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1 Introduction

The present paper advocates the use of logical specifications for the control
theory of reactive systems, modeled by discrete event systems.

The terminology reactive systems is due to David Harel and Amir Pnueli
[HP84] to qualify the class of systems, or programs, where the emphasis is
put on their interaction with the environment1 rather than on their ultimate
computation, if relevant. Plethora of examples exists, such as operational sys-
tems, information systems, embedded systems, and systems for e-commerce.

While formal methods for the validation and the verification of reactive
systems are now well understood and their use well established, synthesis
procedures, that is automated methods to construct programs, still need
investigations to render systems development safe and cost-efficient. Such
methods strongly rely on a rigorous formalism for the specification of the
synthesis objectives, such as formal languages, and logic-based formalisms.
Although in general control theory designates the study of methods to regu-
late e.g. physical devices, manufacturing, or chemical plants, the whole ex-
pression control theory of discrete-event systems refines the field by explicitly
make use of fairly simple mathematical objects to model the systems to be
controlled. Typically, one considers models like finite state automata, Kripke
structures, labeled transition systems, or linear systems. As programs can
possibly be abstracted and modeled akin, control theory and synthesis issues
are tightly coupled: indeed the control device is first expected to be a pro-

1in this regard, they should rather be called interactive

2



gram, and second it is intended to be automatically generated regarding the
large scaled and complex programs under consideration.

The use of temporal and modal logics for the control theory of reactive
systems has expanded recently [RP03, AVW03, TP03, JK05, PR05, RP05,
Bri06], regarding the well established approaches based on formal languages
[CL99, Won89, KG95]. Although the supremacy of logics’ expressive power
over regular languages is taken for granted, a clear connection between the
two worlds has to our knowledge never been clearly established in the setting
of control theory. In this article, we embed the results of the control theory
of discrete event systems in a logical framework. We show a strict fragment
of the branching-time modal mu-calculus logic [Koz83] whose formulas natu-
rally extend statements based on regular prefix-closed languages, and which
moreover maintains the maximally permissiveness existence of controllers.

In the considered fragment of the mu-calculus, only diamond and box
modalities are allowed, with conjunctions and greatest fix-points. We call
this fragment the Conjunctive Nu-Calculus and write it Lν . A formula is
interpreted as a set of languages (over a fixed alphabet), each language de-
noting the set of runs of some discrete event system.
From the expressiveness point of view, Lν is strictly less expressive than
the full mu-calculus as neither eventualities nor disjunction can be stated.
However, the formalism allows for sentences that go beyond stating the mem-
bership in an interval of languages, or a finite union of those.
From the theoretical point of view, we study the logic Lν on its own; in par-
ticular, we introduce modal specifications as an alternative presentation of
the logic. We prove that modal specifications and the logic Lν are equivalent
in terms of their set of models, by giving a two-way effective translation from
the former to the latter. Additionally, modal specifications support graphi-
cal representations, the modal automata, which generalize the standard finite
state automata: modal automata allow for “must” (standard) and “may”
transitions (Similar objects were considered by [Lar89] but for the purpose
of studying the refinement of actions; no fix-points were taken into account).
We establish several properties of modal specifications: the decomposition
theorem, an algorithm making a modal specification coherent, and the max-
imal model theorem.
From the application point of view, we show that the modal specifications are
strongly adequate for the description and the resolution of discrete event sys-
tems’ centralized control problems, as originally studied by [RW89]. Indeed,
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by the maximal model theorem, modal specifications are as good as regular
languages: the existence of a maximally permissive solution does hold. More-
over, and contrary to regular languages, modal specifications can express
liveness properties like “any stimulus a (if any) is followed by a reaction b”.
As explained in the paper, the procedure to compute a coherent specification
achieves the controller synthesis, and it generalizes the algorithm of [RW89]
for the computation of the supremal controllable sub-language.

The paper is organized as follows: Section 2 is dedicated to the introduc-
tion of the logic Lν and the modal specifications; in particular, we establish
the decomposition theorem, an algorithm making a modal specification co-
herent, and the maximal model theorem, Theorem 22, resulting from the
complete distributive lattice of the models. The decomposition theorem is
technical but provides the constructive correspondence between Lν and the
modal specifications (Theorem 11). Section 3 focuses on applications to
control theory: we show that the setting captures intervals of (regular prefix-
closed) languages and that it is strictly more expressive. However, instances
of the centralized control problem, with Lν-definable objectives, still have a
maximal solution, as stated by Theorem 30. Finally, Section 4 summarizes
the impact of the contribution.

2 Conjunctive Nu-calculus and Modal Spec-

ifications

In this article, we assume that the reader is familiar with formal language
theory. From this point, we assume given Σ = {a1, . . . an} a finite alphabet.
We consider languages over Σ, with L, R . . . as typical elements and with the
standard operations L∗, L.a (with a ∈ Σ,), L ∪ R, etc. The empty word
is denoted 1. For all u, v ∈ Σ∗, u.v is the concatenation of u and v and
u∗ = {uk | k ∈ N} where uk is the concatenation of k times the word u.

Let L be a language, we say that L is prefix-closed if and only if 1 ∈ L and
for any non-empty word a1. . . . .am ∈ L, we also have a1. . . . .am−1 ∈ L. The
prefix-closure of L is the least prefix-closed language containing L. Given
w ∈ Σ∗, we note L/w = {v ∈ Σ∗ | w.v ∈ L} for the set of suffixes of w in L,
and for a ∈ Σ, we note L.a−1 the set {w ∈ Σ∗ | w.a ∈ L}.
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Let us remark that the empty language is not prefix-closed by definition,
hence we will have to treat it separately when needed; in particular, for a
prefix-closed language L, the language L/w is either prefix-closed – if w ∈ L
– or empty. In the following, L implicitly denotes a prefix-closed language.

2.1 The Conjunctive Nu-calculus

In this section we present a syntactic fragment of the modal mu-calculus
[Koz83, AN01], called the Conjunctive Nu-calculus. We propose an inter-
pretation of the formulas on prefix-closed languages rather than the more
classic interpretation on (deterministic) labeled transitions systems. These
interpretations coincide anyway, by arranging a language as a tree, namely
the computation tree of the transition system. However, the language-based
semantics makes the technical parts easier to reading and the comparisons
with other works more immediate.

2.1.1 Syntax

Assume we are given a set of variables V ar = {X, X1, X2, . . .}. The set of
nu-calculus formulas is denoted Lν and is defined by the following grammar:

(Lν ∋) β1, β2 ::= true |X | →a | [a]β1 | 6→
a | β1 ∧ β2 | νX.β1(X)

where a ∈ Σ and with the requirement that each occurrence of the variable
X is under the scope of an even number of negation symbols ¬ in β1(X)
for all formula νX.β1(X) – fixed-point-based formulas of the form νX.β1(X)
will have a meaning.

We say that the variable X is free in β if it is not under the scope of any
νX. The set of free variables in β is denoted var(β). A formula β without
any free variable is called a sentence.

2.1.2 Semantics

We interpret formulas on prefix-closed languages. The formula on L is the
set of words of L satisfying the formula according to a given valuation val

5



of its free variables (if any); note that the set denoted by a formula is not
necessarily prefix-closed.

The interpretation of β ∈ Lν on L ⊆ Σ∗ according to a valuation val :
V ar → L is written [[ β ]]

[val]
L and is given by induction on the structure of β

as follows:

[[ true ]]
[val]
L = L

[[ X ]]
[val]
L = val(X)

[[ →a ]]
[val]
L = {w ∈ L | w.a ∈ L}

[[ 6→a ]]
[val]
L = {w ∈ L | w.a /∈ L}

[[ [a]β ]]
[val]
L = {w ∈ L | w.a ∈ [[ β ]]

[val]
L } ∪ {w ∈ L | w.a /∈ L}

[[ β1 ∧ β2 ]]
[val]
L = [[ β1 ]]

[val]
L ∩ [[ β2 ]]

[val]
L

[[ νX.β(X) ]]
[val]
L =

⋃

{V ⊆ L | [[ β ]]
[val(V/X)]
L ⊇ V }

As the semantics of sentences does not depend on the valuation val, we
simply write [[ β ]]L. We say that “L satisfies the sentence β” – L |= β for
short – if and only if 1 ∈ [[ β ]]L. We take the convention to note Inv(β),the
formula νX.β∧

∧

a∈Σ[a]X. Inv(β) is true if and only if L/w |= β for all w ∈ L.

Also, we write 〈a〉β for the formula [a]β∧ →a. By definition, [[ 〈a〉β ]]
[val]
L is

{w ∈ L | w.a ∈ [[ β ]]
[val]
L }. The logic Lν is strictly less expressive than the

full mu-calculus, since for example the operators ∨ (disjunction), µX.β(X)
(the least fix-point) and false cannot be expressed in Lν . Notice that the
operator [a]β contains a flavor of disjunction as its meaning is 〈a〉β∨ 6→a.

2.2 Modal Specifications and Their Models

We propose a new formalism, the modal specifications, to specify sets of
prefix-closed languages. Interestingly in the next section, we show that the
modal specifications and the sentences of Lν coincide. Although at first sight
modal specifications may be complicated objects, their graphical represen-
tations are merely finite state automata with two types of transitions. We
investigate theoretical features before applying the framework to the control
theory of discrete event systems.

6



2.2.1 Modal Specifications

Definition 1 A modal specification is a tuple S = 〈{Ca}a∈Σ, I〉 where the
Ca’s and I are regular languages. Ca is the set of words in which extension
by an a is valid (in a sense to be formalized below) and I is a set of forbidden
words.

The completion operator associated to S is the application CS : 2Σ∗
→ 2Σ∗

defined by : CS(L) =
⋃

a∈Σ(L ∩ Ca).a.

Models of a modal specification are prefix-closed languages; formally:

mod(S) = {L ⊆ Σ∗ | CS(L) ⊆ L ∧ L ∩ I = ∅}

S is satisfiable if mod(S) 6= ∅ and L is a model of S if L ∈ mod(S). By
interpreting the definition of mod(S), we have L is a model of S if and only
if the two following conditions hold: (1) for each w of L in Ca, w.a is also in
L, and (2) no word of L may be in I.

In general, models are not regular, but because modal specifications are
Lν sentences (Theorem 11), hence mu-calculus sentences, they inherit from
the finite model property: if S is satisfiable, then mod(S) has a regular ele-
ment.

2.2.2 Graphical Representations

Modal specifications can be represented graphically, as modal automata.
Given a modal specification S, its modal automaton possesses an initial state,
no final state, and possibly two types of edges according to the components
of S. Actually, it is easier to interpret modal automata as modal specifica-
tions as made clear by the example of Figure 1: the alphabet Σ is {a, b, c}.
The automaton has solid and dashed edges, and some edges are missing for
particular actions. The picture should be interpreted as follows:

• An a-labeled solid edge exiting from a state q means that any model L
of S containing a word w, which leads to the state q in the automaton,
contains also the word w.a. This constraint is read “in q, the transition
a must exist”.
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• An a-labeled dashed edge exiting from a state q dually means “the
transition a may exist”.

• Finally, the absence of an a-labeled edge (of any kind) exiting from a
state q means “the transition a is forbidden”.

q1 q2

a

b

b

a

Figure 1: An example of a modal automaton

Assuming a modal automaton is given. We note Lq the language recog-
nized by the automaton when interpreted in a classical manner (the dashed
edges are made solid) and q is assumed final. Now, the three informal rules
above lead to the modal specification S = 〈{Ca}a∈Σ, I〉 where: given any
state q of the automaton:

• An a-labeled solid edge exiting q stands for Lq ⊆ Ca.

• Absence of an a-labeled edge exiting q stands for Lq.a ⊆ I.

Notice that dashed edges stand only for the structure. Henceforth, from
the automaton of Figure 1, as Lq1 = (a∗b+)∗ and Lq2 = (a + b)∗.a, the
corresponding specification is S = 〈{Ca}a∈Σ, I〉 with Ca = ∅, Cb = (a+ b)∗.a,
Cc = ∅ and I = (a + b)∗.c.

Let us consider another example, useful in Section 3. Consider the sen-
tence φ = Inv(

∧

a∈Σ〈a〉true). We claim that the models of φ are those of
the specification SΣ′ depicted in Figure 2. mod(SΣ′) is the set {L ⊆ Σ∗ |
L.Σ′ ⊆ L}. The sentence φ states any event of SΣ′ can always occur, so does
the picture of Figure 2.

2.2.3 Coherency and S-closure

A modal specification S = 〈{Ca}a∈Σ, I〉 is coherent if, whenever S is satisfi-
able, I ∩ CS(Σ∗) = ∅.
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Σ′

Σ \ Σ′

Figure 2: The modal specification SΣ′

In a coherent specification, for every word w (if any), no action a is both
required (w ∈ Ca) and forbidden (w.a ∈ I) concurrently.

Lemma 2 Every modal specification is equivalent model-wise to a coherent
modal specification.

Proof Let S = 〈{Ca}a∈Σ, I〉 be the original specification, maybe not coher-
ent. If I ∩ CS(Σ∗) 6= ∅, we compute a new specification S ′ = 〈{C ′

a}a∈Σ, I ′〉
with C ′

a = Ca \ I.a−1 for each a ∈ Σ, and I ′ = I ∪
⋃

a∈Σ(I.a−1 ∩ Ca). Since
the obtained specification S ′ need not be coherent, this computation must
be iterated.

We define a component-wise mapping F between modal specifications.
S ′ = 〈{C ′

a}a∈Σ∗ , I ′〉 is mapped onto S ′′ = 〈{C ′′
a}a∈Σ∗ , I ′′〉 according to:

{

D′′
a = D′

a ∪ I ′.a−1 ∪ Da ∀a ∈ Σ∗

I ′′ = I ′ ∪
⋃

a∈Σ∗(D′
a ∩ I ′.a−1) ∪ I

where Da, D
′
a and D′′

a are the respective complementary sets (in Σ∗) of Ca, C
′
a

and C ′′
a . Since modal specifications are tuples of languages, the mapping can

also be seen as a monotonic function over languages (in the complete product
lattice). By the Tarski Theorem, fix-points exist. In particular, the least fix-
point of F , say T , is a coherent modal specification s.t. mod(T ) = mod(S):

Write T = 〈{CT
a }a∈Σ∗ , IT 〉, and define DT

a = Σ∗ \ CT
a . Since T is a fix-

point of F , we have for all a ∈ Σ, DT
a = DT

a ∪ IT .a−1 ∪ Da, or equivalently
IT .a−1 ⊆ DT

a ; by complementation CT
a ∩ IT .a−1 = ∅. This is sufficient to

prove that IT ∩ CT (Σ∗) = ∅, which make T a coherent specification.
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Now, we prove that mod(T ) = mod(S). Consider the bottom element
⊥ of the lattice: ⊥ is the “empty” modal specification (all components are
empty sets). Now, .

We prove that each iteration as above (except the first one, where F (⊥) =
S) preserves the set of models: namely, mod(S ′) = mod(S ′′).

mod(S ′) ⊆ mod(S ′′): let L ∈ mod(S ′). Since C ′′
a ⊆ C ′

a for each a ∈ Σ∗, we
have CS′′(L) ⊆ CS′(L) and since CS′(L) ⊆ L, we get CS′′(L) ⊆ L. For all
w ∈ L and for all a ∈ Σ, we have w /∈ D′

a ∩ I ′.a−1, otherwise w.a would
belong to I ′ ∩ L, since w ∈ C ′

a ; we deduce that, since L ∩ I ′ = ∅, we have
w /∈ I ′′. We have proved that L∩I ′′ = ∅ and CS′′(L) ⊆ L for all L ∈ mod(S ′),
this shows that mod(S ′) ⊆ mod(S ′′).

mod(S ′′) ⊆ mod(S ′): let L ∈ mod(S ′′), since I ′ ⊆ I ′′, L ∩ I ′′ = ∅ implies
L∩I ′ = ∅. For each w ∈ L, w ∈ C ′

a implies w ∈ C ′′
a , otherwise w would belong

to I ′.a−1 ∩ C ′
a which implies w ∈ I ′′ ; we deduce that CS′(L) ⊆ CS′′(L) ⊆ L.

We have proved that L ∩ I ′ = ∅ and CS′(L) ⊆ L, hence L ∈ mod(S ′′).

From now on, we assume only satisfiable and coherent modal specifica-
tions.

Let S = 〈{Ca}a∈Σ, I〉 be a modal specification, and let L be a language
s.t. L ∩ I = ∅ but not necessarily s.t. CS(L) ⊆ L. We can “complete” L in
order to obtain a model of S.

Definition 3 (S-closure) The S-closure of a prefix-closed language L, de-
noted L↑S , is the least language L′ s.t. L ⊆ L′ and L′ ∈ mod(S).

Lemma 4 The S-closure of a regular language is a regular language.

Proof We build a finite state automaton A′ which recognized language
L(A′) is L ↑S: Let A be an automaton for L. Build the automaton for
L ∪

⋃

a∈Σ Ca.a, and remove from it all the non-terminal states. Call the
resulting automaton A′.

Clearly A′ recognizes the greatest prefix-closed language contained in
L ∪

⋃

a∈Σ Ca.a. Since L is prefix-closed, then L ⊆ L(A′) and obviously
L↑S⊆ L(A′); now if L↑S 6= L(A′) then, since L↑S (and L(A′)) is prefix-
closed, there exist w ∈ L↑S and a ∈ Σ s.t. w.a ∈ L(A′) but w.a /∈ L↑S, thus
w ∈ Ca, which contradicts the fact that L↑S is a model of S .
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The S-closure can be characterized also according to:

Lemma 5 The S-closure of a prefix-closed language L is the least solution
of the equation R = L ∪ CS(R).

Proof By definition L↑S∈ mod(S), then CS(L↑S) ⊆ L↑S . Since L ⊆ L↑S ,
we get L ∪ CS(L↑S) ⊆ L↑S. From L↑S being the least language we get the
equality L↑S= L ∪ CS(L↑S).

Referring to Figure 1, the S-closure of a∗ is (a∗ ∪ a∗.b).

2.2.4 The Theorem of Decomposition

We show that each modal specification decomposes into atomic modal spec-
ifications. The Decomposition Theorem is at the base of the Theorem of
Equivalence (next section) stating that modal specifications and Lν sentences
are equivalent.

Definition 6 (Atomic specifications and operators)
Let S1 = 〈{C1

a}a∈Σ, I1〉 and S2 = 〈{C2
a}a∈Σ, I2〉 be two modal specifications.

• The intersection of S1 and S2 is

S1 ∩ S2 = 〈{C1
a ∪ C2

a}a∈Σ, I1 ∪ I2}〉

• Given a regular language R ⊆ Σ∗, the prefixing of S1 by R is

R.S1 = 〈{R.C1
a}a∈Σ, R.I1〉

Lemma 7 mod(S1 ∩ S2) = mod(S1) ∩ mod(S2).

Proof Let L ∈ mod(S1 ∩ S2). We have CS1∩S2(L) ⊆ L, and because
CS1∩S2(L) = CS1(L)∪CS2(L), we get CS1(L) ⊆ L and CS2(L) ⊆ L. Moreover
I1∩L = I2∩L = ∅ follow from (I1∪I2)∩L = ∅. Hence L ∈ mod(S1)∩mod(S2).

Reciprocally, L ∈ mod(S1) ∩ mod(S2) implies CS1(L) ∪ CS2(L) ⊆ L and
I1 ∩ L = I2 ∩ L = ∅, which concludes the proof.
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L is a model of R.S whenever for any word w of R, the language L/w (the
set of suffixes of w in L) is a model of S:

Lemma 8 L ∈ mod(R.S) if and only if ∀w ∈ R, L/w = ∅ or L/w ∈ mod(S).

Proof For this proof, the two implications below are used several times
without being mentioned explicitly:

L ∩ v.Σ∗ = v.L/v ⇒ L ∩ v.L′ = v.(L/v ∩ L′)
w.L1 ⊆ L2 ⇒ L1 ⊆ L2/w

⇒) Let L ∈ mod(R.S), by definition:

CR.S(L) =
⋃

a∈Σ

(L ∩ R.Ca).a =
⋃

a∈Σ

⋃

w∈R

(L ∩ w.Ca).a =
⋃

a∈Σ

⋃

w∈R

w.(L/w ∩ Ca).a

Since CR.S(L) ⊆ L, for all w ∈ R and for all a ∈ Σ∗, w.(L/w ∩ Ca).a ⊆ L.
Then Cs(L/w) ⊆ L/w. Similarly, since L ∩ R.I = ∅, we get L ∩ w.I = ∅ and
then L/w ∩ I = ∅, for all w ∈ R. Finally L/w = ∅ or L/w ∈ mod(S).

⇐) We first show that (L ∩ R.Ca).a ⊆ L, for all a ∈ Σ. if v ∈ L ∩ R.Ca,
there exist w ∈ R and u ∈ Ca s.t. v = wu. Then u ∈ L/w ∩Ca with L/w 6= ∅.
By hypothesis, L/w ∈ mod(S), then (L/w ∩ Ca).a ⊆ L/w and in particular
u.a ∈ L/w. We deduce v.a = w.u.a ∈ L. We show now that L ∩ R.I = ∅:
for all w ∈ R, if L/w = ∅ then L ∩ w.I = ∅; otherwise L/w ∈ mod(S) then
L ∩ w.I = ∅; finally L ∩ R.I = ∅.

Definition 9 We define the following atomic specifications:
Strue = 〈{∅}a∈Σ, ∅〉,
S 6→b = 〈{∅}a∈Σ, {b}〉, for each b ∈ Σ, and
S→b = 〈{Ca}a∈Σ, ∅〉, where Ca is ∅ if a 6= b, and {1} otherwise.

By definition, we have:

mod(Strue) = {L ∈ Σ∗}
mod(S 6→b

) = {L ⊆ Σ∗ | b /∈ L}
mod(S→b

) = {L ⊆ Σ∗ | b ∈ L}
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Theorem 10 (of Decomposition) Each modal specification can be decom-
posed as a combination of atomic ones, according to the intersection and the
language-prefixing operators

Proof Let S = 〈{Ca}a∈Σ, I〉 be a modal specification. For each a in Σ,
define the set Ia = {u ∈ Σ∗ | u.a ∈ I}, and let S ′ be the specification
defined by

S ′ =
⋂

a∈Σ

Ca.S→a ∩
⋂

a∈Σ

Ia.S 6→a

S = S ′, by applying the Definitions 6 and 9.

2.3 The Theorem of Equivalence

This section is dedicated to the proof of the following theorem:

Theorem 11 For each set E of prefix-closed languages, E is formed by all
the languages which satisfy some Lν sentence if and only if E coincide with
a set mod(S) of modal specification S.

In order to prove this theorem, we introduce the notion of variable paths:

Definition 12 (variable paths) To each β ∈ Lν (not necessarily closed),
we associate a mapping Pβ : var(β) → P(Σ∗); for X ∈ var(β), the language
Pβ(X) is the set of variable paths of X in β. It is defined by induction on
the structure of β:

• Ptrue(X) = P→a(X) = P 6→a = ∅,

• PY (X) = ∅ if Y 6= X, and PX(X) = {1},

• P[a]β(X) = a.Pβ(X),

• Pβ1∧β2(X) = Pβ1(X) ∪ Pβ2(X),

• PνY.β(Y )(X) = Pβ(Y )∗.Pβ(X).
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The variable paths of X in β are the words that “lead” to an occurrence
of X in the formula: when w ∈ [[ β ]]

[val]
L , Pβ(X) is the set of words v s.t.

w.v ∈ [[ X ]]
[val]
L or equivalently w.v ∈ val(X) ⊆ L. For example, P[a]X(X) =

{a}, P[a][b]X∧[c]X(X) = (a.b + c), and PνY.([a][b]Y ∧[c]X)(X) = (a.b)∗.c.

2.3.1 From a Sentence to a Specification

We show here how to construct a modal specification Sβ from a sentence β
of Lν s.t. mod(Sβ) is the set of languages satisfying β. The proof is con-
structive. As it is led by induction over the sentence β, we need to introduce
some technical material: since modal specifications are not designed to deal
with valuations, consider the following property involving a valuation val, a
formula β, a language L and a word w of L:

∀X ∈ var(β), w.Pβ(X) ∩ L ⊆ val(X) (1)

Property (1) states that the words of L which belong to the the variable
paths of X also belong to val(X).

Definition 13 (Modal specification associated to a formula of Lν)
The modal specification Sβ associated to a formula β ∈ Lν is defined induc-
tively over the structure of β as follows:

• for β ∈ {true,→a, 6→a}, use Definition 9.

• SX = Strue

• S[a]β = a.Sβ

• Sβ1∧β2 = Sβ1 ∩ Sβ2

• SνY.β(Y ) = Pβ(Y )∗.Sβ

The modal specification associated to [a]νX.([b]X∧ →a ∧ 6→c), depicted in
Figure 3, is (a.b∗).(S→a ∩ S 6→c). It is s.t. Ca = (a.b∗), Cb = ∅, Cc = ∅, and
I = (a.b∗).c.

Consider now the following general result and its corollary:
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c, b

a, b, c

b

a a

Figure 3: The Specification Sβ

Proposition 14 Let β ∈ Lν, let val be a valuation, let L be a prefix-closed
language, and let w ∈ L. We have:

w ∈ [[ β ]]
[val]
L if and only if L/w ∈ mod(Sβ) and Hypothesis (1) is verified.

The first corollary of Proposition 14 is:

Corollary 15 L ∈ mod(Sβ) if and only if L |= β, for every Lν sentence β.

Let β ∈ Lν , val be a valuation, L be a prefix-closed language and w be a
word of L. To prove proposition 14, we prove these 3 following lemmas:

Lemma 16 w ∈ [[ β ]]
[val]
L implies Hypothesis (1).

Lemma 17 w ∈ [[ β ]]
[val]
L implies L/w ∈ mod(Sβ).

Lemma 18 L/w ∈ mod(Sβ) and Hypothesis (1) imply w ∈ [[ β ]]
[val]
L .

Proof (of Lemma 16) by induction over the structure of β (where α is

some Lν formula). Let w ∈ [[ β ]]
[val]
L :

• if β ∈ {true,→a, 6→a}, then var(β) = ∅.

• if β = X, then var(β) = {X}, and PX(X) = {1} and w ∈ [[ X ]]
[val]
L ,

thus w ∈ val(X) which implies w.{1} ⊆ val(X).
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• if β = [a]α, then var(β) = var(α) and Pβ(X) = a.Pα(X), then

w.Pβ(X) ∩ L = w.a.Pα(X) ∩ L. Since w.a ∈ [[ α ]]
[val]
L , by ind. hyp.,

w.Pβ(X) ∩ L ⊆ val(X).

• if β = β1 ∧ β2, then w.Pβ(X) ∩ L = (w.Pβ1(X) ∩ L) ∪ (w.Pβ2(X) ∩ L)
and by ind. hyp., (w.Pβ1(X) ∩ L) ∪ (w.Pβ2(X) ∩ L) ∈ val(X).

• assume β = νY.α(Y ), and let us note V = [[ β ]]
[val]
L ; by definition, V =

[[α(X)]]
val(V/X)
L , that is w ∈ [[β ]]

[val]
L is equivalent to w ∈ [[α(Y )]]

[val(V/Y )]
L .

We show by induction on n that w.Pα(Y )n.Pα(X) ∩ L ⊆ val(X):

– For n = 0, we use the ind. hyp. over β to obtain
w.Pα(X) ∩ L ⊆ val(X).

– For n + 1, w.Pα(Y )n+1.Pα(X) ∩ L rewrites as
w.Pα(Y ).Pα(Y )n.Pα(X) ∩ L.

By ind. hyp. over β, w ∈ [[ α(Y ) ]]
[val(V/Y )]
L then w.Pα(Y ) ∩ L ⊆ V

and then for all v ∈ w.Pα(Y )∩L, v ∈ V ; now, y ind. hyp. over n,
we get v.Pα(Y )n.Pα(X) ∩ L ⊆ val(X) and finally
w.Pα(Y ).Pα(Y )n.Pα(X) ∩ L ⊆ val(X)

Proof (of Lemma 17) by induction over the structure of β:

• if β ∈ {true,→a, 6→a, X}, by Definition 9, L/w ∈ mod(Sβ).

• if β = [a]α, then Sβ = a.Sα, and if a ∈ L/w then w.a ∈ [[ α ]]
[val]
L . By

ind. hyp., L/w.a ∈ mod(Sα), which implies L/w ∈ mod(Sβ) (Lemma 8).

• if β = β1∧β2, using Lemma 7 entails mod(Sβ) = mod(Sβ1)∩mod(Sβ2).
By ind. hyp., L/w ∈ mod(Sβ).

• assume β = νX.α(X). As above, by letting V = [[ β ]]
[val]
L , we have

V = [[ α(X) ]]
val(V/X)
L . We show by ind. hyp. over n that for all v ∈

(Pα(X)(X))n, w.v ∈ L implies L/w.v ∈ mod(Sα).
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– For n = 0, w ∈ [[ α(X) ]]
val(V/X)
L and ind. hyp. over β, L/w ∈

mod(Sα).

– For n + 1, w ∈ V and since v = u.u′ with u ∈ Pα(X)(X), by
Lemma 16 we have (u′ ∈ L/w.u) implies L/w.u.u′ ∈ val(X) = V .
It follows by ind. hyp. over n that L/w.u.u′ ∈ mod(Sα), since u′ ∈
(Pα(X)(X))n.

Finally, for all v ∈ (Pα(X)(X))∗, w.v ∈ L implies L/w.v ∈ mod(Sα).
Applying Lemma 8 entails L/w ∈ mod(Sβ).

Proof (of Lemma 18) by induction over β:

• if β ∈ {true,→a, 6→a X}, by Definition 9, w ∈ [[ β ]]
[val]
L .

• if β = [a]α, Sβ = a.Sα, if a ∈ L/w then Lemma 8 guarantees L/w.a ∈

mod(Sα); by ind. hyp., w.a ∈ [[ α ]]
[val]
L . In both cases w ∈ [[ β ]]

[val]
L ,

• if β = β1 ∧ β2, then Sβ = Sβ1 ∩ Sβ2. By Lemma 7, L/w ∈ mod(Sβ1) ∩
mod(Sβ2), and by Definition 12 and Hypothesis (1), for all v ∈ Pβ(X),
v ∈ Pβ1(X) ∪ Pβ2(X). We can now apply the ind. hyp. over β1 and β2

to conclude that w ∈ [[ β ]]
[val]
L .

• assume β = νX.α(X). We show that L∩w.Pα(X)∗ is a post fix-point:

L ∩ w.Pα(X)∗ ⊆ [[ α ]]
[val((L∩w.Pα(X)∗)/X)]
L

For all v ∈ L/w ∩ w.Pα(X)∗:

1. w ∈ mod(Sβ) implies w.v ∈ mod(Sα), by Lemma 8),

2. For all Y ∈ var(β), with Y 6= X, w.Pβ(Y ) ∩ L ⊆ val(Y ) and
Pβ(Y ) = (Pα(X))∗.Pα(Y ) imply

w.v.Pα(Y ) ∩ L ⊆ val(Y )

3. (For X) v ∈ L/w ∩ Pα(X)∗ implies

w.v.Pα(X) ∩ L ⊆ L ∩ w.Pα(X)∗) = val((L ∩ w.Pα(X)∗)/X)(X)
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Points 2. and 3. above entail Hypothesis (1), which combined with Point 1.
allow to apply the ind. hyp. to obtain
w.v ∈ [[ α ]]

[val((L∩w.Pα(X)∗)/X]
L .

Since (L ∩ w.Pα(X)∗) is a post-fix-point, if w ∈ (L ∩ w.Pα(X)∗), then

w ∈ [[ β ]]
[val]
L .

Now the proof of Proposition 14 is immediate:

Proof (of Proposition 14) Lemma 18 gives the ⇒) direction, and Lem-
mas 16 and 17 give the ⇐) direction.

2.3.2 From a Specification to a Sentence

Given a modal specification S, we construct a sentence βS ∈ Lν s.t. the
languages satisfying βS coincide with the elements of mod(S). To do so, we
decompose S into atomic modal specifications (according to Theorem 10)
and we construct βS step by step s.t. SβS

and S are equal component-wise,
henceforth equal model-wise.

Lemma 19 For any regular language R ⊆ Σ∗, we can construct a formula
αR(X) ∈ Lν s.t. SαR(β/X) = R.Sβ, for any sentence β ∈ Lν.

Proof by induction over a regular expression of the language R. We con-
sider the following grammar for the regular expressions generating regular
languages (where a ∈ Σ): {1} | a.R1 | R1 ∪ R2 | R∗

1.

We define αR(X) inductively over (the regular expression of) R, and
simultaneously prove that SαR(β/X) = R.Sβ and PαR(X)(X) = R, for all
β ∈ Lν .

• R = {1}: define α{1}(X) = X. We trivially have Sα{1}(β/X) = {1}.Sβ

and Pα{1}(X)(X) = {1},

• R = a.R1: define αa.R1(X) = [a]αR1(X). From Definition 13, Sαa.R1
(β/X) =

a.R1.Sβ, and from Definition 12, Pαa.R1
(X)(X) = a.R1.
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• R = R1 ∪ R2: define αR1∪R2(X) = αR1(X) ∧ αR2(X).
From Definition 13, SαR1∪R2

(β/X) = (R1 ∪ R2).Sβ , and from Defini-
tion 12, PαR1∪R2

(X)(X) = R1 ∪ R2.

• R = R∗
1: define αR∗

1
(X) = νY.αR1(X/Y ) ∧ X. Since by ind. hyp.

PSαR1
(Y/X)

= R1.Sβ , by Definition 13, SαR∗
1
(β/X) = R∗

1.Sβ = R∗
1.Sβ. It

follows immediately from Definition 12 that PαR∗
1
(X)(X) = R∗

1.

Lemma 20 For any modal specification S, we can construct a sentence βS ∈
Lν s.t. mod(S) coincides with the set of languages satisfying βS.

Proof By Theorem 10, we can decompose S, and build a sentence βS s.t.
SβS

= S. The only nontrivial operator is the language-prefixing which is
given by Lemma 19.

Consider the modal specification S of Figure 4. Below, the first line is the
decomposition of S and the second line is the formula βS:

S 6→b ∩ a. ( a.(b.a)∗.S→b ∩ b. (a.b)∗.S→a )
6→b ∧ →a ∧[a] ( [a]νX.( [b][a]X∧ →b ) ∧ [b] νY.( [a][b]X∧ →a ) )

2.3.3 Main Proof

The previous results combine to prove Theorem 11: the logic Lν and the
class of modal specifications are equal regarding the models. Indeed, if E is
the set of languages satisfying some sentence β ∈ Lν , then by Corollary 15,
E ⊆ mod(Sβ). Reciprocally, if E is the set of models of some specification
S, then by Lemma 20, we construct βS s.t. E = {L | L |= βS}.

2.4 The Lattice of Models

For any satisfiable specification S, we show that the set mod(S) forms a
lattice which extrema can easily be built.
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In the following, we fix S = 〈{Ca}a∈Σ, I〉 a coherent modal specification,
and we distinguish the two following elements of mod(S): {1}↑S and Σ∗\I.Σ∗,
respectively written LS

⊥ and LS
⊤.

Lemma 21 The following four statements are equivalent:

1. S is satisfiable

2. LS
⊥ ∈ mod(S)

3. LS
⊥ ∩ I = ∅

4. LS
⊤ ∈ mod(S)

Proof Since 2 ⇒ 1, 4 ⇒ 1 et 2 ⇒ 3 are trivial, we only prove 3 ⇒ 2, 1 ⇒ 4
and 4 ⇒ 3.

• 3 ⇒ 2: by Lemma 5, LS
⊥ = {1} ∪ CS(LS

⊥). Hence CS(LS
⊥) ⊆ LS

⊥, and
by assumption LS

⊥ ∩ I = ∅. We conclude LS
⊥ ∈ mod(S) ;

• 1 ⇒ 4: by monotonicity, CS(LS
⊤) ⊆ CS(Σ∗). By definition of LS

⊤, this is
equivalent to CS(LS

⊤) ⊆ LS
⊤. Moreover, as S is coherent, CS(Σ∗)∩I = ∅,

which implies LS
⊤ ∩ I = ∅; finally LS

⊤ ∈ mod(S).

• 4 ⇒ 3: from 4, we get LS
⊤ ∪ CS(LS

⊤) = LS
⊤ and LS

⊤ ∩ I = ∅. Now
from the former and the fact that CS is monotonic, we have LS

⊥ ⊆
{1} ∪ CS(LS

⊤) ⊆ LS
⊤. By the latter and the last inclusion, LS

⊥ ∩ I = ∅.

Lemma 21 latches the finite model property of the mu-calculus: if S is
satisfiable, then it has a regular model; LS

⊥ is regular by lemma 4, and so
is LS

⊤ by definition). By definition, LS
⊥ and LS

⊤ are, the extrema in the set
mod(S) ordered by inclusion : LS

⊤ is the greatest element and LS
⊥ is the least

element. Actually, we have the following:

Theorem 22 Let S be a satisfiable modal specification. Then (mod(S),⊆)
is a distributive complete lattice.
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Figure 4: The modal specification S

Let S be the modal specification of Figure 4. Some models of S are
depicted in Figure 5, and arranged s in the lattice. The boxes represent the
models and the arrows between the boxes represent the language inclusion
relation. We have L⊥ = L1 and L⊤ = L7. It can be shown that there exist
infinitely many models in mod(S), as one can imagine between the elements
L2 and L4, or between the elements L3 and L5, or between the elements L4
and L7. The model L6 shows that L4 ∪ L5 6= L7.
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Figure 5: Some elements of the distributive lattice mod(S).
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3 Application to Control Theory

We consider the class of centralized control problems with total observation
as in [RW89], and enlarge it to attain Lν definable control objectives.

By the previous section, we use modal specifications rather than logical
formulas, mostly because they generalize finite state automata, more com-
monly used to describe interval of prefix-closed languages.

In the following, we first recall what the control theory as proposed by
[RW89] is; next, we explain how centralized control problems for control
objectives described by an interval of languages, translate into modal speci-
fications. In the proposed setting, the various aspects of the control problem
are easy to distinguish: for example, the plant decomposes into two sepa-
rated modal specifications, the plant skeleton and its controllability features,
whereas the additional modal specifications define the (possibly many) con-
trol objectives. A simple illustration is given by the Example 1.
We take the convention that the world “language” means “regular prefix-
closed languages”.

3.1 The Centralized Control Problem

Classically, one considers a set Σ = {e1, e2, . . . , en} of events, a finite state
automaton G representing the plant, which is fully determined by the prefix-
closed language L ⊆ Σ∗ of its trajectories. Then, two subsets Σc and Σuc

partition the set of Σ into the uncontrollable and controllable events sets.

Given an ongoing trajectory of the plant, say w ∈ L, a controller indicates
which event is allowed to prolong w; in particular, uncontrollable events
should always be allowed. More formally, a controller is a function C : L →
2Σ, with the constraint that C(w) ⊇ Σuc; called the Σuc-admissibility property
of the controller C.

Given a controller C, the controlled plant C/G has its trajectories in
L(C/G) ⊆ L, defined as the greatest sub-language of L s.t.: if L is empty then
so is L(C/G), otherwise 1 ∈ L(C/G), and for any w ∈ L(C/G), w.e ∈ L(C/G),
provided e ∈ C(w).
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We now turn to the control objectives. Classically, they are precisely
given by a pair of prefix-closed languages, to form an interval: let A and E

be two languages over Σ. The interval of languages [A, E] is the set of all
prefix-closed languages R s.t. A ⊆ R ⊆ E.

Definition 23 (Centralized Control Problem (CCP)) An instance of
the Centralized Control Problem (CCP) is a triple 〈G, Σuc, [A, E]〉, where
G is a plant, {Σc, Σuc} is a partition of Σ, and [A, E]. is an interval of lan-
guages. The problem consists in computing, when it exists, a Σuc-admissible
controller C s.t. L(C/G) ∈ [A, E].

In general, one seeks for a maximally permissive controller, when it exists:
a maximally permissive controller is s.t. C(w) is a maximal set for all w ∈ L.
When control objectives are intervals of languages, a maximally permissive
controller always exists and it is unique. Notice that allowing for any mu-
calculus definable control objective cuts off this nice property, either for the
existence or for the uniqueness – this is precisely why non-blockingness issues
lead to difficulties. For example, the control objective stating that “eventu-
ally no more b can happen” cannot be achieved by a maximally permissive
controller if the plant’s language is for example {a, b}∗. Indeed, postpon-
ing for ever the moment where b is eventually disallowed would violate the
original objective (see [RP04]).

There is an important amount of contributions addressing the develop-
ment of controller synthesis methods of C [Won89, CL99, GW00]. In the next
section, we focus on the use of modal specifications for solving centralized
control problems, with total observation.

3.2 Particular Modal Specifications

We first introduce modal specifications that are meaningful in the control
theory of reactive systems.

Definition 24 The modal specification SΣuc = 〈{Σ∗}e∈ΣG
uc

∪ {∅}e∈ΣG
c
, ∅〉 is

called the Σuc-controllability property.
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SΣuc specifies Σuc-admissible controllers: indeed, mod(SΣuc) coincides with
the set of languages R s.t. R.Σuc ∩ Σ∗ ⊆ R (that is the Σuc-controllability
notion of [RW89]).

Definition 25 Now, let K be a prefix-closed language, we define the two
particular modal specifications SK = 〈{K.e−1}e∈Σ, ∅〉, and SK = 〈{∅}e∈Σ, Σ∗\
K〉. Recall that K.e−1 = {w ∈ Σ∗ | w.e ∈ K}.

We can establish the following:

Lemma 26 Given language K, mod(SK) is the set {R ⊆ Σ∗ |K ⊆ R} and
mod(SK) is the set {R ⊆ Σ∗ |R ⊆ K}.

Proof It is sufficient to prove that K = LSK
⊥ . Since K =

⋃

e∈Σ K.e−1.e

which is equal to CSK
(Σ∗), we necessarily have LSK

⊥ ⊆ K ; reciprocally, we
prove by induction over the word u ∈ Σ∗ that u ∈ K implies u ∈ LSK

⊥ . If
u = 1, then it is trivial as both languages are prefix-closed. Let u.e ∈ K,
then u ∈ K.e−1, and because K is prefix-closed, u ∈ K. Now by induction
hypothesis u ∈ LSK

⊥ . Since LSK
⊥ is SK-closed, it also contains u.e.

For SK , it is sufficient to remark that R ∩ Σ∗ \ K = ∅, hence R ⊆ K.

Definition 27 Given K1 and K2 be two prefix-closed languages over Σ, the
modal specification SK2

K1
= SK1 ∩ SK2 is called the modal specification associ-

ated to the interval of languages [K1, K2].

From Lemma 26, it is immediate that mod(SK2
K1

) = [K1, K2].

3.3 The Control Theory as Modal Specifications

We combine several modal specifications in a conjunctive manner to char-
acterize the set of solutions of the centralized control problems, with total
observations. Because by Theorem 22 a modal specification denotes a lattice
of languages, a maximally permissive solution always exists and is unique
(the top element of the lattice); incidentally, so does a minimally permissive
solution (the bottom element).
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Proposition 28 Consider an instance 〈G, Σuc, [A, E]〉 of the (CCP). We
can build a modal specification S s.t. the set of controllers C : L → 2Σ with
L(C/G) ∈ [A, E] coincides with mod(S). Moreover, the maximally and the
minimally permissive controllers can be effectively computed.

Proof We successively define three modal specifications:

The modal specification associated to the plant skeleton:
Consider the modal specification SL = 〈{∅}e∈Σ, IG〉. Its modal automaton is
like G but where all edges are in dashed lines, as in Figure 6.

The modal specification to obtain Σuc-admissible controllers:
Consider SΣuc = {Σ∗}e∈Σuc ∪{∅}e∈Σc , ∅〉. Its picture is a single state automa-
ton with looping transitions, those labeled by events in Σuc are solid, and
those labeled by events in Σc are dashed, as the top left modal automaton of
Figure 7.

The modal specification for the interval of languages [A, E]:
Consider SE

A
from Definition 27, and write it SE

A
= 〈{Ce}e∈Σ, I〉.

The overall modal specification is S is SL ∩ SΣuc ∩ SE

A

Theorem 29 There is a one-to-one correspondence between the set mod(S)
and the controllers that are solutions of any instance of the (CCP).

Proof
Recall that by definition of ∩ we have S = 〈{Ce}e∈Σc ∪ {Σ∗}e∈Σuc, I ∪ IG〉
Proving its correctness is done in two stages:

Let M ∈ mod(S). In particular M ∈ [A, E], because M ∈ mod(SE

A
). Also

M ⊆ L as M ∈ mod(SL).

We first prove that M is L(CM/G), where CM is some admissible con-
troller. Define CM : L → 2Σ by CM(v) = {e|v.e ∈ M}. CM is admissible.
let us compute CSΣuc

(M). By the definition of SΣuc , CSΣuc
(M) =

⋃

e∈Σc
(∅ ∩

M).e∪
⋃

e∈Σuc
(Σ∗ ∩M).e, which reduces to CSΣuc

(M) =
⋃

e∈Σuc
M.e. Hence-

forth, since M ∈ mod(SΣuc), we have CSΣuc
(M) ⊆ M , that is

⋃

e∈Σuc
M.e ⊆

M . This entails that CM(v) ⊇ Σuc for all v ∈ L, namely CM is admissible.

Reciprocally, let C be a Σuc-admissible controller with L(C/G) ∈ [A, E].
We prove that L(C/G) ∈ mod(S). From L(C/G) ∈ [A, E], we get L(C/G) ∈
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mod(SE

A
) which entails CSE

A
(L(C/G)) ⊆ L(C/G) and L(C/G) ∩ I = ∅. Also

because L(C/G) ⊆ L, and L ∩ IG = ∅, we get L(C/G) ∩ IG = ∅. It remains
to prove that CSΣuc

(L(C/G)) ⊆ L(C/G) to conclude that L(C/G) ∈ mod(S).
Now by computing CSΣuc

(L(C/G)), similarly to CSΣuc
(M) above, we obtain

⋃

e∈Σuc
L(C/G).e, which is contained in L(C/G), because C is assumed ad-

missible.

Now let us focus on the effective computation of the maximally and mini-
mally permissive solutions. By Lemma 4, these solutions can effectively be
computed according to:

1. the computation of the coherent modal specification equivalent to S,
say the modal specification S ′ = 〈{C ′

e}e∈Σ, I ′〉, and

2. if S ′ is non-empty, the computation LS′

⊤ = Σ∗\I ′.Σ∗ and LS′

⊥ = ({1})↑S′

to obtain the maximally and minimally permissive solutions; those are
regular, as expected.

We postpone to the next section the discussion on the complexity. Let us
remark that, according to Lemma 20, the Lν-formula βSΣuc

associated to SΣuc

is Inv(
∧

e∈Σuc
〈e〉true), as originally introduced by [RP03] and [AVW03].

3.4 Extended Control Objectives

In the light of the previous section, we continue to use the elegant setting
of modal specifications. The progress is made at the level of the control
objectives: from now on we allow for any Lν-expressible property, say by the
formula β. Basically, to have a logical description of an instance 〈G, Σuc, β〉
of the (CCP); three modal specifications must be given: the specification
SL for the plant, the specification SΣuc which enforces admissible controllers,
and the modal specification Sobj of the control objectives (actually equivalent
to Sβ).

Regarding SΣuc, one can consider a more general specification Sc to define,
e.g. several modes of control where uncontrollability of events depends on the
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mode: the modal automaton then has as many states as modes, and dashed
vs. solid edges issuing these modes determine the controllability status of
events. This is done independently of the plant’s description, and clearly
simplifies the design process.

Referring to the specification Sobj , we already have shown that it can
define the interval of languages the controlled plant’s language must belong
to. Allowing for any Lν property attains a strictly larger class of control
objectives. To prove this claim, we exhibit a modal specification S with
an increasing chain of distinct models {Rn}n∈N s.t. none of the intervals
[Rn, Rn+1] is contained in mod(S); as a result, S cannot be equivalent to any
(finite union of) intervals.of languages. Let S be the modal specification of
depicted in Figure 1 (page 8). The models of S are the languages over {a, b}
(c is forbidden) s.t. “any occurrence of a can be extended by a b”. Clearly,
each language Rn = {am.b | m ≤ n} belongs to mod(S). For any pair of
natural numbers k < l, the prefix-closed language Ul = Rl \ {al.b} belongs
to [Rk, Rl], but Ul /∈ mod(S). However, there still exists a maximal model
of S, namely the one which contains all the Rn’s. Hence, we can state the
following general theorem:

Theorem 30 The (CCP) has a maximally permissive solution for any ob-
jective expressed in the logic Lν .

To our knowledge, a proof that for any control objective expressible in
Lν the maximal permissive control problem has a solution have never been
established so far; this reinforces the interest of using modal specifications
and emphasizes the scope of this contribution.

Let us now conclude the section by discussing the computation of the
maximal language model of SL∩Sc∩Sobj : as explained in the previous section,
we first need to compute the coherent modal specification S equivalent to
SL∩Sc ∩Sobj. If mod(S) is empty, then the control problem has no solution.
Otherwise, the maximal solution is LS

⊤ (the minimal one is LS
⊥).

Notice that, provided S is given, the computation of LS
⊤ is O(1) since it

is sufficient to interpret all edges of S as solid ones. Henceforth, computing
the maximal solution is carried forward while computing S. This computa-
tion given Lemma 2 consist in running the algorithm of [RW89] to remove
incoherent states of the modal automaton. To some extent, computing the
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coherent modal specification amounts to a generalization of the supremal
controllable language’s computation.

Example 1 Consider a coffee machine. The machine can perform 3 actions:
insert money (m), give money back (mb), and order a drink (o). The plant
is depicted Figure 6: the user must insert some money before ordering a
drink or getting her money back. Additionally, it is not possible to control
the mb action right after an m action has occurred (the user can always get
her money back when she has not ordered yet); this is shown on Figure 7
with the specification SΣuc. Now, we want to control the plant so that:

• initially, the user can put as much money as she wants;

• it is not possible to order twice in a row;

• after ordering a drink or getting the money back, it is only possible to
insert money.

m

mb

m, o

Figure 6: Plant of the coffee machine

The control objectives translates into the following interval of languages:

[A, E] = [m∗.Σ∗, (Σ∗ \ (Σ∗.o.o ∪ Σ∗.o.mb))]

The whole picture is given by Figure 7. Note that the specification SΣuc

is similar to the one of Figure 1 (with additional o-transitions, and where
m stands for a, and mb stands for b). The argumentation of Subsection 3.4
regarding the expressiveness of this specification remains valid: the control-
lability constraints we consider here are not expressible by an interval of
languages. Finally, we synthesize the maximally permissive controller (by
solidifying all the edges of SΣuc ∩ SE

A
, as it is coherent). The resulting con-

trolled plant is depicted Figure 7.
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The specification SΣuc The specification SE
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m

mbmb

o
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m
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m

mb, o

m

The specification SΣuc ∩ SE

A
The resulting controlled plant

Figure 7: The Coffee Machine Example
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4 Conclusion

The contribution proposes a logical framework to specify and solve control
problems for reactive systems, when represented by discrete event systems.

The formal framework relies on a syntactic fragment of the powerful mu-
calculus logic [Koz83, AN01], namely the Conjunctive Nu-calculus. With
this logic, we strictly extend the classical control theory of [RW89] based on
regular prefix-closed languages, while preserving the maximal model theo-
rem. Regular prefix-closed languages are acknowledged by the very maximal
solution property. However, they lack expressiveness as basically, only (fi-
nite unions of) intervals of languages can be considered. Therefore, only a
very few liveness features can be addressed. On the other hand, it is well
known that enlarging the setting to handle e.g. non-blockingness, leads to
much more complicated situations where the maximal model theorem does
not hold anymore. As shown here, the Conjunctive Nu-calculus lying in be-
tween the regular prefix-closed languages and the full mu-calculus lifts up the
maximal model theorem. Moreover, as to avoid the use of formulas, one can
equivalently consider modal specifications (finite state automata with “may”
kind of transitions). By the results of Section 3, there is a clear method to
translates instances of the Centralized Control Problem into modal specifi-
cations which models deliver solutions, in an effective manner.

To our knowledge, no investigation has ever been pursued on how far one
can go while preserving the maximal model theorem; this is decisive in the
control theory of discrete event systems. The present work demonstrates the
relevance of the Conjunctive Nu-calculus for the control theory of reactive
systems.
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