of actions available to a player is typically determined by the
design of the system whereas rational decisions on which actions to choose depend on
the system specification. In light of this, the players invoked in the original definition
of Alternating-Time Logics should be understood as non-deliberate agents [7].

3

ATL∗ are reflected through structural properties of automata, thus explaining
limitations of their expressive power. The translation of GL and ATL∗ into au-
tomata, implicitly defines a notion of model-checking games for the two logics.

2 Atomic games

As outlined in the introduction, at the core of our analysis are games that in-
volve two players; we will call them Ego and Alter. The basic model is that of
zero-sum games with two possible utility values -1 and 1, representing a win
or a loss, respectively. Such a game is represented in normal form by a tuple
(SE , SA, Z, π, uE), where SE and SA are the sets of strategies or actions avail-
able to Ego and Alter, respectively, Z is the set of possible outcomes determined
by the play function π : SA×SE → Z, and uE : Z → {−1, 1} is a utility function
associating to every outcome a winning or losing value for Ego. We sometimes
write ŝt to denote π(s, t).

We investigate different ways in which (descriptions of) games are composed
out of (descriptions of) their parts. This section fixes our terminology for speak-
ing about parts that are atomic in the sense that they involve only one round
of interaction. The central notion is that of a game form, – a partial representa-
tion of a game which omits utilities. With effectivity functions and agent forms,
we introduce two particular representations of game forms that will be used to
define Game Logic and Alternating-Time Logics.

Game forms, types. At the most abstract level, an untyped game form is
a tuple Γ = (S,Z, π) specifying a set of strategies that is not associated to
any particular player, a set of possible outcomes, and a (partial) play function
π : S × S → Z. A game type α identifies a subset Sα ⊆ S of strategies in an
untyped game form. The purpose of a game type, or simply type, is to designate
the strategies available to the players for playing their part in a game. For each
concrete modelling domain, a collection Act of types is fixed beforehand. Types
come in pairs: for every type α ∈ Act there is a dual type −α ∈ Act, the dual
of which is again α. The instantiation of an untyped game form Γ with a type α
yields the (typed) game form Γα := (SE

α , S
A
−α, Z, π). While the play function π

might be only partially defined in Γ , we require it to be complete in every game
form Γα with α ∈ Act.

For instance, a matrix p : [m]× [n] → Z can be viewed as an untyped game
form Γ = (S,Z, p) where the set of strategies consists of all row and column
indices, S = [max{m,n}]. (We denote by [n] the set [1, . . . , n].) There are two
natural types Act = {row, col} with col = −row, which associate the sets of
rows and columns to the two players. The game form Γrow = ([m]E , [n]A, Z, p)
represents the scenario in which Ego chooses a row and Alter, simultaneously,
chooses a column whereas the dual Γcol = ([n]E , [m]A, Z, p) represents the sce-
nario where Ego chooses a column and Alter chooses a row. By associating a
utility u : Z → {−1, 1} for Ego to matrix entries, we obtain the games (Γrow, u)
and (Γcol, u). Notice that these two games are in general different.

4

Our notion of game type is not standard in Game Theory; it is related to the
established notion of a player type in games with incomplete information only
in the loose sense that it makes an abstract description of a game more con-
crete. Intuitively, untyped game forms allow us to specify actions by abstracting
from concrete players or agents who may perform them. Our example illustrates
two uses of types, the motivations for which are bother rather particular to
Computer-Science applications. On the one hand, different types can be applied
to an untyped game form to define several games on the basis of a single descrip-
tion. On the other hand, types provide us with a way to separate the concept
of a player from that of an agent: we may, e.g., first describe which actions are
available to be performed by an agent and later use a type to specify whether it
is Ego or Alter who can choose an action of this agent.

Agent forms. We view descriptions of interactive events performed by several
agents as a class of game forms with a particular representation. Let us fix a
number n of agents. We refer to a list of elements x = (xi)i∈[n], one for each
agent, as a profile. A coalition is a set of agents C ⊆ [n]; the complementary
coalition is −C := [n] \ C. For a profile x and a coalition C, we write xC to
denote the list (xi)i∈C . Then, an agent form is a tuple (S1 . . . Sn, Z, π) where
Si is the set of actions available to agent i, Z is the set of possible outcomes,
and π : ×n

i=1Si → Z is a partial play function. For each coalition C ⊆ [n],
we derive the set SC := { sC | s ∈ ×n

i=1Si } of joint actions available to C.
The agent form represents the untyped game form Γ = (S,Z, π) over the set
of strategies S := {SC | C ⊆ [n] }. Types on the domain of n-agent forms
correspond to coalitions of agents, hence, Act = 2[n]. Every coalition C ⊆ [n]
induces a type that is associated to the set SC ; the dual type is associated
to S−C . Accordingly, the typed game form ΓC describes the scenario in which
player Ego acts in the capacity of the coalition C whereas Alter acts in the
capacity of the complementary coalition. Thus, agent forms can be understood
as a representation artifice to describe 2n different game forms by one structure.

Effectivity functions and neighbourhood forms. The concept of effectivity
function introduced by Moulin and Peleg [15] describes the power that a player
has to force the outcome of a game within a target set. We assume the perspective
of Ego when we refer to the effectivity of a game form. The effectivity f(Γ) of a
game form Γ = (SE , SA, Z, π) (for Ego) is defined by

f(Γ) := {X ⊆ Z | (∃s ∈ SE) (∀t ∈ SA) ŝt ∈ X }.

Clearly, the effectivity of a game is upwards closed in the sense that, with every
set X ∈ f(Γ), the closure dXe := {Y | X ⊆ Y ⊆ Z } is included in f(Γ).

When an untyped game form Γ is fixed, we write f(α) to denote the effec-
tivity of Γα. Consider for example the game form described by the matrix in the
left of Figure 1. For the two types selecting rows and columns, respectively, we
obtain f(row) = d{ {p, q}, {p, r} }e and f(col) = d{ {p}, {q, r} }e. We may also

5

view the matrix as a description of an agent form with, say, agent 1 in charge of
selecting rows and agent 2 in charge of selecting columns. Then, there are four
different types, one for each coalition C ⊆ {1, 2}. Besides f({1}) and f({2})
which coincide with f(row) and f(col), we obtain f({1, 2}) = d{{p}, {q}, {r}}e
and f(∅) = {{p, q, r}}.

Effectivity functions correspond to a particularly simple kind of game forms
which we call neighbourhood forms. For a set Z of outcomes, a neighbourhood
form is given by a set F ⊆ 2Z . It describes the sequential scenario where Ego
first chooses a set X ∈ F , then Alter chooses an element x ∈ X which then
constitutes the outcome of the game. For a fixed set Act of types, we define
untyped neighbourhood forms as the disjoint union of the typed neighbourhood
forms over all types in Act.

3 Logics and Models

The game forms discussed in Section 2 are concerned with the immediate out-
come of interactive events. There is little to say, in logical terms, about such
events in isolation. The challenge is to describe the dynamics of systems driven
by sequences of interactive decisions. We focus on discrete systems that switch
between states via transitions arising from the interplay of two competing play-
ers. In this section, we introduce extensive game structures as a generic model
of such systems. After briefly describing syntax and semantics of Game Logic
and Alternating Time Logics, we proceed to comparing the two logics. The key
step is to show that GL and ATL∗ are both invariant under an equivalence which
relates game structures of the same effectivity.

Extensive game structures. Extensive game structures generalise Kripke
structures by replacing the accessibility relation with transition relations associ-
ated to effectivity functions. (Our model is close to the one proposed in [10] for
plain ATL.)

Let Act be a set of atomic game types closed under dual and let Prop be a
set of atomic propositions. An extensive game structure for Act and Prop is a
structure G = (V, Γ, (Vp)p∈Prop) where V is a set of positions, Γ is a function that
associates to every position v an untyped game form Γ (v) for the domain Act
with outcomes in V , and Vp designates those positions where p holds. We will
usually consider rooted structures with a designated initial position. Intuitively,
taking a transition of type α ∈ Act in state v of G amounts to switching into the
state resulting as an outcome of an (atomic) play between Ego and Alter in the
typed game form Γ (v)α. By taking a sequence of such transitions, the players
Ego and Alter form a path of infinite length to which we refer as a global play.

3.1 Parikh’s Game Logic

The Propositional Logic of Games GL, introduced by Parikh in 1983 ([16, 17]),
was the first logical formalism dedicated to reasoning about games. It proposes

6

a way of describing the dynamics of interaction in a way similar to the one in
which PDL describes the dynamics of program execution.

The syntax of GL allows to compose interactive scenarios for two players.
Starting from a set Prop of atomic propositions and a set Act of atomic game
types (or action names), the expressions of GL are of two sorts, formulae and
game expressions. Formulae ϕ are constructed from Prop by Boolean operations
and modalities 〈γ〉ϕ associated to game expressions γ that are generated by the
grammar: γ := a | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd, for a ∈ Act.

Informally, game expressions specify a schedule for a game between the two
players Ego and Alter. The sequential composition γ1; γ2 means: play γ1 first,
then γ2. The nondeterministic choice operator γ1 ∪ γ2 lets the player in turn
decide which of γ1 or γ2 to play. The iteration operator γ∗ allows to play γ
repeatedly, for a finite number of times, whereby the player in turn can decide
before each round whether a new round is to be played. Finally, the test operator
(ϕ?) invokes a referee to verify whether ϕ holds; if so, the play just continues,
otherwise it breaks and the player in turn loses. Within atomic game forms, the
plays proceed sequentially: first, the player in turn chooses his part of the action,
and then the other player responds with his part. At the beginning of a play,
Ego is in turn to move.

The game-specific essence of Game Logic resides in the dualisation operator.
Informally, this operator corresponds to a player-swapping rule which reverses
the order of play and the set of strategies available to a player. At the atomic
level, it thus corresponds to dualising the type of a game form.

The semantics of GL-expressions is defined on neighbourhood structures,
i.e., extensive game structures where the game forms Γ (v) are given by untyped
neighbourhood forms. Statements about the models are constructed by associat-
ing these game expressions with modalities. A typical statement 〈γ〉ϕ expresses
that, at the current state, Ego has a strategy to play according to γ in such a
way that either ϕ is true when the play ends, or Alter breaks a rule and loses.
For a formal definition we refer the reader to [18].

3.2 Alternating-Time Logics

The framework of temporal logics, founded in the work of Pnueli and Manna [14]
represents a way of adding recursion mechanisms to basic modal logic that is
conceptually different from dynamic logics such as PDL and GL. While the latter
assume an internal perspective, referring to the execution of a program or a
protocol, temporal logics are geared towards analysing the behaviour of systems
in the flow of time, referring to sequences of states in a run by isolating them
from their originating context.

The formalisms of Alternating-Time Logics proposed by Alur, Henzinger,
and Kupferman [2] adapts the temporal quantification pattern for the purpose
of analysing interactive systems, typically multi-agent systems. The main rep-
resentative of this logic ATL∗ is defined as an extension of branching-time logic
CTL∗ by adding a game quantifier which allows to refer to a play formed by two
strictly competing players in an underlying game structure.

7

The native models of Alternating-Time Logics are concurrent game struc-
tures, i.e., extensive game structures where the transitions are given by agent
forms. For a set of atomic propositions Prop and a number n of agents, the for-
mulae of ATL∗ are of two sorts, state formulae ϕ and path formulae η, generated
by the following grammars:

ϕ := ⊥ | p | ϕ ∨ ϕ | ¬ϕ | 〈〈C〉〉η and η := ϕ | η ∨ η | ¬η | Xη | ηU η

where p ∈ Prop, C ⊆ [n].
Plain ATL is the fragment of ATL∗ obtained by restricting the application

of the operator 〈〈C〉〉 to path formulae of type Xη and ηU η. While not very
expressive, this fragment is relevant because it is computationally tractable.

The meaning of ATL∗-formulae in a extensive game structure G is defined by
mutual induction over path and state formulae. Path formulae are interpreted
over traces of plays in G according to the rules for linear temporal logic LTL

with the constructors Xη and ηU η corresponding to the LTL-operators next and
until, respectively. The quantifier 〈〈C〉〉 transforms any path formula η into a
state formula 〈〈C〉〉η which holds at those positions v from which, player Ego
acting in capacity of coalition C has a strategy to force an infinite play which
satisfies η.

It is important to remark that strategies of Ego are functions that associate
to every initial segment π of a play, an action in the game form of type C reached
in the play. In the extensive game over G with η describing the winning outcomes,
Ego can force a win if, and only if, he can force a win while playing such that in
every atomic game form, he moves first and makes his choice visible to Alter.

3.3 Comparing GL and ATL∗.

A priori, GL and ATL∗ are interpreted on different kinds of extensive game struc-
tures. To relate the two logics, we need to establish a correspondence between
concurrent game structures and neighbourhood structures that is compatible
with the logic. Minimal requirements on such a model correspondence would be
(1) to relate two formulae ϕ ∈ ATL∗ and ϕ′ ∈ GL if, for all concurrent game
structures G and all corresponding neighbourhood structures G′, we have G |= ϕ

if and only if G̃′ |= ϕ′, and (2) to respect the Boolean and modal operators
common to the two logics.

In the following, we characterise a much stronger model correspondence. To-
wards this, we introduce an equivalence between general extensive game struc-
tures under which both GL and ATL∗ are invariant, and we show that each class
of equivalent extensive structures has a representative among neighbourhood
structures.

The idea is to identify each concurrent game structure G = (V, Γ, (Vp)p∈Prop)
for n agents with the neighbourhood structure G̃ obtained by replacing every
(untyped atomic) game form Γ (v) with the neighbourhood form corresponding
to the effectivity of Γ (v). We justify this identification by showing that ATL∗-
formulae cannot distinguish between G and G̃. This allows us to reduce the

8

interpretation domain of ATL∗ without loss to neighbourhood domains —the in-
terpretation domain of GL— over the set of types Act = 2[n] corresponding to
coalitions of agents. Over this restricted domain, we can compare the expressive-
ness of ATL∗ speaking about coalitions of n agents with the expressiveness of GL∗

speaking about a set of 2n atomic game actions associated to agent coalitions.
The difficulty consists in defining the effectivity of an untyped game form

(where it is not yet known which actions belong to a player) in such a way that
the meaning of all its typed instantiations (where actions are readily assigned
to players) are preserved. Our approach involves the notion of sequentialisation
of a game form, which captures the situation where the players perform their
choice in a given order.

Sequentialisation. Any game form Γ naturally gives rise to two sequential
game forms ΓE and ΓA. The game form ΓE correspond to the scenario where
Ego chooses his action first, and then Alter chooses his action being informed
about Ego’s choice. Conversely, in ΓA, Alter chooses first and then Ego follows.
We are interested, more generally, in the set of all sequential scenarios that may
arise from an untyped game form Γ = (S,Z, π), where strategies are not yet
associated to a particular player. To capture the flow of information from the
(yet unknown) first to the second mover we extend the set of available strategies
to include all perfect-information strategies over choices from S. Formally, we
consider the untyped game form Γ̂ = (Ŝ, Z, π̂) with strategies Ŝ = S∪SS , where
SS denotes all functions from S onto S. The play function π̂ is derived from π
by setting π̂(s, t) to π(s, t(s)) if (s, t) ∈ S×SS , or to π(s(t), t) if (s, t) ∈ SS ×S;
otherwise the value is left undefined. Each type α for Γ induces two types for
the new game form, E :α and A :α, which correspond to the scenarios in which
Ego or Alter moves first, respectively. Thus, the new types assign to Ego the
strategy sets ŜE : α := Sα and ŜA : α := (Sα)S−α, respectively. We will call these
types sequential types, and refer to Γ̂E : α and Γ̂A : α, simply denoted ΓE : α and
ΓA : α, as sequentialisations of Γ . Observe that the dual of a sequential type E :α
is A :−α which swaps both the sets of available actions and the play order of
Ego and Alter.

By definition, effectivity functions do not distinguish between a game form Γα

and its sequentialisation ΓE : α with Ego as first mover, that is, f(E :α) = f(α).
Moreover, the effectivity of sequential types exhibits the following duality.

Lemma 1. For any game form Γ and every appropriate type α,

f(−E :α) = f(A :−α) = {X ⊆ Z | (∀t ∈ SA
α)(∃s ∈ SE

−α) s t̂ ∈ X }
= {Z \X | X 6∈ f(E :α) }.

Consequently, the set of sequentialisations of an untyped game form is charac-
terised by the effectivities of the scenarios where Ego moves first.

Neighbourhood representation. In Section 2 we illustrated that effectivity
functions correspond to (typed) sequential game forms. Conversely, Lemma 1

9

points out that sequential game forms can be represented by a set of effectivity
functions. In the following, we introduce untyped game forms that embed such
a set of effectivity functions into one representation.

For an untyped game form Γ over a set of types Act, let us consider the
graph Gα representing the sequential form associated to the effectivity of Γα

where we label all arcs emanating from the root by α and the remaining arcs by
−α. Now, we merge all the graphs Gα for α ∈ Act, by joining their roots and
the terminal nodes that correspond to the same outcome. The resulting graph
can again be viewed as an untyped sequential game form Γ̃ , which we call the
neighbourhood representation of Γ . The meaning of types for Γ̃ is determined by
the arc labels; every type α corresponds to the set of strategies that select an α-
successor for each node. The play function π̃(sE , sA) for Γ̃α returns the terminal
node reached by moving first to the α-successor selected by sE and then to the
(−α)-successor selected by sA. The construction is illustrated in Figure 1.

As the following lemma points out, the neighbourhood representation Γ̃ pre-
serves the effectivity of all types for the original game form Γ .

Lemma 2. Let Γ be an untyped game form and let Γ̃ be its neighbourhood rep-
resentation. Then, f(Γα) = f(Γ̃α) for all types α.

π =

0@ p q

p r

1A
q

r

�

1

>>||||||||

1

 B
BB

BB
BB

B

�
2

vvnnnnnnnnnnnnnnn
2 //

◦

1

OO

1

��

2 //2oo

�
2 //

2

hhPPPPPPPPPPPPPPP

�
1oop

Fig. 1. A game form and its neighbourhood representation (only minimal effectivity
sets are shown and the trivial types ∅ and {1, 2} are omitted)

Effectivity equivalence. Lemma 2 suggests a canonical representation of game
forms in terms of neighbourhood forms. To make this idea precise, let us fix a
modelling domain with a set Act of types. We say that two games forms Γ
and Γ ′ with the same set of outcomes are effectivity-equivalent if their effectiv-
ities f(Γ) and f(Γ ′) coincide. Likewise, two untyped game forms Γ and Γ ′ are
effectivity equivalent if the game forms Γα and Γ ′

α are so, for all types α ∈ Act.
Due to the fact that effectivity functions preserve the duality of sequential

types A :α and E :−α, it follows that the effectivity equivalence between untyped
game forms extends to their sequentialisations.

Lemma 3. If two untyped game forms Γ and Γ ′ are effectivity equivalent, then
so are their sequentialisations i.e., f(Γi : α) = f(Γ ′

i : α), for every type α ∈ Act
and each player i ∈ {E,A}.

10

In particular it follows that, no matter whether a sequentialisation is applied
to a game form or to its neighbourhood representation, the resulting sequential
forms are equivalent.

Finally, we lift the notion of effectivity-equivalence to extensive game struc-
tures. We say that two extensive game structures G = (V, Γ, (Vp)p∈Prop) and
G = (V, Γ ′, (Vp)p∈Prop) over the same sets of positions V and with the same
valuations Vp are effectivity-equivalent, if for any state v the game forms Γ (v)
and Γ ′(v) are effectivity equivalent. Notice that this is the same as requiring
that G and G′ have the same neighbourhood representation.

Theorem 4. The logics GL and ATL∗ are invariant under effectivity equiva-
lence: For any pair of effectivity-equivalent extensive game structures G and G′,
we have G |= ϕ iff G′ |= ϕ, for any formula ϕ of GL or ATL∗.

Proof. The proof is by induction over the structure of formulae. The critical case
regards the modal next-step operators 〈〈C〉〉X and γ of ATL∗ and GL, respectively.
(When speaking about modal operators of ATL∗, we tacitly mean the modal
operators of the Alternating-Time µ-Calculus in which ATL∗ is embedded [2].)

Towards an operational characterisation of effectivity equivalence, we define
simulation relations that capture the ability of a player to transfer his strategy
from one game to another one in a way that maintains the same outcome on
both sides. We say that, for Ego, the game form Γ = (SE , SA, Z, π) is simulated
by the game form Γ ′ = (S′E , S′A, Z, π′), and we write Γ 4E Γ ′, if for every
s ∈ SE there exists s′ ∈ S′E such that for every t′ ∈ S′A there exists t ∈ SA for
which ŝt = s′̂t′. We write Γ ∼E Γ ′, if Γ 4E Γ ′ and Γ ′ 4E Γ . For Alter, the
notions are defined analogously.

Then, for any pair Γ , Γ ′ of untyped game forms over the same set of types
Act and with the same sets of outcomes, we have:

(i) For any type α, the forms Γα and Γ ′
α are effectivity-equivalent if, and only

if, Γα ∼E Γ ′
α.

(ii) As untyped game forms, Γ and Γ ′ are effectivity-equivalent if, and only if,
Γα ∼E Γ ′

α and Γα ∼A Γ ′
α, for all types α.

Accordingly, if two extensive game structures G and G′ over the same set
of positions V are effectivity-equivalent, the simulation relation between atomic
games Γ (v) and Γ ′(v), for all v ∈ V extends naturally to a simulation relation
between the structures. Essentially, every game composed via operators of ATL∗

or GL can be played on G in the same way as it can be played on G′. ut

Since every game structure is effectivity-equivalent to its neighbourhood rep-
resentation, we obtain the following corollary.

Corollary 5. A formula of GL or ATL∗ holds in an extensive game structure
if, and only if, it holds in its neighbourhood representation.

We can associate to any concurrent game structure G its neighbourhood
representation G̃ to define an appropriate correspondence between formulae

11

ϕ ∈ ATL∗ and ψ ∈ GL by setting ϕ ψ whenever G |= ϕ iff G̃ |= ψ. Beyond
respecting Boolean operations, this correspondence has the property that ϕ ψ
and ϕ′ ψ implies ϕ ≡ ϕ′. This allows us to extend the interpretation of Game
Logic to concurrent game structures G by assigning to any formula ϕ ∈ GL its
meaning over the neighbourhood representation G̃ which will finally enable us
to compare the two logics.

4 Recursion mechanisms

In this last part of the paper, we sketch a direction for investigating the equiv-
alence between formulae of GL and ATL∗ in terms of automata. In the previous
section, we have seen that the basic modal operators of ATL and GL are essen-
tially equivalent on extensive game structures with a set of types that are ade-
quate for agent forms. To analyse the recursion mechanisms of GL and ATL∗ we
now translate both logics into automata that run over extensive game structures.
We call these game automata, because they operate with transitions determined
by atomic game forms.

Game Automata. A game automaton for a set Prop of propositions and a
set Act of types is a tuple

A = (Q := QE ∪̇ QA,Prop,Act, qI, δ, Ω),

where Q is a finite state set with partitions QE and QA controlled by Ego and
Alter, respectively, qI ∈ Q is an initial state, δ : Q× 2Prop → Q×Q ∪Act×Q
is a transition function, and Ω : Q → N is a priority function describing a
parity acceptance condition. Intuitively, the run of the automaton on an input
structure G corresponds to a play of possibly infinite duration between Ego and
Alter, starting from state qI and the initial position v0 of G. From a state q
and a position v, a transition δ(q, P) is enabled if the predicates in P ⊆ Prop
match those that hold at v; the player who controls the current state is in charge
of the transition: if δ(q, P) = (q′, q′′), he has to choose between switching the
automaton into state q′ or into state q′′; otherwise, if δ(q, P) = (α, q′), the player
who controls q first performs an action of type α in the game form Γ (v), and
then the other player performs an action of the dual type −α. The outcome of
this local play determines the new position in G, while the automaton is switched
into q′. Finally, the game structure G is accepted, if Ego has a strategy to ensure
that the sequence of states visited during the play satisfies the following parity
property: the least priority occurring infinitely often is even.

Formally, acceptance is defined in terms of a graph game between Ego and
Alter on the synchronised product between A and G. The only non-standard
element of this definition regards the intermediary configuration reached after
an α-action has been executed by one player (and before the dual action is
executed by the opponent) which does not correspond to any state-position pair.
This intermediary state can be represented, by the set of all possible outcomes

12

of the action (of type −α) that the second mover has to take. The acceptance
game is thus a classical graph game [11].

From Game Logic to automata. To translate a GL-formula into a game
automaton, we first first transform it into a pure game expression 〈γ〉true from
which we also eliminate all non-atomic test operations; next, we put the game
expression into a normal form in which every operation is associated explicitly
to a player i ∈ {Ego,Alter} (see [3] for details). Notice that these operations
only amount to relabellings on the syntax graph of the original formula which
leaves its structure essentially unchanged.

Now, we build an automaton A(γ) inductively as illustrated in Figure 2;
the states drawn in dotted frames are coalesced. Note that each component in
this construction has a single entry (marked •) and a single exit (marked ◦).
Entry states are assigned to the player i in control of the corresponding subex-
pression. Significant priorities are assigned to states corresponding to ?-iteration
operators. According to whether the iteration is controlled by Ego or Alter, the
priority is even or odd, respectively, and the priority of a ?-expression is lower
than that of all its subexpressions.

A(ai) A(γ1; γ2) A(γ1 ∪i γ2) A(γ?i

)

•i

a

��
◦

•
A(γ1)

◦
•

A(γ2)

◦

�� �

�	
��� �

�	
�

•i

����
��
��

��2
22

22
2

•

A(γ1)

•

A(γ2)

◦ ◦

�� �

�	
�

�� �

�	
�

•

A(γ)

•i

��

33

◦

◦

�� �

�	
�

Fig. 2. Translating Game Logic into automata

The construction shows that GL-formulae translate into game automata
where each component has a single entry and a single exit. In terms of
programming-language theory, the interactive program constructions featured
in GL are well structured. It is easy to show that every automaton with a tran-
sition graph that is well structured can be conversely translated into GL.

Proposition 6. A class of extensive-form game models can be defined in Game
Logic if, and only if, it can be described by a game automaton with a single-entry
single-exit transition graph.

To summarise, the higher-level quantification pattern of Game Logic corre-
sponds to well-structured transition graphs. This structural restriction witnesses
an expressive weakness of GL. It shows, for instance, that it is impossible to de-
scribe in GL extensive game models that embed a clique of size at least 3 ([4]).
Thus, Game Logic is less expressive than the Alternating-Time µ-calculus.

13

From ATL to automata. To translate a typical ATL∗-formula 〈〈C〉〉η into a
game automaton, we construct first the automata Aϕ corresponding to the direct
state subformulae ϕ of η. Next, we substitute all these state subformulae in η
with fresh propositional variables Xϕ as placeholders. The formula η′ obtained
in this way can be regarded as a linear-time expression over these variables; now,
we consider a deterministic word automaton Aη recognising the language of η′.
This automaton we transform into a game automaton, by replacing each forward
transition on the word model with an atomic modality corresponding to a game
form of type C. Finally, we replace the tests for variables Xϕ with a transition
into the corresponding automaton Aϕ.

Analysing the structure of the automata obtained when translating plain
ATL, the restricted variant of ATL where path formulae cannot be nested, it turns
out that one obtains single-entry single-exit transition graphs. As a consequence
of this translation and of Proposition 6, it thus follows that GL subsumes ATL.

Corollary 7. Every formula ϕ of plain Alternating-Time Logic ATL can be
translated into an equivalent Game Logic formula of size O(|ϕ|).

The translation makes several expressive restrictions of ATL∗ apparent. For
instance, every strongly connected component of the automaton obtained for
an ATL∗ refers only to one kind of atomic types. Thus, one cannot express for
instance, that agent 1 has a strategy to reach a state with property p in a play
where he may form coalitions either with agent 2 or with agent 3, which is
expressible in GL by 〈((1, 2) ∪ (1, 3))∗〉p.

On the other hand, we conjecture that GL cannot express all properties
expressible in ATL∗. A promising source of inspiration towards settling this issue
is the research on non-ambiguous regular expressions (see, e.g. [6]). Intuitively,
a regular expression is non-ambiguous if every word can be matched in at most
one way to expression symbols while it is read. An example of an inherently
ambiguous property over the set set of predicates {0, 1, 2} is that infinitely often
the symbol 2 is seen 2 steps before the symbol 0 occurred. Whether Ego is able
to enforce a path with this property seems unlikely to be expressible in GL,
whereas it is clearly expressible in ATL∗.

5 Conclusion

We set out to compare two prominent formalisms for reasoning about games
that are historically remote and emerged from different operational paradigms.
Parikh’s Game Logic purports an internal perspective on the execution of an in-
teractive program, whereas the family of Alternating Time Logic of Alur, Hen-
zinger, and Kupferman reflect an external perspective on computations in a
concurrent multi-agent systems.

By rephrasing the semantics of the two formalisms in unified framework,
we point out that they show remarkable similarities: at the atomic level, the
differences are limited to representation aspects, whereas at the global level, both
formalisms have limitations due to recursion mechanisms which can be explained

14

in terms of structural properties of game automata. Through our analysis, we
reduce the question about how the two logics differ in their expressive power to
questions about automata with a restricted transition structure.

References

1. T. Ågotnes, V. Goranko, and W. Jamroga, Alternating-time temporal logics
with irrevocable strategies, in TARK ’07: Proc. 11th Conference on Theoretical
Aspects of Rationality and Knowledge, 2007, ACM, pp. 15–24.

2. R. Alur, T. A. Henzinger, and O. Kupferman, Alternating-time temporal
logic, J. ACM, 49 (2002), pp. 672–713.

3. D. Berwanger, Game Logic is Strong Enough for Parity Games, Studia Logica,
75 (2003), pp. 205–219.

4. D. Berwanger, E. Grädel, and G. Lenzi, The variable hierarchy of the µ-
calculus is strict, Theory of Computing Systems, 40 (2007), p. 437466.

5. Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey, ATL with
strategy contexts and bounded memory, Research Report LSV-08-14, Laboratoire
Spécification et Vérification, ENS Cachan, 2008.

6. A. Bruggemann-klein and D. Wood, One-unambiguous regular languages, In-
formation and computation, 142 (1998), pp. 182–206.

7. D. C. Dennett, The intensional stance, MIT Press, 1989.
8. E. A. Emerson and J. Y. Halpern, “Sometimes” and “not never” revisited:

On branching versus linear time, in Conference Record of the 10th Annual ACM
Symposium on Principles of Programming Languages, POPL ’83, ACM, 1983,
pp. 127–140.

9. M. Fischer and R. Ladner, Propositional dynamic logic of regular programs,
Journal of Computer and System Sciences, 18 (1979), pp. 194–211.

10. V. Goranko and G. van Drimmelen, Complete axiomatization and decidability
of alternating-time temporal logic, Theor. Comput. Sci., 353 (2006), pp. 93–117.

11. E. Grädel, W. Thomas, and T. Wilke, eds., Automata, Logics, and Infinite
Games, vol. 2500 of LNCS, Springer, 2002.

12. J. Hintikka and G. Sandu, Game-theoretical semantics, in Handbook of Logic
and Language, Elsevier and MIT Press, 1997, pp. 361–340.

13. N. Howard, Paradoxes of Rationality: Theory of Metagames and Political Behav-
ior, MIT Press, 1971.

14. Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Specifica-
tion, Springer-Verlag, 1992.

15. H. Moulin and B. Peleg, Cores of effectivity functions and implementation the-
ory, Journal of Mathematical Economics, 10 (1982), pp. 115–145.

16. R. Parikh, Propositional Game Logic, in IEEE Symposium on Foundations of
Computer Science, IEEE, 1983, pp. 195–200.

17. R. Parikh, The logic of games and its applications, Annals of Discrete Mathemat-
ics, 24 (1985), pp. 111–140.

18. M. Pauly, From Programs to Games: Invariance and Safety for Bisimulation, in
Proc. 14th Annual Conference of the European Association for Computer Science
Logic CSL 2000, vol. 1862 of LNCS, Springer-Verlag, 2000, pp. 586–496.

19. J. van Benthem, Modal frame correspondences and fixed-points, Studia Logica,
83 (2006), pp. 133–155.

20. W. van der Hoek and M. Pauly, Modal logic for games and information, in
Handbook of Modal Logic, ?Elsevier, Amsterdam, 2007, pp. 1078–1143.

15

