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Abstract
We investigate the complexity of satisfiability for
one-agent refinement modal logic (RML), an exten-
sion of basic modal logic (ML) obtained by adding
refinement quantifiers on structures. RML is known
to have the same expressiveness as ML, but the
translation of RML into ML is of non-elementary
complexity, and RML is at least doubly exponen-
tially more succinct than ML. In this paper we
show that RML-satisfiability is ‘only’ singly expo-
nentially harder than ML-satisfiability, the latter be-
ing a well-known PSPACE-complete problem.

1 Introduction
Modal logics with propositional quantifiers have been inves-
tigated since Fine’s seminal paper [Fine, 1970]. Fine distin-
guishes three different propositional quantifications, which
allow different kinds of model transformations: quantifying
over propositionally definable subsets (over booleans), quan-
tifying over subsets definable in the logical language (of basic
modalities and quantifiers), and quantifying over all subsets.
Only the first two are, in our modern terms, bisimulation pre-
serving. Propositional quantification can easily lead to unde-
cidable logics [Fine, 1970; French, 2006]. Undecidability re-
lies on the ability of propositional quantification to dictate the
structural properties of the underlying model [French, 2006].
This has motivated, more recently, the introduction of bisim-
ulation quantified logics [Visser, 1996; Hollenberg, 1998;
French, 2006; Pinchinat, 2007]. In this framework, the quan-
tification is over the models which are bisimilar to the current
model except for a propositional variable p. This operation is
bisimulation preserving, and these logics are decidable.

In [Balbiani et al., 2008] the authors propose a novel way
of quantifying, namely over modally definable submodels.
Unlike the above proposals, this not merely involves changing

∗The paper on which this extended abstract is based was the re-
cipient of the best paper award of the 2012 JELIA conference in
Toulouse [Bozzelli et al., 2012b]. Hans van Ditmarsch is also affil-
iated to IMSc, Chennai, as research associate.
†Technical University of Madrid (UPM), laura.bozzelli@fi.upm.es
‡LORIA, CNRS / Univ. of Lorraine, hans.van-ditmarsch@loria.fr
§IRISA/INRIA, University of Rennes, Sophie.Pinchinat@irisa.fr

the valuation of a proposition in a subdomain, but restricting
the model to that subdomain. The setting for these logics is
how to quantify over information change. In the logic APAL
of [Balbiani et al., 2008], an expression that we might write
as ∃ϕ for our purposes stands for ‘there is a modal formula
ψ such that in the submodel restriction to the states satisfy-
ing ψ it holds that ϕ’. This logic is undecidable [French
and van Ditmarsch, 2008]. Refinement modal logic (RML)
[van Ditmarsch and French, 2009; van Ditmarsch et al., 2010;
Bozzelli et al., 2012a] is a generalization of this perspective to
more complex model transformations than submodel restric-
tions. This is achieved by existential and universal quantifiers
which range over the refinements of the current model. From
the atoms/forth/back requirements of bisimulation, a refine-
ment of a modal structure need only satisfy atoms and back.
It is therefore the dual of a simulation that need only satisfy
atoms and forth. Refinement is more general than model re-
striction, since it is equivalent to bisimulation followed by
model restriction. From a syntactic point of view it is bisim-
ulation quantification followed by a relativization [Bozzelli
et al., 2012a]. Just as in bisimulation quantified logics we
have explicit quantification over propositional variables, re-
finement quantification as it is realized in refinement modal
logic is implicit quantification over propositional variables,
i.e., quantification over variables not occurring in the formula
bound by the quantifier. In RML, an expression ∃rϕ stands
for ‘there is a refinement wherein it holds that ϕ.’

As an example of a refinement consider the following four
rooted (underlined) structures.

M• • • •

M ′• • •

M ′′• • • •

M ′′′• • • ••••
With respect to the first model, M , the second one, M ′, is a
model restriction. ModelM ′′ is a refinement ofM . It is not a
model restriction. However, it is a model restriction ofM ′′′, a
bisimilar copy of M . Refinements have really different prop-
erties, e.g., a formula like 32⊥ ∧ 332⊥ is clearly false in
any model restriction of M , but it true in its refinement M ′′.
In the root of the original model M is satisfied the formula
∃r(32⊥ ∧332⊥), where ∃r is the refinement quantifier.

As amply illustrated in [Bozzelli et al., 2012a], refinement



quantification has applications in many settings: in logics for
games [Alur et al., 2002; Pinchinat, 2007], it may correspond
to a player discarding some moves; for program logics [Harel
et al., 2000], it may correspond to operational refinement; and
for logics for spatial reasoning, it may correspond to subspace
projections [Parikh et al., 2007].

We now get to the content of this paper and its novel con-
tributions. We focus on complexity issues for (one-agent)
refinement modal logic [van Ditmarsch and French, 2009;
van Ditmarsch et al., 2010; Bozzelli et al., 2012a], the
extension of (one-agent) basic modal logic (ML) obtained
by adding the existential and universal refinement quanti-
fiers ∃r and ∀r. It is known [van Ditmarsch et al., 2010;
Bozzelli et al., 2012a] that RML has the same expressivity as
ML, but the translation of RML into ML is of non-elementary
complexity and no elementary upper bound is known for its
satisfiability problem [Bozzelli et al., 2012a]. In fact, an
upper bound in 2EXPTIME has been claimed in [van Dit-
marsch et al., 2010] by a tableaux-based procedure: the au-
thors later concluded that the procedure is sound but not com-
plete [Bozzelli et al., 2012a]. In this paper, we close that
gap. We also investigate the complexity of satisfiability for
some equi-expressive fragments of RML. We associate with
each RML formula ϕ a parameter Υw(ϕ) corresponding to
a slight variant of the classical quantifier alternation depth
(measured w.r.t. ∃r and ∀r), and for each k ≥ 1 we con-
sider the fragment RMLk consisting of the RML formulas ϕ
such that Υw(ϕ) ≤ k. Moreover, we consider the existential
(resp., universal) fragment RML∃ (resp. RML∀) obtained by
disallowing the universal (resp. exist.) refinement quantifier.

In order to present our results, first, we recall some com-
putational complexity classes. We assume familiarity with
the standard notions of complexity theory [Johnson, 1990;
Papadimitriou, 1994]. We will make use of the levels Σ EXP

k
(k ≥ 1) of the exponential-time hierarchy EH, which are
defined similarly to the levels ΣP

k of the polynomial-time
hierarchy PH, but with NP replaced with NEXPTIME. In
particular, Σ EXP

k corresponds to the class of problems de-
cided by single exponential-time bounded Alternating Tur-
ing Machines (ATM, for short) with at most k − 1 alter-
nations and where the initial state is existential [Johnson,
1990]. Note that ΣEXP

1 = NEXPTIME. Recall that EH ⊆
EXPSPACE and EXPSPACE corresponds to the class of
problems decided by single exponential-time bounded ATM
(with no constraint on the number of alternations) [Chan-
dra et al., 1981]. We are also interested in an intermedi-
ate class between EH and EXPSPACE, here denoted by
AEXPpol, that captures the precise complexity of some rel-
evant problems [Ferrante and Rackoff, 1975; Johnson, 1990;
Rybina and Voronkov, 2003] such as the first-order theory
of real addition with order [Ferrante and Rackoff, 1975;
Johnson, 1990]. Formally, AEXPpol is the class of prob-
lems solvable by single exponential-time bounded ATM with
a polynomial-bounded number of alternations.

Our complexity results are summarized in Figure 1
where we also recall the well-known complexity of ML-
satisfiability. For the upper bounds, the (technically non-
trivial) main step in the proposed approach exploits a “small”

size model property: we establish that like basic modal logic
ML, RML enjoys a single exponential size model property.

ML

PSPACE-complete

RML∃ = RML1

∈ NEXPTIME

PSPACE-hard

RML∀ ⊆ RML2

∈ ΣEXP
2

NEXPTIME-hard

RMLk+1 (k ≥ 1)

∈ ΣEXP
k+1

Σ EXP
k -hard

RML

AEXPpol-complete

Figure 1: Complexity results for satisfiability of RML and
RML-fragments

Our results are surprising for the following reason. While
our results essentially indicate that satisfiability of RML is
“only” singly exponentially harder than satisfiability of ML,
it is known [Bozzelli et al., 2012a] that RML is doubly expo-
nentially more succinct than ML.

2 Preliminaries
Fix a finite set P of atomic propositions.

A (one-agent Kripke) structure (over P ) is a tuple M =
〈S,E, V 〉, where S is a set of states (or worlds), E ⊆ S × S
is a transition (or accessibility) relation, and V : S 7→ 2P is a
P -valuation assigning to each state s the set of propositions in
P which hold at s. For states s and t of M such that (s, t) ∈
E, we say that t is a successor of s. A pointed structure is
a pair (M, s) consisting of a structure M and a designated
initial state s of M .

A tree T is a prefix-closed subset of N∗, where N is the set
of natural numbers. The elements of T are called nodes and
the empty word ε is the root of T . For x ∈ T , the set of chil-
dren (or successors) of x is {x·i ∈ T | i ∈ N}. The size |T | of
T is the number of T -nodes. A (rooted) tree structure (over
P ) is a pair 〈T, V 〉 such that T is a tree and V : T 7→ 2P

is a P -valuation over T . For x ∈ T , the tree substructure
of 〈T, V 〉 rooted at x is the tree structure 〈Tx, Vx〉, also de-
noted by 〈T, V 〉x, where Tx = {y ∈ N∗ | x · y ∈ T} and
Vx(y) = V (x · y) for all y ∈ Tx. Note that a tree structure
〈T, V 〉 corresponds to the pointed structure (〈T,E, V 〉, ε),
where (x, y) ∈ E iff y is a child of x. Moreover, we can
associate with any pointed structure (M, s) a tree structure,
denoted by Unw(M, s), obtained by unwinding M from s.

For two structures M = 〈S,E, V 〉 and M ′ = 〈S′, E′, V ′〉,
a refinement from M to M ′ is a relation R ⊆ S × S such
that for all (s, s′) ∈ R: (i) V (s) = V ′(s′), and (ii) if
(s′, t′) ∈ E′ for some t′ ∈ S′, then there is some state
t ∈ S such that (s, t) ∈ E and (t, t′) ∈ R. If, addition-
ally, the inverse of R is a refinement from M ′ to M , then
R is a bisimulation from M to M ′. For states s ∈ S and
s′ ∈ S′, (M ′, s′) is a refinement of (M, s) (resp., (M, s)
and (M ′, s′) are bisimilar), written (M, s) < (M ′, s′) (resp.,



(M, s) ≈ (M ′, s′)), if there is a refinement (resp., bisimula-
tion) R from M to M ′ s.t. (s, s′) ∈ R. Note that < is a pre-
order (i.e., reflexive and transitive) and ≈ is an equivalence
relation over pointed structures. For each pointed structure
(M, s), (M, s) ≈ Unw(M, s).

We recall the syntax and semantics of one-agent refinement
modal logic (RML) [van Ditmarsch et al., 2010; Bozzelli et
al., 2012a], an equally expressive extension of basic modal
logic [Blackburn et al., 2001] obtained by adding the existen-
tial and universal refinement quantifiers. For technical con-
venience, the syntax of RML formulas ϕ over P is given in
positive form as:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 3ϕ | 2ϕ | ∃rϕ | ∀rϕ
where p ∈ P , 3ϕ reads as “possibly ϕ”, 2ϕ reads as “nec-
essarily ϕ”, and ∃r and ∀r are the existential and universal
refinement quantifiers. The dual ϕ̃ of a RML formula ϕ is
inductively defined as: p̃ = ¬p, ¬̃p = p, ϕ̃ ∨ ψ = ϕ̃ ∧ ψ̃,
3̃ϕ = 2ϕ̃, 2̃ϕ = 3ϕ̃, ∃̃rϕ = ∀rϕ̃, and ∀̃rϕ = ∃rϕ̃. The
size |ϕ| of a formula ϕ is the number of distinct subformu-
las of ϕ. RML is interpreted over pointed structures (M, s).
The satisfaction relation (M, s) |= ϕ is inductively defined as
usual, we only give the clause for the existential refinement
quantifier (the one for the universal quantifier is its dual).

(M, s) |= ∃rϕ iff for some refinement (M ′, s′)
of (M, s), (M ′, s′) |= ϕ.

Note that (M, s) |= ϕ iff (M, s) 6|= ϕ̃. If (M, s) |= ϕ, we say
that (M, s) satisfies ϕ, or also that (M, s) is a model of ϕ. A
RML formula ϕ is satisfiable if ϕ admits some model.

Let ML be the fragment of RML obtained by disallowing
the refinement quantifiers, which corresponds to basic modal
logic [Blackburn et al., 2001], and RML∀ and RML∃ be the
fragments of RML obtained by disallowing the existential re-
finement quantifier and the universal refinement quantifier,
respectively. Moreover, we introduce a family {RMLk}k≥1
of RML-fragments, where RMLk consists of the RML formu-
las whose weak refinement quantifier alternation depth (see
below) is at most k.
Definition 1 (Weak Refinement Quant. Alternation Depth)
We first define the weak alternation length `(χ) of finite
sequences χ ∈ {∃r,∀r}∗ of refinement quantifiers: `(ε) = 0,
`(Q) = 1 for every Q ∈ {∃r,∀r}, and `(QQ′χ) is `(Q′χ)
if Q = Q′, and `(Q′χ) + 1 otherwise. For a RML formula
ϕ, let T (ϕ) be the standard tree encoding of ϕ, where
each node is labeled by either a modality, or a boolean
connective, or an atomic proposition. The weak refinement
quantifier alternation depth Υw(ϕ) of a RML formula ϕ is
the maximum of the alternation lengths `(χ) where χ is the
sequence of refinement quantifiers along a path of T (∃rϕ)
(note that we consider T (∃rϕ) and not T (ϕ)).
As an example, for ϕ = ∀r∃rp ∨2∃r(p ∧ ∀rq), Υw(ϕ) = 3.
Note that RML∃ = RML1 and RML∀ ⊆ RML2. Moreover,
for each RML formula ϕ, Υw(∀rϕ) = Υw(∀̃rϕ) + 1. The
following illustrates the succinctness of RML∃ w.r.t. ML.
Example 1 For n ≥ 1, a n-block is a sequence b1, . . . , bn+1

of n + 1 bits. The following RML∃ formula ϕn is sat-
isfied by a tree structure iff there are two paths from the

root encoding two n-blocks of the form b1, . . . , bn, bn+1 and
b1, . . . , bn, b

′
n+1 s.t. bn+1 6= b′n+1: ϕn := ∃r

(
3
n+1(0 ∧

¬1) ∧ 3
n+1(1 ∧ ¬ 0) ∧

∧n
i=1

∨
b∈{0,1}2

i(b ∧ ¬(1 − b))
)
.

One can easily show that any ML formula which is equiva-
lent to ϕn has size singly exponential in n.

For each RML-fragment F, let SAT(F) be the set of satisfiable
F formulas. We investigate the complexity of SAT(F) for any
F ∈ {RML,RML∃,RML∀,RML2, . . .}. Figure 1 depicts our
complexity results.

Since RML is bisimulation invariant [van Ditmarsch et al.,
2010; Bozzelli et al., 2012a], and because each pointed struc-
ture is bisimilar to its tree unwinding, w.l.o.g. we can assume
that the semantics of RML is restricted to tree structures. Fur-
ther, since RML and ML have the same expressivity [van Dit-
marsch et al., 2010; Bozzelli et al., 2012a], we easily obtain:

Proposition 1 (Finite Model Property) Let ϕ be a RML
formula and 〈T, V 〉 be a tree structure satisfying ϕ. Then,
there is a finite refinement 〈Tr, Vr〉 of 〈T, V 〉 satisfying ϕ.

3 Upper Bounds
We first provide the upper bounds illustrated in Figure 1. Our
approach consists of two steps. First we show that RML en-
joys a singly exponential size model property. Using this
result, we then show that SAT(RML) can be decided by a
singly exponential-time bounded ATM whose number of al-
ternations on an input ϕ is at most Υw(ϕ) − 1 and whose
initial state is existential.

Theorem 2 (Exponential Size Model Property) For all
satisfiable RML formulas ϕ and tree structures 〈T, V 〉
such that 〈T, V 〉 satisfies ϕ: there exists a finite refine-
ment 〈T ′, V ′〉 of 〈T, V 〉 such that 〈T ′, V ′〉 satisfies ϕ and
|T ′| ≤ |ϕ|3|ϕ|2 .

The main steps in the proof of Theorem 2 are as follows. Fix
a finite set P of atomic propositions and consider RML for-
mulas and tree structures over P . Given a RML formula ϕ,
we associate with ϕ tableaux-based finite objects called con-
straints systems forϕ. Essentially, a constraint system S forϕ
is a tuple of hierarchically ordered finite tree structures which
intuitively represents an extended model of ϕ: (1) each node
x in a tree structure of S is additionally labeled by a set of
subformulas of ϕ which hold at the tree substructure rooted
at node x, and, in particular, the first tree structure, called
main structure, represents a model of ϕ, and (2) the other
tree structures of S are used to manage the ∃r-subformulas of
ϕ. In fact, in order to be an extended model of ϕ, S has to
satisfy additional structural requirements which capture the
semantics of the boolean connectives and all the modalities
except the universal refinement quantifier ∀r, the latter be-
ing only semantically captured. Let C(ϕ) be the set of these
constraints systems for ϕ, which are said to be well-formed,
saturated, and semantically ∀r-consistent. We individuate a
subclass Cmin(ϕ) of C(ϕ) consisting of “minimal” constraints
systems for ϕwhose sizes are singly exponential in the size of
ϕ, and which can be obtained from ϕ by applying structural
completion rules. Furthermore, we introduce a notion of “re-
finement” between constraint systems for ϕ which preserves



the semantic ∀r-consistency requirement. Then, given a finite
tree structure 〈T, V 〉 satisfying ϕ, we show that: (1) there is a
constraint system S ∈ C(ϕ) whose main structure is 〈T, V 〉,
and (2) starting from S , it is possible to construct a minimal
constraint system Smin ∈ Cmin(ϕ) which is a refinement of
S. This entails that the main structure of Smin is a refinement
of 〈T, V 〉 satisfying ϕ and having a single exponential size.
Hence, by Proposition 1, Theorem 2 follows.

Using Theorem 2, we then show Theorem 3 that says
that SAT(RML) can be decided by a singly exponential-time
bounded ATM whose number of alternations on an input ϕ is
at most Υw(ϕ)− 1 and whose initial state is existential.

Theorem 3 SAT(RML) ∈ AEXPpol and SAT(RMLk) ∈
Σ EXP
k for each k ≥ 1.

4 Lower Bounds
We now provide the lower bounds illustrated in Figure 1.
The main contribution is AEXPpol-hardness of SAT(RML),
which is proved by a polynomial-time reduction from a suit-
able AEXPpol-complete problem.

For k ≥ 1, a k-ary deterministic Turing Machine is a deter-
ministic Turing machineM = 〈k, I, A,Q, {qacc, qrej}, q0, δ〉
operating on k ordered semi-infinite tapes and having just
one read/write head, where: I (resp., A ⊃ I) is the in-
put (resp., work) alphabet, A contains the blank symbol #,
Q is the set of states, qacc (resp., qrej) is the terminal ac-
cepting (resp., rejecting) state, q0 is the initial state, and
δ : (Q\{qacc, qrej})×A→ (Q×A×{−1,+1})∪{1, . . . , k}
is the transition function. In each non-terminal step, if the
read/write head scans a cell of the `th tape (1 ≤ ` ≤ k)
and (q, a) ∈ (Q \ {qacc, qrej}) × A is the current pair state/
scanned cell content, the following occurs:

• δ(q, a) ∈ Q × A × {−1,+1} (ordinary moves): M
overwrites the tape cell being scanned, there is a change
of state, and the read/write head moves one position to
the left (-1) or right (+1) in accordance with δ(q, a).

• δ(q, a) = h ∈ {1, . . . , k} (jump moves): the read/write
head jumps to the left-most cell of the hth tape and the
state remains unchanged.

M accepts a k-ary input (w1, . . . , wk) ∈ (I∗)k, written
M(w1, . . . , wk), if the computation ofM from (w1, . . . , wk)
(initially, the `th tape contains the word w`, and the head
points to the left-most cell of the first tape) is accepting.

An instance of the Alternation Problem is a triple
(k, n,M), where k ≥ 1, n > 1, and a M is a polynomial-
time bounded k-ary deterministic Turing Machine with input
alphabet I . The instance (k, n,M) is positive iff the follow-
ing holds, where Q` = ∃ if ` is odd, and Q` = ∀ otherwise
(for all 1 ≤ ` ≤ k), Q1x1 ∈ I2

n

.Q2x2 ∈ I2
n

. . . .Qkxk ∈
I2

n

.M(x1, . . . , xk). Note that the quantifications Qi are re-
stricted to words over I of length 2n.

For k ≥ 1, the k-Alternation Problem is the Alternation
Problem restricted to instances of the form (k, n,M) (i.e., the
first input parameter is fixed to k), and the Linear Alternation
Problem is the Alternation Problem restricted to instances of
the form (n, n,M). The following Prop. is then standard.

Proposition 4 The Linear Alternation Problem is AEXPpol-
complete and for all k ≥ 1, the k-Alternation Problem is
Σ EXP
k -complete.

We then proceed as follows. Fix an instance (k, n,M) of
the Alternation Problem with M = 〈k, I, A,Q, {qacc, qrej},
q0, δ〉. SinceM is polynomial-time bounded, there is an in-
teger constant c ≥ 1 such that when started on a k-ary input
(w1, . . . , wk),M reaches a terminal configuration in at most
(|w1| + . . . + |wk|)c steps. A (k, n)-input is a k-ary input
(w1, . . . , wk) such that wi ∈ I2

n

for all 1 ≤ i ≤ k. Let
c(k, n) := c · (n+ dlog ke), where dlog ke denotes the small-
est i ∈ N such that i ≥ log k. Note that a configuration of
M reachable from a (k, n)-input, called (k, n)-configuration,
can be described as a tuple

−→
C = (C1, . . . , Ck) of k words

C1, . . . , Ck over A ∪ (Q × A) of length exactly 2c(k,n) such
that for some 1 ≤ ` ≤ k, C` is of the form w · (q, a) · w′ ∈
A∗ × (Q × A) × A∗, and for i 6= `, Ci ∈ A2c(k,n)

.
For a (k, n)-input (a · w1, . . . , wk), the associated initial
(k, n)-configuration is ((q0, a) · w1 · #2c(k,n)−2n , . . . , wk ·
#2c(k,n)−2n). Thus, the computations of M from (k, n)-
inputs, called (k, n)-computations, can be described by se-
quences π of at most 2c(k,n) (k, n)-configurations. In fact,
w.l.o.g., we can assume that π has length exactly 2c(k,n).
This makes it possible to prove Th. 5. In the omitted proof
we need an encoding of (k, n)-computations by suitable tree
structures, called (k, n)-computation tree code.

Theorem 5 One can construct a RMLk+1 formula ϕ in time
polynomial in n, k, and the size of the TMM such that (i) ϕ
is a RML∀ formula if k = 1, and (ii) ϕ is satisfiable iff the
instance (k, n,M) of the Alternation Problem is positive.

From Proposition 4 and Theorem 5 we also obtain:

Corollary 6 SAT(RML) is AEXPpol-hard, SAT(RML∀) is
NEXPTIME-hard, and for all k ≥ 1, SAT(RMLk+1) is
Σ EXP
k -hard.

5 Concluding Remarks
An intriguing question left open is the complexity of satisfi-
ability for multi-agent RML [van Ditmarsch et al., 2010;
Bozzelli et al., 2012a]. Our approach does not seem to
scale to the multi-agent case. Another interesting direction is
to investigate the exact complexity of the fragments RML∃,
RML∀, and RMLk, and the succinctness gap between RMLk

and RMLk+1 for each k ≥ 1. Furthermore, since the modal
µ-calculus extended with refinement quantifiers (RMLµ, for
short) is non-elementarily decidable [Bozzelli et al., 2012a],
it would be interesting to individuate weak forms of interac-
tions between fixed-points and refinement quantifiers, which
may lead to elementarily decidable and interesting RMLµ-
fragments.
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