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We investigate verification problems for gap-order constraint systems (GCS), an (infinitely-
branching) abstract model of counter machines, in which constraints (over Z) between the
variables of the source state and the target state of a transition are gap-order constraints
(GC) [32]. GCS extend monotonicity constraint systems [7], integral relation automata [16],
and constraint automata in [19]. First, we address termination and fairness analysis of GCS.
Since GCS are infinitely-branching, termination does not imply strong termination, i.e. the
existence of an upper bound on the lengths of the runs from a given state. We show
that the termination problem, the strong termination problem, and the fairness problem
for GCS (the latter consisting in checking the existence of infinite runs in GCS satisfying
acceptance conditions à la Büchi) are decidable and Pspace-complete. Moreover, for each
control location of the given GCS, one can build a GC representation of the set of counter
variable valuations from which termination (resp., strong termination, resp., fairness) does
not hold (resp., does not hold, resp., does hold).
Next, we consider a constrained branching-time logic, GCCTL∗, obtained by enriching
CTL∗ with GC, thus enabling expressive properties and subsuming the setting of [16]. We
establish that, while model-checking GCS against the universal fragment of GCCTL∗ is
undecidable, model-checking against the existential fragment, and satisfiability of both the
universal and existential fragments are instead decidable and Pspace-complete (note that
the two fragments are not dual since GC are not closed under negation). Moreover, our
results imply Pspace-completeness of known verification problems that were shown to be
decidable in [16] with no elementary upper bounds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Abstractions of counter systems. One standard approach in formal analysis is the abstraction-based one: the analysis is per-
formed on an abstraction of the given system, specified in some weak computational formalism for which checking the
properties of interest is decidable. The relation between the abstraction and the concrete system is usually specified as a
semantic over-approximation. This ensures that the approach is conservative, by giving a decision procedure that (for cor-
rect systems) is sound but in general incomplete. Such a methodology has been applied in particular to the verification of
counter systems which represent a widely investigated complete computational model, used for instance to model broadcast
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protocols [23] and programs with pointer variables [11]. Counter systems extend finite-state systems by allowing a finite
set of counter variables, with each counter taking values from the infinite domain of integers. Moreover, constraints on the
transitions specify the relation between the variables of the target state and the variables of the source state. Though simple
problems like reachability are already undecidable for 2-counter Minsky machines [28], interesting abstractions of counter
systems have been studied, for which expressive classes of verification problems have been shown to be decidable. Many
of these abstractions are in fact restrictions: examples include Petri nets [29], reversal-bounded counter machines [25], and
flat counter systems [10,17]. Genuine abstractions are obtained by approximating counting operations by non-functional
fragments of Presburger constraints between the variables of the target state and the variables of the source state. Examples
include the class of Monotonicity Constraint Systems (MCS) [7] and its variants, like constraint automata in [19], and inte-
gral relation automata (IRA) [16], for which the (monotonicity) constraints (MC) are boolean combinations of inequalities of
the form u < v or u � v , where u and v range over variables or integer constants. MCS and their subclasses (namely, size-
change systems) have found important applications for automated termination proofs of functional programs (see e.g. [7,8]).
Richer classes of non-functional fragments of Presburger constraints have been investigated, e.g. difference bound constraints
[18], and their extension, namely octagon relations [13], where it is shown that the transitive closure of a single constraint
is Presburger definable (these results are useful for the verification of safety properties for flat counter systems). Note that
difference bound constraints over (real-valued or integer-valued) variables (clocks) are also used as guards of transitions in
timed automata [4]. Size-change systems extended with difference bound constraints over the natural number domain have
been investigated in [6]: there, the atomic difference constraints are of the form x− y′ � c, where c is an integer constant,
and y′ (resp., x) range over the variables of the target (resp., source) state. Termination for this class of systems is shown
to be undecidable. To regain decidability, the authors consider a restriction, where at most one bound per target variable in
each transition is allowed.

Temporal logics with Presburger constraints. An important classification of temporal logics is based on the underlying nature
of time. In the linear-time setting, formulas are interpreted over linear sequences (corresponding to single computations
of the system), and temporal operators are provided for describing the ordering of events along a single computation
path. In the branching-time setting, formulas are instead interpreted over computation trees, which describe all the possible
computations of the system from a designated initial state. Branching-time temporal logics are in general more expressive
than linear-time temporal logics since they provide both temporal operators for describing properties of a path in the
computation tree, and path quantifiers for describing the branching structure in computation trees.

In order to specify behavioral properties of counter systems, standard propositional linear-time temporal logics (like
LTL [30]) and propositional branching-time temporal logics (like CTL∗ [22]) can be extended by replacing atomic propo-
sitions with Presburger constraints, which usually refer to the values of the (counter) variables at two consecutive states
along a computation path (run). These enriched temporal logics allow to specify properties of counter systems that go
beyond simple reachability. Hence, basic decision problems are generally undecidable. However, decidability has been es-
tablished for various interesting fragments. We focus on fragments where the constraint language includes MC. For the
linear-time setting, many decidable fragments of full Presburger LTL have been obtained either by restricting the underly-
ing constraint language, see e.g. [19,21], or by restricting the logical language, see e.g. [12,17]. In particular, satisfiability
and model checking (w.r.t. constraint automata) of standard LTL extended with MC are decidable and Pspace-complete [19]
(which matches the complexity of LTL). For the branching-time setting, to the best of our knowledge, very few decidability
results are known. The extension of standard CTL∗ with MC, here denoted by MCCTL∗ , has been introduced in [16], where
it is shown that model checking IRA against its existential and universal fragments is decidable (by contrast, model checking
for the full logic MCCTL∗ is undecidable, even for its CTL-like fragment1). As done in [21], adding periodicity constraints
and the ability for a fixed k � 1, to compare the variable values at states of a run at distance at most k, decidability of the
above problems is preserved [14]. However, no elementary upper bounds for these problems are known [16,14]. Moreover,
it is shown in [20] that model checking a subclass of finitely-branching flat counter machines w.r.t. full Presburger CTL∗ is
decidable. In this subclass of systems, counting acceleration over every cycle in the control graph is Presburger definable.
Thus, since the relation between the variables at the current and next state is functional and the control graph is flat (i.e., it
contains only simple cycles), Presburger definability can be extended in a natural way to the set of states satisfying a given
formula.

Our contribution. We investigate verification problems for an (infinitely-branching) abstract model of counter machines, we
call gap-order constraint systems (GCS), in which constraints (over Z) between the variables of the source state and the target
state of a transition are (transitional) gap-order constraints (GC) [32]. These constraints are positive boolean combinations
of inequalities of the form u − v � k, where u, v range over variables and integer constants, and k is a natural number.
Thus, GC can express simple relations on variables such as lower and upper bounds on the values of individual variables,
and equality, and gaps (minimal differences) between values of pairs of variables. GC have been introduced in the field of
constraint query languages (constraint Datalog) for deductive databases [32], and also have found applications in the analysis
of safety properties for parameterized systems [1,2], and for determining state invariants in counter systems [24]. As pointed

1 Quantification over variables can be simulated by the path quantifiers of the logic.
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out in [2], using GC for expressing the enabling conditions of transitions allow to handle a large class of protocols, where
the behavior depends on the relative ordering of values among variables, rather than the actual values of these variables.

GCS strictly extend IRA (and its variants, namely, MCS and the constraint automata in [19]). This because GC extend
MC and, differently from MC, are closed under existential quantification (but not under negation). Moreover, the parameter-
ized systems investigated in [1,2] correspond to the parameterized version of GCS, where a system consists of an arbitrary
number of processes which are instances of the same GCS (additionally, transitions of a process can specify global con-
ditions which check the current local states and variables of all, or some of, other active processes). This framework is
useful to verify correctness regardless of the number of processes. However, basic decision problems like reachability for
the parameterized version of GCS are undecidable [1,2]. Decidability of reachability can be regained for a restricted class of
parameterized systems in which processes have at most one integer local variable [1,2].

Note that if we extend the constraint language of GCS by allowing either negation, or, equivalently, constraints of the
form u − v � −k, with k ∈ N, then the resulting class of systems can trivially emulate Minsky counter machines, leading
to undecidable basic decision problems. Moreover, note that GC extended with constraints of the form u − v � −k, with
k ∈N, correspond to standard diagonal bound constraints [4,18]. As mentioned above, these constraints are used as guards in
timed automata [4], where (integer-valued or real-valued) variables (clocks) record the elapsed time among events. However,
guards in timed automata express constraints only over the clocks of the source state, and clocks are synchronized, i.e., they
always advance at same speed. Hence, timed automata with integer-valued clocks and GCS are incomparable formalisms.

In this paper, first we address termination analysis of GCS. Since GCS are infinitely-branching, termination (i.e., the non-
existence of states from which there is an infinite run) does not imply the existence of an upper bound on the lengths of the
runs from a given state.2 The fulfillment of this last condition, we call strong termination, can be a necessary requirement in
some contexts, such as running-time analysis [3] for infinitely-branching formalisms. Strong termination has been addressed
in [9]. There, it is shown that for the subclass of MCS where integer constants are disallowed except for 0, checking strong
termination is Pspace-complete. For termination and strong termination of GCS, we establish the following results.

1. For each control location of the given GCS, the set of variable valuations from which strong termination (resp., termi-
nation) does not hold is effectively GC representable;

2. Checking strong termination (resp., termination) and strong termination (resp., termination) from a designated state in
GCS are decidable and Pspace-complete.

The proposed approach is as follows. First, we consider a subclass of GCS, called simple GCS: we establish our first result
for simple GCS, and provide two polynomial-time checkable conditions for verifying strong termination and termination
in simple GCS. Second, for a given unrestricted GCS S , we show that one can construct a finite family F of simple GCS
such that the union of the sets of strongly-terminating (resp., terminating) states of the single components in F correspond
to the set of strongly-terminating (resp., terminating) states of S . Then, we show that it is possible to compute separately
and in exponential time suitable abstractions of the simple GCS in F (we are not able to give an upper bound on the
size of F ), which preserve the fulfillment of the above polynomial-time checkable conditions for simple GCS. This leads to
exponential-time procedures for solving strong termination (resp., termination) and strong termination (resp., termination)
from a designated state in GCS. Finally, we show that in fact, the considered problems are Pspace-complete. A potential
application of our results on strong termination of GCS is to use them as a basic tool in running-time analysis (based on
GCS abstraction) of infinitely-branching computational systems. Note that concurrent open systems are usually infinitely-
branching because of the ongoing interaction with an unpredictable environment, and GCS can be used to abstractly model
such an interaction. Moreover, note that our results extend the known results about termination and strong termination
of MCS [9,8] in two directions: (i) we consider a strict extension of MCS, namely GCS, and (ii) our symbolic algorithm
builds a GC representation of the set of non-strongly-terminating states (resp., non-terminating states), a very substantial
information compared to the algorithm in [9,8]. For example, by using such a decidable finite representation, one can check
whether two GCS have the same set of strongly-terminating (resp., terminating) states.

We also investigate the fairness problem for GCS (which is crucial for the verification of liveness properties), that is
checking the existence of infinite runs satisfying acceptance conditions à la Büchi over the set of control locations. We show
that this problem is decidable and Pspace-complete; moreover, for the given GCS, one can compute a GC representation of
the set of states from which there is a ‘fair’ infinite run. The proposed approach is a generalization of that used for solving
non-termination of GCS.

Finally, we address verification problems of GCS against a strict extension, denoted by GCCTL∗ , of the logic MCCTL∗
(given in complete positive normal form) [16] obtained by adding transitional GC. Note that while MCCTL∗ is closed under
negation, its strict extension GCCTL∗ is not (if we allow negation, the resulting logic would be undecidable also for small
fragments). We show that while model-checking GCS against the universal fragment of GCCTL∗ is undecidable, model
checking GCS against the existential fragment of GCCTL∗ , and satisfiability of both the existential and universal fragments
of GCCTL∗ are instead decidable and Pspace-complete (which matches the complexity of finite-state model checking and

2 A state is an instantaneous description of the system specifying both a control location and a valuation of the counter variables.
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satisfiability for the existential and universal fragments of standard CTL∗ [27]). Note that the existential and universal
fragments of GCCTL∗ are not dual. Moreover, for a given GCS S and existential GCCTL∗ formula ϕ , the set of states in
S satisfying ϕ is effectively GC representable. Since the existential fragment of GCCTL∗ subsumes the existential fragment
of MCCTL∗ , and the existential and universal fragments of MCCTL∗ are dual, our results imply Pspace-completeness for
model-checking (w.r.t. IRA or GCS) of both the existential and universal fragments of MCCTL∗ . Hence, in particular, we
solve complexity issues left open in [16] (see also [14]).

The rest of this paper is organized as follows. In Section 2, we introduce the framework of GCS. In Section 3, we recall
some basic polynomial-time computable operations on GC. Moreover, we introduce a sound and complete (w.r.t. satisfiabil-
ity) approximation scheme of GC, and give constructive results on the reachability relation in GCS. In Section 4, we address
termination, strong termination, and fairness for the class of simple GCS. Then, in Section 5, we extend the results of Sec-
tion 4 to the general framework of GCS. Next, in Section 6, we introduce the logic GCCTL∗ and investigate decidability and
complexity issues for satisfiability and model checking (w.r.t. GCS) of GCCTL∗ and its existential and universal fragments.
Finally, in Section 7, we give some concluding remarks.

2. Gap-order constraint systems

Let Z be the set of integers and N be the set of natural numbers. Throughout this paper, we fix a finite set Var =
{x1, . . . , xr} of variables, a finite set of integer constants Const ⊆ Z such that 0 ∈ Const, and a primed copy of Var, Var′ =
{x′1, . . . , x′r}. For an arbitrary finite set of variables V , an (integer) valuation over V is a mapping of the form ν : V → Z,
assigning to each variable in V an integer value. For V ′ ⊆ V , νV ′ denotes the restriction of ν to V ′ . For two valuations ν
and ν ′ over Var, the composition of ν and ν ′ , written ν ⊕ ν ′ , is the valuation over Var ∪ Var′ which behaves like ν over Var
and like ν ′ over Var′ . Formally, (ν ⊕ ν ′)(xi)= ν(xi) and (ν ⊕ ν ′)(x′i)= ν ′(xi) for all 1 � i � r.

Notation. In the following, for a valuation ν : V → Z, we also consider the extension of ν over the domain V ∪ Z which
behaves like ν over V and it is the identity mapping over Z. With a little abuse of notation, this extension of ν is denoted
still by ν (in particular, ν(c)= c for all c ∈ Z).

Definition 1. (See [32].) For a finite set V of variables, a (conjunctive) gap-order constraint (GC for short) over V (and Const)
is a finite conjunction ξ of inequalities of the form u− v � k, where u, v ∈ V ∪ Const and k ∈N. W.l.o.g. we assume that for
all u, v ∈ V ∪ Const, there is at most one conjunct in ξ of the form u− v � k for some k. A valuation ν : V → Z satisfies ξ if
for each conjunct u− v � k of ξ , ν(u)− ν(v) � k. We denote by Sat(ξ) the set of such valuations. A transitional GC is a GC
over Var ∪ Var′ .

We use graph representations to manipulate GC in terms of (gap-order) Monotonicity Graphs (MG for short) [16].3 A dif-
ferent graph representation of GC can be found in [32].

Definition 2. (See [16].) For a finite set V of variables, a (gap-order) monotonicity graph (MG for short) over V (and Const) is
a directed weighted graph G with set of vertices V ∪ Const and edges u k−→ v labeled by natural numbers k, and such that
for all vertices u and v , there is at most one edge from u to v . The set Sat(G) of solutions of G is the set of valuations ν

over V such that for each edge u k−→ v in G , it holds that ν(u)− ν(v) � k. A transitional MG is an MG over Var ∪ Var′ . GC
and MG are equivalent formalisms since there is a trivial linear-time computable bijection assigning to each GC ξ an MG
G(ξ) such that Sat(G(ξ))= Sat(ξ).

Definition 3. A gap-order constraint system (GCS) (over Var and Const) is a finite directed labeled graph S such that each
edge is labeled by a transitional GC. Q (S) denotes the set of vertices in S , called control points, and E(S) the set of edges.

For a finite path ℘ of a GCS S , s(℘) and t(℘) denote the source and target control points of ℘ . For a finite path ℘ and
a path ℘′ such that t(℘)= s(℘′), the composition of ℘ and ℘′ , written ℘℘′ , is defined as usual.

The semantics of a GCS S is given by an infinite directed graph [[S]] defined as follows:

• the vertices of [[S]], called states of S , are the pairs of the form (q, ν), where q is a control point of S and ν : Var→ Z
is a valuation over Var;

• there is an edge in [[S]] from (q, ν) to (q′, ν ′) iff there is a (labeled) edge in S of the form q
ξ−→ q′ such that ν ⊕ ν ′ ∈

Sat(ξ). We say that the edge of [[S]] from (q, ν) to (q′, ν ′) is an instance of the edge q
ξ−→ q′ of S .

A path of [[S]] is called a run of S . The length |℘| (resp., |π |) of a path ℘ (resp., run π ) of S is defined in the standard

way. A non-null path (resp., non-null run) of S is a path (resp., run) of S of non-null length. Let ℘ = q0
ξ0−−→ q1

ξ1−−→ q2, . . .

3 MG are called Positive Graphose Inequality Systems in [16].
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Fig. 1. A GCS.

be a path of S . A run π of S is an instance of ℘ if π is of the form π = (q0, ν0) −→ (q1, ν1) −→ (q2, ν2), . . . and for each

i, (qi, νi)−→ (qi+1, νi+1) is an instance of qi
ξi−→ qi+1. Given F ⊆ Q (S), an infinite run (q0, ν0)−→ (q1, ν1)−→ . . . of S is fair

w.r.t. F if for infinitely many i � 0, qi ∈ F . A state s of S is terminating if there is no infinite run of S starting from s.
A state s of S is unbounded if the set of lengths of the finite runs of S starting from s is unbounded (equivalently, infinite).
A state s of S is strongly terminating if it is not unbounded. Since [[S]] may be infinitely-branching, termination and strong
termination are distinct concepts. In particular, strong termination implies termination, but the vice-versa in general does
not hold. This is illustrated by the following example.

Example 1. Fig. 1 depicts a GCS S consisting of a unique control point q and two self-loops. We deduce that each state s of
S is terminating. For this, we assume the contrary and derive a contradiction. Hence, there is an infinite run π = (q, ν0)−→
(q, ν1)−→ . . . of S . By construction, for all i � 0, the following hold: (ν(x1), ν(x2)) ∈ N×N, and either νi+1(x1) < νi(x1), or
νi+1(x1) = νi(x1) and νi+1(x2) < νi(x2). Hence, along the run π , the pair (x1, x2) decreases strictly w.r.t. the lexicographic
order over N× N. Since the latter is a well-founded order, π cannot be infinite. Thus, each state of S is terminating. On
the other hand, one can easily check that each state s = (q, ν) with ν(x1) > 0 and ν(x2) � 0 is unbounded. Indeed, for
each k � 2, a run from s of length k can be obtained as follows: for the first step of the run, we use the left edge in
Fig. 1, obtaining a state s′ = (q, ν ′), where ν ′(x1)= ν(x1)− 1 and ν ′(x2) > k. Then, the successive k− 1 steps of the run are
obtained as instances of the right edge in Fig. 1.

Investigated problems. Let S be a GCS. We denote by InfS the set of non-terminating states of S and by UnbS the set of
unbounded states of S . Note that InfS ⊆ UnbS . Moreover, for a set F of control points of S , we denote by InfS,F the set of
states of S from which there is an infinite run that is fair w.r.t. F . Note that InfS = InfS,Q (S) .

Definition 4 (MG-representability of sets of states). A set U of states of a GCS S is MG representable if there is a family
{Gq}q∈Q (S) of finite sets of MG over Var such that

⋃
G∈Gq

Sat(G)= {ν | (q, ν) ∈ U } for each q ∈ Q (S).

In other terms, a set U of states of a GCS S is MG representable if for each control point q ∈ Q (S), the set of valuations
ν over Var such that (q, ν) ∈ U corresponds to the set of valuations satisfying some finite disjunction of GC over Var. In this
paper, we study some verification questions for GCS. In particular, we consider the following decision problems:

• Termination Problem: given a GCS S , is the set InfS empty?
• Strong Termination Problem: given a GCS S , is the set UnbS empty?
• Fairness Problem: given a GCS S and F ⊆ Q (S), is the set InfS,F non-empty?

We will show that the problems above are all Pspace-complete and the sets UnbS and InfS,F for a given GCS S and
F ⊆ Q (S), are effectively MG representable. Moreover, for each of the mentioned problems P, we also investigate the
version of P w.r.t. a designated state and the version of P w.r.t. a designated control point, which are defined in the
obvious way. For example, the strong termination problem w.r.t. a designated state (resp., a control point) is checking, for a
given GCS S and state s of S (resp., control point q ∈ Q (S)), whether s /∈ UnbS (resp., (q, ν) /∈ UnbS for every valuation ν
over Var). We conclude this section by observing two facts.

Proposition 1. Let P be the termination (resp., strong termination, resp., fairness) problem. Then, the version of P w.r.t. a designated
state can be reduced in linear-time to the version of P w.r.t. a control point.

Proof. Fix a GCS S , a state (q0, ν0) of S , and F ⊆ Q (S). W.l.o.g. we can assume that ν0(x) ∈ Const for each x ∈ Var
(otherwise, we extend Const by including the integers ν0(x) with x ∈ Var). Let ξ= be the GC given by

∧
x∈Var x= ν0(x), and

q′0 /∈ Q (S) be a fresh control point. We construct a new GCS S0 as follows: S0 is obtained from S by adding for each edge

of S of the form q0
ξ−→ q, the edge q′0

ξ∧ξ=−−−−→ q. By construction, it easily follows that: (i) (q0, ν0) /∈ InfS iff (q′0, ν) /∈ InfS0
for each valuation ν over Var, (ii) (q0, ν0) /∈ UnbS iff (q′0, ν) /∈ UnbS0 for each valuation ν over Var, and (iii) (q0, ν0) ∈ InfS,F
iff (q′0, ν) ∈ InfS0,F for some valuation ν over Var. Hence, the result follows. �
Proposition 2. The termination problem, the strong termination problem, the fairness problem, and their versions w.r.t. a designated
state and w.r.t. a control point are all Pspace-hard.

Proof. It is known that for Boolean Programs [26], termination and termination w.r.t. a designated state are Pspace-complete
[26]. Since GCS subsume Boolean Programs and Boolean Programs are finitely-branching (hence, for these systems, strong
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termination corresponds to termination), by Proposition 1, it follows that the termination problem and the strong termina-
tion problem for GCS, and their versions w.r.t. a designated state and w.r.t. a control point are Pspace-hard. For the fairness
problem and its versions w.r.t. a designated state and w.r.t. a control point, it suffices to observe that the fairness problem
subsumes the dual of the termination problem and Pspace= coPspace. �
Remark 1. For the ease of presentation, we do not allow disjunction in the gap-order constraints labeling the edges of a
GCS. Note that disjunctions of (conjunctive) GC can be emulated by multiple edges from a given source control point to a
given target control point. Even if the disjunctive normal form of an arbitrary gap-order constraint ξ may be of size singly
exponential in the size of ξ , our main results (see Theorems 8, 9, and 13 in the rest of the paper) can be trivially generalized
to GCS whose edges are labeled by arbitrary gap-order constraints.

Convention. We will use MG representations to manipulate (conjunctive) GC; therefore, we assume that the edge-labels in
GCS are transitional MG.

3. Preliminary results

This section is organized as follows. First, in Section 3.1, we recall some basic operations on MG [16] which can be
computed in polynomial time. Then, in Section 3.2, we define a sound and complete (w.r.t. satisfiability) approximation
scheme of MG and show that the basic operations on MG preserve soundness and completeness of this approximation.
Finally, in Section 3.3, we give constructive results on the reachability relation in GCS.

3.1. Known properties of monotonicity graphs

Let G be an MG over V . We say that G is satisfiable if Sat(G) 
= ∅. For V ′ ⊆ V , the restriction of G to V ′ , written G V ′ , is the
MG over V ′ given by the subgraph of G whose set of vertices is V ′ ∪ Const. For all vertices u, v of G , we denote by pG(u, v)

the least upper bound (possibly ∞) of the weight sums on all paths in G from u to v (we set pG(u, v)=−∞ if there is no
such a path). The MG G is normalized if the following hold:

• for all vertices u, v of G , if pG(u, v) >−∞, then pG (u, v) 
=∞ and u
pG (u,v)−−−−−→ v is an edge of G;

• for all constants c1, c2 ∈ Const, pG(c1, c2) � c1 − c2.

The following two propositions (Propositions 3 and 4) summarize some known basic properties of MG [16] (in particular,
checking satisfiability of MG or, equivalently, GC can be done in polynomial time).

Proposition 3. (See [16].) An MG G is satisfiable ⇔ G contains no loop with positive weight sum and for all c1, c2 ∈ Const,
pG(c1, c2) � c1 − c2 (this can be checked in polynomial time).

Definition 5 (Closure of MG). (See [16].) For a satisfiable MG G over V , the closure of G , denoted by G , is the MG over V
defined as follows: for all vertices u, v ∈ V ∪ Const, there is an edge u k−→ v in G iff pG(u, v) >−∞ and k= pG (u, v) (note
that since G is satisfiable, by Proposition 3, pG(u, v) 
= ∞). Moreover, for all unsatisfiable MG G over V , we use a unique
closure corresponding to some MG Gnil over V such that (Gnil)∅ is unsatisfiable (recall that (Gnil)∅ denotes the MG given by
the subgraph of Gnil whose set of vertices is Const). As for satisfiable MG, the closure of an unsatisfiable MG G is denoted
by G .

Proposition 4. (See [16].) Let G be an MG over V . Then:

1. If G is normalized and V ′ ⊆ V , then G is satisfiable and every solution of G V ′ can be extended to a whole solution of G.
2. If G is satisfiable, then its closure G can be computed in polynomial time. Moreover, G is normalized and Sat(G)= Sat(G).

We conclude this subsection by recalling some effective operations on MG which can be computed in polynomial time.
Let Var′′ = {x′′1, . . . , x′′r } be an additional copy of Var= {x1 . . . , xr}.

Definition 6. (See [16].) Let G be an MG over V and G ′ be an MG over V ′ .

1. Projection: if V ′ ⊆ V , the projection of G over V ′ is the MG given by (G)V ′ .
2. Intersection: the intersection G � G ′ of G and G ′ is the MG over V ∪ V ′ defined as follows: u k−→ v is an edge of G � G ′ iff

either (1) u k−→ v is an edge of G (resp., G ′) and there is no edge from u to v in G ′ (resp., G), or (2) k =max({k′,k′′}),
u k′−→ v is an edge of G and u k′′−−→ v is an edge of G ′ .
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Fig. 2. A transitional MG G , its closure G , and the composition G • G .

3. Composition: assume that G and G ′ are two transitional MG. Let G ′′ be obtained from G ′ by renaming any variable x′i
into x′′i and xi into x′i . The composition G • G ′ of G and G ′ is the transitional MG obtained from the projection of G � G ′′
over Var ∪ Var′′ by renaming any variable x′′i into x′i .

Fig. 2 depicts a satisfiable transitional MG, its closure G , and the composition G • G . As we will see in Section 3.3, the
composition operator allows to capture the binary reachability relation in a GCS for a fixed non-null finite path in the
control graph. By Definition 6 and Proposition 4, we easily obtain the following known result [16], which essentially asserts
that MG (or, equivalently, GC) are closed under intersection and existential variable quantification.

Proposition 5. (See [16].) Let G be an MG over V and G ′ be an MG over V ′ .

1. Projection: if G ′ is the projection of G over V ′ , then for ν ′ : V ′ → Z, ν ′ ∈ Sat(G ′) if and only if ν ′ = ν|V ′ for some ν ∈ Sat(G).
2. Intersection: for ν : V ∪V ′ → Z, ν ∈ Sat(G�G ′) if and only if ν|V ∈ Sat(G) and ν|V ′ ∈ Sat(G ′). Hence, for V = V ′ , Sat(G�G ′)=

Sat(G)∩ Sat(G ′).
3. Composition: assume that G and G ′ are transitional MG. Then, for all ν,ν ′ : Var → Z. ν ⊕ ν ′ ∈ Sat(G • G ′) if and only if

ν ⊕ ν ′′ ∈ Sat(G) and ν ′′ ⊕ ν ′ ∈ Sat(G ′) for some ν ′′ : Var→ Z. Moreover, the composition operator • is associative.

3.2. Approximation scheme of monotonicity graphs

Note that for the fixed sets Var and Const of variables and constants, the class of transitional MG is infinite (since the
edge-weights are arbitrary natural numbers). In this subsection, we introduce a sound and complete (w.r.t. satisfiability)
finite over-approximation scheme of (transitional) MG. The latter is based on the use of a cut-off value K for finitely
abstracting the edge-weights (gaps) in MG.

In the rest of this paper, we denote by K the positive natural number given by

K
def= max

({|c1 − c2| + 1
∣∣ c1, c2 ∈ Const

})
that is the maximum distance between the constants in Const plus one. For each h ∈ N, we denote by �h�K the minimum
between h and K .

Definition 7 (K -bounded approximation). An MG G is K -bounded if the weights of the edges of G are bounded by K . For an
MG G over V , its K -bounded approximation, denoted by �G�K , is the K -bounded MG over V obtained from G by replacing
each edge-weight h of G with �h�K . For a set G of MG, �G�K denotes the set of K -bounded MG given by {�G�K | G ∈ G}. We
extend the previous set operation to families of sets of MG in the obvious way. For a GCS S , its K-bounded approximation
�S�K is the GCS obtained by replacing each MG of S with its K-bounded approximation. For a set F of GCS, �F�K denotes
the set {�S�K | S ∈F}.

Note that each K -bounded transitional MG has at most 2|Var| + |Const| vertices and for all vertices u and v , there is
at most one edge from u to v , and this edge has the form u h−→ v , where h = 0,1, . . . , K . Hence, we obtain the following
upper bound on the cardinality of the finite set of K -bounded transitional MG.

Remark 2. The number of K -bounded transitional MG is bounded by (K + 2)(2|Var|+|Const|)2
, that is singly exponential in the

number of variables and constants and in the size of the binary encoding of the constants.

Now, we show that the K -bounded approximation scheme is sound and complete w.r.t. satisfiability, and basic operations
on MG preserve soundness and completeness of this approximation. These results (Propositions 6 and 7) are crucial since
they represent the basis for solving in an asymptotical optimal way the considered verification questions on GCS.

Proposition 6. For an MG G, G is satisfiable iff �G�K is satisfiable. Moreover, �G�K = ��G�K �K .
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Proof. By Proposition 3 and definition of K -bounded MG, it easily follows that G is satisfiable iff �G�K is satisfiable. It
remains to show that �G�K = ��G�K �K . If G is unsatisfiable, then �G�K is unsatisfiable as well. Hence, G and �G�K have
the same closure, and the result holds in this case. Now, assume that G is satisfiable. From the first part of the proposition
and Proposition 4(2), �G�K and ��G�K �K are both satisfiable. Thus, by definition of K -bounded MG it suffices to show the
following:

Property 1: for each edge u k−→ v of G , there is an edge u k′−→ v of �G�K such that �k�K = �k′�K ;
Property 2: for each edge u k−→ v of �G�K , there is an edge u k′−→ v of G such that �k�K = �k′�K .

Proof of Property 1. Let u k−→ v be an edge in G . Then, k= pG(u, v). Thus, there is a path p of G from u to v whose weight
sum is k. We distinguish two cases:

• p contains an edge of weight greater than or equal to K . Hence, k � K . By definition of �G�K , there is a path of �G�K

from u to v of weight sum greater than or equal to K . It follows that there is an edge u k′−→ v of �G�K such that k′ � K .
Since �k�K = �k′�K = K , in this case Property 1 holds.

• p contains only edges of weight smaller than K . By definition of �G�K , p is also a path of �G�K . Since p�G�K (u, v) �
pG(u, v)= k and the weight sum of p is k, u k−→ v must be also an edge of �G�K , and Property 1 holds in this case as
well. �

Proof of Property 2. Let u k−→ v be an edge in �G�K . By definitions of K -bounded MG and closure of a satisfiable MG, it
follows that u k′−→ v is an edge of G for some k′ . Recall that for an MG and vertices u and v , there is at most one edge
from u to v . Thus, by Property 1, we obtain that �k�K = �k′�K = K , and Property 2 follows. This concludes the proof of
Proposition 6. �
Proposition 7. For MG G and G ′ , �G � G ′�K = �G�K � �G ′�K . Moreover, if G and G ′ are transitional, then �G • G ′�K = ��G�K •
�G ′�K �K .

Proof. First, we prove that �G � G ′�K = �G�K � �G ′�K . It suffices to show the following:

Property 1: for each edge u k−→ v of G � G ′ , there is an edge u k′−→ v of �G�K � �G ′�K such that �k�K = k′;
Property 2: for each edge u k−→ v of �G�K � �G ′�K , there is an edge u k′−→ v of G � G ′ such that k= �k′�K .

Proof of Property 1. Let u k−→ v be an edge in G � G ′ . By Definition 6, there are three cases:

• u k−→ v is an edge of G and there is no edge from u to v in G ′ . It follows that u
�k�K−−−→ v is an edge of �G�K and there

is no edge from u to v in �G ′�K . Hence, u
�k�K−−−→ v is an edge of �G�K � �G ′�K . Thus, in this case Property 1 holds.

• u k−→ v is an edge of G ′ and there is no edge from u to v in G . This case is similar to the previous one.
• G has an edge u h−→ v , G ′ has an edge u h′−→ v , and k = max({h,h′}). It follows that there is an edge u k′−→ v of
�G�K ��G ′�K with k′ =max({�h�K , �h′�K }). Since �max({h,h′})�K =max({�h�K , �h′�K }), Property 1 holds in this case as
well. �

Proof of Property 2. Let u k−→ v be an edge in �G�K � �G ′�K . Then, there must be an edge of G � G ′ of the form u k′−→ v for
some k′ . Recall that for an MG and vertices u and v , there is at most one edge from u to v . Thus, by Property 1, we obtain
that k= �k′�K = K , and Property 2 follows. �

In order to conclude the proof of Proposition 7, it remains to show that for transitional MG G and G ′ , �G • G ′�K =
��G�K • �G ′�K �K . Let G ′′ be obtained from G ′ by renaming any variable x′i into x′′i and xi into x′i . By Definition 6 and defini-
tion of K -bounded MG, it suffices to prove that �G � G ′′�K = ��G�K � �G ′′�K �K . By Proposition 6 and the first part of Propo-
sition 7, it holds that �G � G ′′�K = ��G � G ′′�K �K and �G � G ′′�K = �G�K � �G ′′�K . Hence, �G � G ′′�K = ��G�K � �G ′′�K �K ,
which concludes the proof of Proposition 7. �
3.3. Results on the reachability relation in GCS

In this subsection, we give constructive results on the reachability relation in GCS.

Definition 8 (Reachability relation for a finite path). Let S be a GCS. For a finite path ℘ of S , the reachability relation w.r.t. ℘ ,
denoted by �℘ , is the binary relation on the set of valuations over Var defined as follows: for all ν,ν ′ : Var→ Z, ν �℘ ν ′ iff
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there is a run of S from (s(℘), ν) to (t(℘), ν ′) which is an instance of the path ℘ . For a transitional MG G , G characterizes
the reachability relation �℘ iff Sat(G) = {ν ⊕ ν ′ | ν �℘ ν ′}. A finite path ℘ of S is satisfiable if there is a run which is an
instance of ℘ (i.e., there are valuations ν and ν ′ such that ν �℘ ν ′).

Fix a GCS S . We associate to each non-null finite path ℘ of S a transitional MG G℘ and a transitional K -bounded MG

Gbd
℘ , defined by induction on ℘ as follows:

• ℘ = q G−→ q′: G℘
def= G and Gbd

℘
def= �G�K ;

• ℘ = ℘′℘′′ , |℘′|> 0, and ℘′′ = q G−→ q′: G℘
def= G℘′ • G and Gbd

℘
def= �Gbd

℘′ • �G�K �K .

Note that G℘ is the composition of the transitional MG along the edges of ℘ . By a straightforward induction on the
length of the path ℘ and by using Propositions 5 and 7, we obtain the following result.

Proposition 8. For a non-null finite path ℘ of S , Gbd
℘ = �G℘�K and G℘ characterizes the reachability relation �℘ .

For the given GCS S , define GK
S as

GK
S

def= {(�G℘�K , s(℘), t(℘)
) ∣∣ ℘ is a satisfiable non-null finite path of S

}
.

Thus, GK
S keeps tracks of the K -bounded approximations of the transitional MG associated with the satisfiable non-null finite

paths ℘ of S together with the source and target control points of ℘ . Note that GK
S is finite since the set of transitional

K -bounded MG is finite. In particular, by Remark 2, the cardinality of GK
S is bounded by |Q (S)|2 · (K + 2)(2|Var|+|Const|)2

.
Moreover, by Proposition 8, GK

S is exactly the set {(Gbd
℘ , s(℘), t(℘)) | ℘ is a non-null finite path and Gbd

℘ is satisfiable}. It

follows that we can compute the set GK
S by the following transitive closure procedure: initialize a set B to {(�G�K ,q,q′) |

q G−→ q′ is an edge of S and �G�K is satisfiable} and repeat the following step until no more elements can be added to
B (at this point B = GK

S ): for each (Gbd,q,q′) ∈ B and edge q′ G−→ q′′ of S include in B also (�Gbd • �G�K �K ,q,q′′), unless
�Gbd • �G�K �K is unsatisfiable. Thus, we obtain the following result.

Theorem 1. For a GCS S , the size of GK
S is bounded by O (|Q (S)|2 ·(K+2)(2|Var|+|Const|)2

) and GK
S can be computed in time O (|E(S)| ·

|Q (S)|2 · (K + 2)(2|Var|+|Const|)2
).

By [16] (see also [14]), for a GCS S , the reflexive transitive closure of the transition relation of [[S]] is effectively GC
definable (a similar result can be found in [32], where it is shown that for Datalog queries with GC, there is a closed
form evaluation). The GC representation can be computed by a fixpoint iteration whose termination is guaranteed by a
suitable decidable well-quasi-ordering defined over the set of transitional MG. By an insight in the proof given in [16] (see
also [14]), and applying the K -bounded approximation scheme, we easily obtain the following result. For completeness, we
give a proof of Theorem 2 in Appendix A.1. Note that we are not able to give an upper bound on the cardinality of the
set PS .

Theorem 2. Given a GCS S , one can compute a finite set PS of non-null finite paths of S such that for each non-null finite path ℘′ of
S , there is a path ℘ ∈PS so that s(℘)= s(℘′), t(℘)= t(℘′), �G℘�K = �G℘′ �K , and �℘′ implies �℘ (hence, Sat(G℘′ )⊆ Sat(G℘)).

By Theorem 2, one can compute a GC representation of the binary reachability relation (for arbitrary finite paths) in
a GCS S . Although we are not able to provide an upper bound on the size of this GC representation, it is important
to highlight, as we show below, that the reachability problem in GCS between two given states can be solved in singly
exponential time. This problem is closely related to the recognition problem investigated in [32], which asks for a given
Datalog query with gap-order constraints (consisting of a program P and a generalized relational database) and a given
ground relational tuple A(t), whether A(t) is in the full-model of the query (corresponding to the bottom-up evaluation of
the query). Revesz in [32] provided an exponential-time algorithm to solve this problem (which is polynomial-time bounded
for a fixed program P ). We use an approach similar to the one in [32] to show that the reachability problem in GCS can
be solved in singly exponential time.4 First, we observe that the K -bounded approximation scheme is sound and complete
w.r.t. the valuations ν assigning to each variable an integer in Const.

Claim. Let G be an MG over V (and Const) and ν : V → Z such that ν(x) ∈ Const for all x ∈ V . Then, ν ∈ Sat(G) iff ν ∈ Sat(�G�K ).

4 The main difference with respect to the result in [32] is that we use a different graph representation of GC and a more general approximation scheme
than the one exploited in [32].
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Proof of the claim. If ν ∈ Sat(G), the ν ∈ Sat(�G�K ) (since Sat(G) ⊆ Sat(�G�K )). For the proof of the converse implication,
we assume that ν ∈ Sat(�G�K ) and ν /∈ Sat(G), and derive a contradiction. Hence, by construction, there must be an edge

u h−→ v of G and an edge u
�h�K−−−→ v of �G�K such that ν(u)−ν(v) < h and ν(u)−ν(v) � �h�K . By hypothesis, ν(u)−ν(v) �

max{|c1 − c2| | c1, c2 ∈ Const}< K . It follows that �h�K < K , hence, �h�K = h, which is a contradiction, and we are done. �
For a given GCS S and given states (q0, ν0) and (q1, ν1) of S , in order to check if (q1, ν1) is reachable from (q0, ν0), we

proceed as follows. Fist, we extend Const by including all the integers ν0(x) and ν1(x) with x ∈ Var. If (q1, ν1)= (q0, ν0), then
the check is positive. Now, assume that (q1, ν1) 
= (q0, ν0). Then, (q1, ν1) is reachable from (q0, ν0) iff there is a satisfiable
non-null finite path ℘ of S such that s(℘)= q0, t(℘)= q1, and ν0⊕ ν1 ∈ Sat(G℘). By Theorem 1, one can compute in singly
exponential time the following set

GK
S

def= {(�G℘�K , s(℘), t(℘)
) ∣∣ ℘ is a satisfiable non-null finite path of S

}
.

Thus, by the claim above (and since Const includes all the integers ν0(x) and ν1(x) with x ∈ Var), we obtain that (q1, ν1)

is reachable from (q0, ν0) iff there is a triple (G,q0,q1) ∈ GK
S such that ν0 ⊕ ν1 ∈ Sat(G). Hence, the reachability problem

between two given states of a given GCS can be solved in singly exponential time.

3.4. Outline of the main results

In this subsection, we outline the approach proposed for solving the considered verification questions for GCS. The
approach consists of two main steps.

Step 1. First, in Section 4, we address termination and strong termination for a subclass of GCS, we call simple GCS. The
control graph of these GCS consists just of a self-loop and an additional edge which connects the initial control
point with the control point of the self-loop. We define two polynomial-time checkable conditions on simple GCS,
namely the termination condition and the unboundedness condition. Then, we show that the first condition character-
izes the simple GCS S whose set InfS of non-terminating states is empty (Proposition 11 and Theorem 4), while
the second one characterizes the simple GCS whose set of unbounded states with initial control point is non-empty
(Proposition 12 and Theorem 6). Additionally, and importantly, the K -bounded approximation scheme is sound and
complete w.r.t. these two conditions (Proposition 11 and Proposition 12). Then, by using these two conditions and
the results of the previous subsections, we establish the main results for simple GCS (Theorem 3 and Theorem 5):
• Main results of Section 4. For a simple GCS S , one can compute MG representations of the sets InfS and UnbS ,

and K -bounded approximations of these representations can be computed in polynomial time. Moreover, the
latter coincide with the K -bounded approximations of the MG representations associated with the sets Inf �S�K

and Unb�S�K .
Step 2. In Section 5, we address fairness and (strong) termination for the whole class of GCS. For a GCS S and a set

F ⊆ Q (S) of accepting control points, by using Theorem 1, the computable finite set of sample finite paths of
Theorem 2, and Ramsey’s theorem in its infinitary version [31], we show (Theorem 7 and Lemmata 16 and 17) that
it is possible to construct two finite families F(S, F ) and U(S) of simple GCS such that the following hold:
• InfS,F corresponds to the set of non-terminating states with initial control point of the single components in
F(S, F ),

• UnbS corresponds the set of unbounded states with initial control point of the single components in U(S), and
• the K -bounded approximations of F(S, F ) and U(S) can be computed in singly exponential time.
Then, by using the main results of Section 4, we obtain the main results of Section 5 (Theorems 8 and 9).
• Main results of Section 5. For a GCS S and a set F ⊆ Q (S) of accepting control points, one can compute MG

representations of the sets InfS,F and UnbS , and the K -bounded approximations of these representation can
be computed in polynomial time. Moreover, the latter coincide with the K -bounded approximations of the MG
representations associated with the sets Inf �S�K ,F and Unb�S�K . Note that this last result is crucial to solve in
an optimal way the model checking problem of GCS against the existential fragment of the logic GCCTL∗ (see
Section 6).

These results lead to singly exponential time algorithms to solve termination, strong termination, and fairness for
the whole class of GCS. In fact, we also show that these algorithms need only polynomial space.

4. Fairness and (strong) termination for simple GCS

In this section, we address fairness and (strong) termination for a subclass of GCS, we call simple GCS. Before defining
this subclass, we need additional definitions and notation.

For an MG G and vertices u and v , the notation G |� u < v means that there is path in G from v to u with weight sum
k > 0. Moreover, G |� u � v means that there is a path of G from v to u, and G |� u = v means G |� u � v and G |� v � u.
Also, we write G |� u1 �1 · · ·�n−1 un to mean that G |� ui �i ui+1 for each 1 � i < n, where �i ∈ {<,�,=}.
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Fig. 3. The control graph of a simple GCS.

Fig. 4. A complete transitional MG and a balanced transitional MG.

Definition 9 (Complete transitional MG). A transitional MG G is complete if the following hold:

• for all vertices u and v , G |� u � v implies G |� u � v for some � ∈ {<,=};
• for all u, v ∈ Var ∪ Const, either G |� u � v or G |� v � u;
• for all u, v ∈ Var′ ∪ Const, either G |� u � v or G |� v � u.

A GCS S is complete if each MG in S is complete.

Intuitively, complete transitional MG induce a total ordering on the set of vertices in Var ∪ Const and a total ordering on
the set of vertices in Var′ ∪ Const.

Remark 3. For a transitional MG G , G is complete iff �G�K is complete.

Definition 10. A transitional MG G is (weakly) idempotent if �G • G�K = �G�K .

Definition 11 (Simple GCS). A simple GCS is a complete GCS S consisting of just two edges of the form q0
G0−−→ q and

q G−→ q such that q0 
= q, G0 • G is satisfiable, and G is idempotent. We say that q0 is the initial control point of S . (See
Fig. 3.)

Evidently, for a simple GCS, the fairness problem can be trivially reduced in linear time to the dual of the termination
problem. Thus, in the following we focus on termination and strong termination of simple GCS. The rest of this section is
organized as follows. In Section 4.1, we establish some basic properties of simple GCS. Then, in Sections 4.2 and 4.3, we
address termination of simple GCS and strong termination of simple GCS, respectively.

4.1. Basic properties of simple GCS

We need two additional definitions.

Definition 12 (Balanced transitional MG). A transitional MG G is balanced if for all u, v ∈ Var∪Const and � ∈ {<,=}, G |� u�v
if and only if G |� u′� v ′ (where for u ∈ Var∪ Const, we write u′ to denote the corresponding variable in Var′ if u ∈ Var, and
u itself otherwise).

Intuitively, for a balanced transitional MG, the partial orderings induced by G on the set of vertices Var ∪ Const and on
the set of vertices Var′ ∪ Const coincide.

Example 2. Let Var= {x1, x2, x3} and Const= {0,3}. Fig. 4 depicts two transitional MG G1 and G2. Note that G1 is complete
but non-balanced, while G2 is balanced but non-complete.

Definition 13 (Lower, upper, and bounded variables). We denote by MAX (resp., MIN) the maximum (resp., minimum) of Const.
For a transitional MG G and y ∈ Var ∪ Var′ , y is a lower (resp., upper) variable of G if G |� y < MIN (resp., G |�MAX < y).
Moreover, y is a bounded variable of G if G |�MIN � y and G |� y � MAX.

The following two propositions summarize some basic properties of simple GCS.
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Fig. 5. Partial ordering of the variables in the transitional MG G .

Proposition 9. For a GCS S , S is simple iff if �S�K is simple.

Proof. The result directly follows from Remark 3 and Propositions 6 and 7. �
For a transitional MG G and k � 1, define Gk def= G • · · · • G︸ ︷︷ ︸

k times

.

Proposition 10. For a simple GCS S with edges q0
G0−→ q and q G−→ q, the following hold:

1. G0 is satisfiable and for all k � 1, G0 • Gk and Gk are satisfiable as well;
2. G is balanced;
3. Let L (resp., U , resp., B) be the set of lower (resp., upper, resp., bounded) variables of G in Var. Then, L, U , and B represent a

partition of Var.

Proof. Since G0 • G is satisfiable (S is a simple GCS), by definition of the composition operator, it follows that G0 and
G are satisfiable as well. Since the composition operator is associative and G is idempotent, by using Proposition 7, we
obtain that �G0 • Gk�K = �G0 • G�K and �Gk�K = �G�K . Thus, since the K -bounded approximation preserves satisfiability
of MG (Proposition 6), Property 1 follows. Property 2 directly follows from Property 1 (in particular, G • G is satisfiable),
the definition of the composition operator, and the fact that G is complete (S is a simple GCS). Finally, Property 3 directly
follows from the facts that G is satisfiable and complete. �

In the rest of Section 4, we fix a simple GCS S with edges q0
G0−−→ q and q G−→ q. We denote by l1, . . . , lL (resp.,

u1, . . . ,uU ) the lower (resp., the upper) variables of G in Var, and by b1, . . . ,bB the bounded variables of G in Var. (See
Fig. 5.) By Proposition 10(3), Var= {l1, . . . , lL,u1, . . . ,uU ,b1, . . ., bB} and we can assume that

G |� l1 �2 · · ·�L lL < MIN � b1 �′2 · · ·�′B bB � MAX < u1 �′′2 · · ·�′′U uU

where �2 · · ·�L,�′2 · · ·�′B ,�′′2 · · ·�′′U ∈ {<,=}. Since G is balanced (Proposition 10(3)), it follows that the lower variables
(resp., upper variables) of G in Var′ are l

′
1, . . . , l

′
L (resp., u

′
1, . . . ,u

′
U ), and the bounded variables of G in Var′ are b

′
1, . . . ,b

′
B .

Moreover,

G |� l
′
1 �2 · · ·�L l

′
L < MIN � b

′
1 �′2 · · ·�′B b

′
B � MAX < u

′
1 �′′2 · · ·�′′U u

′
U .

Notation. Define lL+1
def= MIN, l

′
L+1

def= MIN, u0
def= MAX, and u

′
0

def= MAX.

We conclude this subsection by giving three technical preliminary lemmata, which are fundamental to understand the
“interaction” between the variables in Var and those in Var′ for the idempotent transitional MG G associated with the
self-loop of the fixed simple GCS S . The first two lemmata (Lemmata 1 and 2) are a consequence of the idempotence of G .

Lemma 1 (Lower variables). For all 1 � i < j � L, the following hold:

1. G |� li � l
′
j ⇒ either G |� l j � l

′
j or G |� li � l

′
j−1 .

2. G |� l
′
i � l j ⇒ either G |� l

′
j � l j or G |� l

′
i � l j−1 .

Proof. We prove Property 1 (Property 2 is similar). Assume that G |� li � l
′
j where 1 � i < j � L. Then, since G is idempo-

tent, it easily follows that G • G |� li � l
′
j . Hence, by definition of the composition operator, there is u ∈ Var ∪ Const such

that G |� li � u′ and G |� u � l
′
j .

5 Since G |� u � l
′
j , we deduce that u is a lower variable of G in Var, hence u = lh for some

1 � h � L, and we obtain

5 Where u′ denotes the corresponding variable in Var′ if u ∈ Var, and u itself otherwise.
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G |� li � l
′
h and G |� lh � l

′
j.

We distinguish two cases:

• h � j: hence, G |� l j � lh . Since G |� lh � l
′
j , we obtain that G |� l j � l

′
j . Thus, in this case, the result holds.

• h < j: hence, G |� l
′
h � l

′
j−1. Since G |� li � l

′
h , we obtain that G |� li � l

′
j−1. Thus, the result holds in this case as

well. �
Lemma 2 (Upper variables). For all 1 � i < j � U , the following hold:

1. G |� u
′
i � u j ⇒ either G |� u

′
j � u j or G |� u

′
i � u j−1 .

2. G |� ui � u
′
j ⇒ either G |� u j � u

′
j or G |� ui � u

′
j−1 .

Proof. We prove Property 1 (Property 2 is similar). Assume that G |� u
′
i � u j where 1 � i < j � U . Then, since G is idem-

potent, it easily follows that G • G |� u
′
i � u j . Hence, by definition of the composition operator, there is u ∈ Var ∪ Const such

that G |� u′ � u j and G |� u
′
i � u. Since G |� u

′
i � u, we deduce that u is an upper variable of G in Var, hence u = uh for

some 1 � h � U , and we obtain

G |� u
′
h � u j and G |� u

′
i � uh.

We distinguish two cases:

• h � j: hence, G |� u
′
j � u

′
h . Since G |� u

′
h � u j , we obtain that G |� u

′
j � u j . Thus, in this case, the result holds.

• h < j: hence, G |� uh � u j−1. Since G |� u
′
i � uh , we obtain that G |� u

′
i � u j−1. Thus, the result holds in this case as

well. �
In Sections 4.2 and 4.3, for each of the two considered problems (termination and strong termination), we define a subset

of the upper and lower variables of G , called the set of unconstrained variables, which depends on the specific problem. Here,
we capture by Definition 14 and Lemma 3 some common properties of these sets. Thus, Lemma 3 can be seen as a template
which will be instantiated in Sections 4.2 and 4.3 with the specific set of unconstrained variables.

Definition 14. Let Lc, Uc ∈N. We say that the pair (Lc, Uc) is well-formed w.r.t. G if the following conditions are satisfied:

• 1 � Lc � L + 1 and G |� lLc = l
′
Lc

;
• 0 � Uc � U and G |� uUc = u

′
Uc

;
• for each Lc � i � L, G 
|� l

′
i < li and G 
|� li < l

′
i ;• for each 1 � i � Uc , G 
|� u

′
i < ui and G 
|� ui < u

′
i .

The set of unconstrained variables in Var w.r.t. (Lc, Uc) is given by {l1, . . . , lLc−1,uUc+1, . . . ,uU }.

Lemma 3 (Separation lemma). Let (Lc, Uc) be well-formed w.r.t. G. Then:

Lower variables: for all Lc � i � L, ∼∈ {<,=,>}, and x ∈ Var,(
G |� l

′
i ∼ x or G |� li ∼ x′

) ⇒ G |� li ∼ x.

Upper variables: for all 1 � i � Uc, ∼∈ {<,=,>}, and x ∈ Var,(
G |� u

′
i ∼ x or G |� ui ∼ x′

) ⇒ G |� ui ∼ x.

Proof. Lower variables. Let Lc � i � L, ∼∈ {<,=,>}, and x ∈ Var such that either G |� l
′
i ∼ x or G |� li ∼ x′ . Assume that

G |� l
′
i ∼ x (the other case is similar). We distinguish three cases:

• ∼ is <: hence, G |� l
′
i < x. We need to prove that G |� li < x. Assume that x is a lower variable (otherwise, the result is

obvious). Then, x= l j for some 1 � j � L. First, we prove that i < j. We assume the contrary and derive a contradiction.
Then, G |� l j � li . Since G |� l

′
i < l j , we obtain that G |� l

′
i < li , which is a contradiction because Lc � i � L and (Lc, Uc)

is well-formed w.r.t. G . Thus, i < j. Hence, G |� li � l j . Since G is complete, either G |� li < l j or G |� li = l j . Since
G |� l

′
i < l j , the second condition would imply G |� l

′
i < li , which leads to a contradiction. Thus, G |� li < l j and the

result follows.
• ∼ is >: this case is similar to the previous one.
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• ∼ is =: hence, G |� l
′
i = x. We need to prove that G |� li = x. Evidently, x is a lower variable. Hence, x = l j for some

1 � j � L. Assume that j < i (the other case being similar). We claim that there is j � h � i such that G |� lh = l
′
h .

If j < Lc , then since (Lc, Uc) is well-formed w.r.t. G and Lc � i � L, the claim holds. Now, assume that Lc � j � L.
Since G |� l

′
i = l j and j < i, by applying repeatedly Lemma 1(1), it follows that there is j � h � i so that G |� lh � l

′
h .

Since G is complete, either G |� lh = l
′
h or G |� lh < l

′
h . The second condition cannot hold since Lc � h � L and (Lc, Uc)

is well-formed w.r.t. G . Thus, G |� l
′
h = lh . Hence, the claim holds. Since j � h � i and G is balanced, we have that

G |� l j � lh �′ li and G |� l
′
j � l

′
h �′ l

′
i for some �,�′ ∈ {<,=}. Since G |� l

′
h = lh and G |� l

′
i = l j , it follows that

G |� l j � lh = l
′
h �′ l

′
i = l j . Thus, since G is satisfiable, �,�′ ∈ {=}, hence, G |� li = l j , and we are done.

Upper variables. This case is analogous to the previous case with the unique difference that now we use Lemma 2. Thus, we
omit the details here. �
Notation. For a valuation ν over Var, ν[Var′ ← Var] denotes the valuation over Var′ defined as ν[Var′ ← Var](x′)= ν(x) for
each x ∈ Var.

4.2. Termination of simple GCS

First, we outline the proposed approach to solve termination for simple GCS. We define a polynomial-time checkable
condition on simple GCS, called termination condition, such that the K -bounded approximation scheme is sound and com-
plete w.r.t. this condition. We show that this condition characterizes the simple GCS S whose set InfS of non-terminating
states is empty. Moreover, we show that InfS is effectively MG representable and one can compute separately and in
polynomial-time the K -bounded approximation of the computable MG representation σ(S) of InfS (we are not able to give
an upper bound on the size of σ(S)). These results lead to polynomial-time algorithms to solve termination and termination
w.r.t. a designated control point of simple GCS.

The rest of this subsection is organized as follows. After having formally defined the termination condition (Defini-
tion 15), we show by Proposition 11 that it represents a sufficient condition for emptiness of InfS (for the fixed simple
GCS S), and, additionally, the K -bounded approximation scheme is sound and complete w.r.t. this condition. Next, we pro-
vide by Lemma 9, a characterization of the set of non-terminating states of S under the assumption that S does not satisfy
the termination condition. The characterization is given in terms of a subset of the lower and upper variables of G , called
the set of unconstrained variables for non-termination (Definition 16). The characterization lemma is then used in the proof
of the main result of this subsection (Theorem 3) to show that one can construct an MG representation of InfS whose
K -bounded approximation can be computed in polynomial time. Finally, by using Lemma 9 and Lemma 3 in Section 4.1, we
show (Theorem 4) that the termination condition is also a necessary condition for the emptiness of InfS .

Termination condition

Definition 15 (Termination condition). We say that the fixed simple GCS S satisfies the termination condition if one of the
following holds:

Lower variables: either G |� li < l
′
i for some 1 � i � L,

or G |� li = l
′
i and G |� l

′
j < l j for some 1 � i < j � L.

Upper variables: either G |� u
′
i < ui for some 1 � i � U ,

or G |� u j = u
′
j and G |� ui < u

′
i for some 1 � i < j � U .

Intuitively, the above condition asserts that either there is a lower (resp., upper) variable of G in Var whose value
strictly increases (resp., decreases) along each run of S from control point q, or there are two lower (resp., upper) variables
of G in Var such that their distance strictly decreases along each run of S from q. Let T C be the class of simple GCS
satisfying the termination condition. By Definition 15, we easily obtain the following result (by Proposition 9, �S�K is a
simple GCS).

Proposition 11. S ∈ T C if and only if �S�K ∈ T C . Moreover, if S ∈ T C , then InfS = ∅ and UnbS does not contain states from control
point q (i.e., each state from q is strongly terminating).

Characterization of the set of non-terminating states. It remains to consider the case when S /∈ T C . We first provide (under
the assumption that S /∈ T C), a characterization of the set of non-terminating states of S (Lemma 9). For this, we need
additional definitions and preliminary results.

Definition 16 (Unconstrained variables for non-termination). We define two integers Lc and Uc as follows: Lc is the smallest
1 � i � L + 1 such that G |� li = l

′ . Finally, Uc is the greatest 0 � i � Uc such that G |� ui = u
′ . Note that 1 � Lc � L + 1
i i
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Fig. 6. Unconstrained variables for non-termination in the transitional MG G .

and 0 � Uc � U . The set of unconstrained variables in Var for non-termination, written Unc, consists of the lower variables
l1 . . . lLc−1 and the upper variables uUc+1, . . . uU . Let Unc′ be the corresponding subset in Var′ . (See Fig. 6.)

By Definitions 15 and 16, evidently, the following holds.

Lemma 4. For a valuation ν0 : Var→ Z, the set of valuations {ν(Var\Unc) | (q, ν) is reachable from (q, ν0) in [[S]]} is finite. Moreover,
if S /∈ T C , then the pair (Lc, Uc) is well-formed w.r.t. G.

Moreover, we make the following observation.

Lemma 5. Assume that S /∈ T C . Then, the following hold:

Lower variables: for all 1 � i < Lc , G |� li < lLc .
Upper variables: for all Uc < i � U , G |� uUc < ui .

Proof. We consider the case of the lower variables (the other case being similar). Let 1 � i < Lc . We need to show that
G |� li < lLc . We assume the contrary and derive a contradiction. Then, since G is complete and G |� li � lLc , it follows that
G |� li = lLc . Since G is balanced, G |� l

′
i = l

′
Lc

holds as well. Thus, since, G |� lLc = l
′
Lc

, we obtain that G |� li = l
′
i with

i < Lc , which contradicts the definition of Lc . Hence, the result follows. �
The intuitive meaning of the unconstrained lower (resp., upper) variables is that under the assumption that S /∈ T C , they

can increase (resp., decrease) arbitrarily along a run of S from control point q. This does not mean that the unconstrained
variables can get arbitrary values, but that the distances (gaps) between primed variables x′ and y′ in Unc′ such that
G |� x′ 
= y′ are not constrained by the values of the variables in Var and the constants in Const, i.e. they are unbounded.
In other terms, the unique ordering constraint imposed by G on the variables in Unc′ = {l′1 . . . l

′
Lc−1,u

′
Uc+1, . . . ,u

′
U } is the

following one

G |� l
′
1 � · · ·� l

′
Lc−1 < l

′
Lc
� MIN � MAX � u

′
Uc

< u
′
Uc+1 � · · ·� u

′
U .

This is formalized by the following lemma.

Lemma 6. Assume that S /∈ T C . Then, the following hold:

Lower variables: for all 1 � i � L and 1 � j < Lc , G 
|� li � l
′
j .

Upper variables: for all Uc < i � U and 1 � j � U , G 
|� u
′
i � u j .

Proof. Lower variables. Let 1 � i � L and 1 � j < Lc . We need to show that G 
|� li � l
′
j . We assume the contrary and derive

a contradiction. Hence, G |� li � l
′
j . We distinguish two cases:

• j � i: hence, G |� l j � li . Since G |� li � l
′
j , it follows that G |� l j � l

′
j .

• j > i: since G |� li � l
′
j , by applying repeatedly Lemma 1(1), it follows that there is i � h � j such that G |� lh � l

′
h .

Thus, in both cases we obtain that G |� lk � l
′
k for some 1 � k < Lc . Since G is complete, it follows that G |� lk � l

′
k for some� ∈ {=,<}, which is a contradiction by definition of Lc (Definition 16) and the hypothesis that S /∈ T C . Hence, the result

follows.

Upper variables. This case is analogous to the previous one with the difference that now we use Lemma 2(1). Thus, we omit
the details here. �



16 L. Bozzelli, S. Pinchinat / Theoretical Computer Science 523 (2014) 1–36
Now, in order to provide a characterization of the set of non-terminating states of S , we give two preliminary technical
lemmata (Lemmata 7 and 8 below).

Let �G be the partial order (depending on the MG G) on the set of valuations over Var defined as follows: ν ′ �G ν iff
the following properties are satisfied:

• for each bounded variable bi of G in Var, ν ′(bi)= ν(bi);
• for all u, v ∈ Var ∪ Const and � ∈ {<,=}, ν(u) � ν(v) iff ν ′(u) � ν ′(v);
• for all u, v ∈ Var ∪ Const, if ν(u)− ν(v) � 0, then ν ′(u)− ν ′(v) � ν(u)− ν(v).

Lemma 7 (Simulation lemma). Let ν1 ⊕ ν2 ∈ Sat(G) and ν ′1 �G ν1 . Then, ν ′1 ⊕ ν ′2 ∈ Sat(G) for some valuation ν ′2 over Var such that
ν ′2 �G ν2 .

Proof. By definition of �G , ν ′1 and ν1 agree on the set of bounded variables of G in Var. Moreover, since ν1 ⊕ ν2 ∈ Sat(G),
ν1 ⊕ ν2 induces an ordering of the upper and lower variables of G which is consistent with the constraints of G . Also, by
definition of �G , ν ′1 induce the same ordering of the upper and lower variables in Var as ν1, with the following additional
constraint: the distance between the values of two consecutive (upper and lower) variables u, v in Var such that G 
|� u = v
or the distance between a lower (resp., upper) variable and MIN (resp., MAX) is greater than that associated with ν1.
Hence, the existence of a valuation ν ′2 such that ν ′1 ⊕ ν ′2 ∈ Sat(G) and satisfying the additional requirement ν ′2 �G ν2 easily
follows. �

The simulation lemma ensures that the existence of a non-null finite run π of S from a state (q, ν) to a state (q, ν ′)
such that ν ′ �G ν implies, in turn, the existence of a non-null run of S from state (q, ν ′) to a state of the form (q, ν ′′)
satisfying ν ′′ �G ν ′ (hence, by iterating the reasoning, it follows that there exists also an infinite run of S from state (q, ν)).

Under the assumption that S /∈ T C , the following technical lemma (whose proof is based on Lemma 6) provides for
a given state of S of the form (q, ν), a sufficient condition for the existence of a non-null finite run π from (q, ν) to a
state (q, ν ′) satisfying ν ′ �G ν (the finite run π can be then “pumped” arbitrarily many times by repeatedly applying the
simulation lemma).

Lemma 8 (Pumping lemma for non-termination). Assume that S /∈ T C . Let (q, ν) be a state of S and π be a non-null finite run of S
from (q, ν) leading to a state (q, ν ′) such that ν and ν ′ agree on the variables in Var \ Unc. Then, there exists a non-null finite run π ′
of S from (q, ν) leading to a state (q, ν ′′) such that ν ′′ �G ν .

Proof. Let π be as in the statement of the lemma. Hence, π can be written in the form

(q, ν)−→ · · · −→ (q, ν0)−→
(
q, ν ′

)
such that ν and ν ′ agree on the variables in Var \ Unc. Note that ν0 ⊕ ν ′ ∈ Sat(G). We prove that there is a valuation ν ′′
over Var such that ν0 ⊕ ν ′′ ∈ Sat(G) and ν ′′ �G ν . Hence, the lemma follows. Let � be the maximum over the edge weights
of G . First, we show the following.

Claim. There is a valuation ν ′′ over Var satisfying the following properties:

1. ν ′′ and ν agree on Var \ Unc;
2. ν ′′ �G ν;
3. ν ′′[Var′ ← Var] is a solution of the restriction of G to Var′;
4. for each upper variable ui ∈ Unc (hence, Uc < i � U ), ν ′′(ui)− ν0(uU ) > �;
5. for each lower variable li ∈ Unc (hence, 1 � i < Lc), ν0(l1)− ν ′′(li) > �.

Proof of the claim. Recall that Unc= {l1, . . . , lLc−1,uUc+1, . . . ,uU } and for each x ∈ Var \ Unc, G |� lLc � x � uUc . Moreover,
by Lemma 5, for all li,u j ∈ Unc, G |� li < lLc � uUc < u j . By hypothesis, ν ∈ Sat(GVar). Thus, since Var \ Unc contains the
set of bounded variables of G in Var, we easily deduce the existence of a valuation ν ′′ ∈ Sat(GVar) satisfying Properties 1,
2, 4, and 5 of the claim. Now, by hypothesis, ν0 ⊕ ν ′ ∈ Sat(G) and ν and ν ′ agree on Var \ Unc. Hence, the restriction of
ν[Var′ ← Var] to Var′ \ Unc′ is a solution of GVar′\Unc′ . Since G is balanced, it follows that ν ′′ can be chosen in such a way
that Property 3 in the claim holds as well. �

Let ν ′′ be a valuation over Var satisfying the claim above. We prove that ν0⊕ν ′′ ∈ Sat(G). Thus, since ν ′′ �G ν (Property 2
of the claim), the lemma follows. By hypothesis ν0 ⊕ ν ′ ∈ Sat(G) and ν and ν ′ agree on the variables in Var \ Unc. Thus, by
Property 1 of the claim, the restriction of ν0⊕ν ′′ to Var∪(Var′ \Unc′) is a solution of the restriction of G to Var∪(Var′ \Unc′).
Thus, by Property 3 in the claim, in order to prove that ν0 ⊕ ν ′′ ∈ Sat(G), it remains to show that for each edge e = x k−→ y′
(resp., e = y′ k−→ x) of G such that x ∈ Var and y′ ∈ Unc′ , it holds that ν0(x)− ν ′′(y)� k (resp., ν ′′(y)− ν0(x) � k).
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Case e = x k−→ y′ with x ∈ Var and y ∈ Unc: first, we show that y is not an upper variable. We assume the contrary and derive
a contradiction. Hence, y = ui for some Uc < i � U . Then, x must be an upper variable u j for some 1 � j � U .
Since S /∈ T C , by Lemma 6, G 
|� u

′
i � u j , which is a contradiction. Thus, y = li ∈ Unc for some 1 � i < Lc . Since

ν0 ∈ Sat(GVar), it holds that ν0(x) � ν0(l1). Hence, by Property 5 of the claim above, we obtain ν0(x)− ν ′′(y) �
ν0(l1)− ν ′′(y) > � � k, and the result follows.

Case e = y′ k−→ x with x ∈ Var and y ∈ Unc: first, we show that y is not a lower variable. We assume the contrary and derive
a contradiction. Hence, y = l j for some 1 � j < Lc . Then, x must be a lower variable li for some 1 � i � L.
Since S /∈ T C , by Lemma 6, G 
|� li � l

′
j , which is a contradiction. Thus, y = ui ∈ Unc for some Uc < i � U . Since

ν0 ∈ Sat(GVar), it holds that ν0(x) � ν0(uU ). Hence, by Property 4 of the claim above, we obtain ν ′′(y)− ν0(x) �
ν ′′(y)− ν0(uU ) > � � k, and the result follows.

This concludes the proof of the pumping lemma. �
By Lemmata 4, 7 and 8, we obtain the following characterization of the set of states in InfS (under the assumption that

S /∈ T C).

Lemma 9 (Characterization lemma for non-termination). Let S /∈ T C and s be a state of S . Then, s ∈ InfS iff there are a state (q, ν)

reachable from s in [[S]] and a non-null run of S from (q, ν) to a state (q, ν ′) such that ν and ν ′ agree in Var \ Unc.

Proof. Let S /∈ T C and s be a state of S . For the right implication ⇒, assume that s ∈ InfS . Hence, there is an infinite run
from s in S . Then, by Lemma 4, the result follows.

For the left implication ⇐, assume that there is a state (q, ν) reachable from s in [[S]] and a non-null run π of S from
(q, ν) to a state (q, ν ′) such that ν and ν ′ agree in Var \ Unc. By applying the pumping lemma (Lemma 8) to the non-null
run π , it follows that there is a non-null finite run π ′ in S from state (q, ν) to a state (q, ν ′′) such that ν ′′ �G ν . Thus, by
applying repeatedly Lemma 7, we deduce that there is an infinite run of S from (q, ν). Since (q, ν) is reachable from s in
[[S]], we obtain that s ∈ InfS , which concludes. �
Construction of an MG representation of InfS . By using the characterization lemma for non-termination (Lemma 9), we can
prove the main result of this subsection.

Theorem 3. The set InfS is MG representable and one can construct an MG representation of InfS , written σ(S), satisfying the
following:

1. �σ(S)�K can be computed in polynomial time;
2. �σ(S)�K = �σ(�S�K )�K (�S�K is a simple GCS).

Proof. First, assume that S ∈ T C . Then, by Proposition 11, InfS = Inf �S�K
= ∅, hence the result trivially holds. Now, assume

that S /∈ T C . By Theorem 2, one can compute a finite set PS of non-null finite paths of S from q to q such that for each
non-null finite path ℘′ of S from q to q, there is a path ℘ ∈ P so that �℘′ implies �℘ . Let G=,S be the transitional MG
(depending on S) corresponding to the GC given by

∧
x∈Var\Unc x′ = x and GS be the set of transitional MG given by

GS =
{

G℘ • (G℘′ � G=,S)
∣∣ ℘,℘′ ∈ PS

}∪ {G℘ � G=,S | ℘ ∈ PS}
where for each ℘ ∈PS , G℘ is the transitional MG associated with the path ℘ , which characterizes the reachability relation
�℘ . Then, σ(S)= {σ(S)q0 , σ (S)q} where

σ(S)q =
{

G ′
∣∣ G ′ is the projection of G ′′ over Var for some G ′′ ∈ GS

}
,

σ (S)q0 =
{

G ′
∣∣ G ′ is the projection of G0 • G ′′ over Var for some G ′′ ∈ GS

}
.

Correctness of the construction easily follows from Lemma 9 and Theorem 2. It remains to prove Properties 1 and 2.

Proof of Property 1. By Definition 6, for all transitional MG G ′ and G ′′ , G ′ • G ′′ = G ′ • G ′′ . Thus, σ(S)q and σ(S)q0 can be
rewritten as:

σ(S)q =
{(

G ′
)

Var

∣∣ G ′ ∈ GS
}

and σ(S)q0 =
{(

G0 • G ′
)

Var

∣∣ G ′ ∈ GS
}
.

Thus, by Propositions 6 and 7, we obtain⌊
σ(S)q

⌋
K =

{(⌊
G ′

⌋
K

)
Var

∣∣ G ′ ∈ �GS�K
}
, (1)⌊

σ(S)q
⌋ = {(⌊�G0�K • G ′

⌋ ) ∣∣ G ′ ∈ �GS�K
}
. (2)
K K Var



18 L. Bozzelli, S. Pinchinat / Theoretical Computer Science 523 (2014) 1–36
Now, let us consider the set �GS�K . Note that for each non-null finite path ℘ from q, G℘ is given by Gk for some k � 1.
Since G is idempotent, by Proposition 7, we obtain that for each ℘ ∈PS , �G℘�K = �G�K . Since G=,S is K -bounded, applying
again Proposition 7, we obtain

�GS�K =
{⌊�G�K •

(�G�K � G=,S
)⌋

K , �G�K � G=,S
}
. (3)

By equalities (1)–(3), Property 1 follows. �
Proof of Property 2. By Proposition 11, �S�K is a simple GCS such that �S�K /∈ T C . Moreover, the sets of unconstrained
variables of S and �S�K coincide. Hence, G=,�S�K = G=,S . By equality (3), it follows that �G�S�K �K = �GS�K . Thus, by
equalities (1)–(2), �σ(S)�K = �σ(�S�K )�K , and we are done. This concludes the proof of Theorem 3. �
Additional results on the termination condition. By using the characterization lemma for non-termination (Lemma 9) and
Lemma 3 in Section 4.1, we show that the termination condition is also a necessary condition for emptiness of InfS .

Theorem 4. If S /∈ T C , then the set of states s with control point q0 (resp., q) such that s ∈ InfS is non-empty.

Proof. Let S /∈ T C . Evidently, it suffices to prove that the set of states s with control point q0 such that s ∈ InfS is non-
empty. Then, by the characterization lemma (Lemma 9), it suffices to show that there are k � 1, n � 1, and valuations ν0, ν ,
and ν ′ over Var such that (ν0 ⊕ ν) ∈ Sat(G0 • Gk), (ν ⊕ ν ′) ∈ Sat(Gn), and ν and ν ′ agree on Var \ Unc. Recall that for
all k � 1 and n � 1, G0 • Gk and Gn are satisfiable (Proposition 10). Thus, by definition of the composition operator and
Proposition 4(2), G0 • Gk and Gn are normalized if n > 1. Therefore, by Proposition 4(1), the result directly follows from the
following claim, whose proof is given below.

Claim. There are k � 1, n > 1, and a valuation ν over Var satisfying the following:

1. (ν ⊕ ν)Var∪(Var′\Unc′) is a solution of the restriction of Gn to Var ∪ (Var′ \ Unc′);

2. ν[Var′ ← Var] is a solution of the restriction of G0 • Gk to Var′ .

Proof of the claim. Recall that for each bounded variable bi ∈ B, G |�MIN � bi � MAX. Thus, since G0 • Gh is satisfiable for
all h � 1, it follows that there are k � 1, n > 1, and a valuation ν0 over Var such that

• (ν0 ⊕ ν0)B∪B′ is a solution of the restriction of Gn to B ∪B′;
• ν0[Var′ ← Var] is a solution of the restriction of G0 • Gk to Var′ .

Thus, if Var = B, then the result follows. Now, assume that Var \B 
= ∅. For a valuation ν over Var, let N(ν) be the natural
number defined as

N(ν)
def= min

({∣∣ν(u)− ν(v)
∣∣ ∣∣ u ∈ Var ∪ Const, v ∈ Var \ B and G 
|� v = u

})
.

Since G is idempotent and for each variable x ∈ Var \ B, either G |� x < MIN or G |�MAX < x, it follows that for all H � 1,
there is a valuation ν over Var such that N(ν) � H , ν is a solution of the restriction of Gn to Var, and ν and ν0 agree on B.
We choose ν in such a way that N(ν) � max({�n,�0,k}), where �n (resp., �0,k) is the maximum over the edge weights of
Gk (resp., G0 • Gk). Now, we show that ν satisfies Properties 1 and 2 of the claim.

• Property 1. Since G is idempotent and balanced, by construction and definition of N(ν), we easily deduce the following:
– ν[Var′ ← Var] is a solution of the restriction of Gn to Var′;
– (ν ⊕ ν)Var∪B′ is a solution of the restriction of Gn to Var ∪B′ .
Thus, since (Var′ \ Unc′) \ B′ = {l′Lc

, . . . , l
′
L,u

′
1, . . . ,u

′
Uc
}, it remains to show that for all x ∈ Var and y ∈ {lLc , . . . , lL,u1,

. . . ,uUc }, whenever x k−→ y′ (resp., y′ k−→ x) is an edge of Gn , then ν(x)− ν(y) � k (resp., ν(y)− ν(x) � k). We consider
the edges of the form x k−→ y′ (for the other edges, the proof is similar). Thus, let x k−→ y′ be an edge of Gn such that
x ∈ Var and y ∈ {lLc , . . . , lL,u1, . . . ,uUc }. We need to show that ν(x)− ν(y) � k. Since G is idempotent and complete,
either G |� y′ < x, or G |� y′ = x and k= 0. Since S /∈ T C , by Lemma 4, the pair (Lc, Uc) is well-formed w.r.t. G . Hence,
we can apply Lemma 3, obtaining that either G |� y < x and Gn |� y < x, or G |� y = x, Gn |� y = x, and k = 0. Since
ν is a solution of the restriction of Gn to Var, by definition of N(ν), we obtain that either ν(x) − ν(y) � N(ν), or
ν(x)− ν(y)= 0 and k= 0. Thus, since N(ν) ��n � k, the result follows.

• Property 2. Since G is complete, by the definition of the composition operator, G and G0 • Gk induce the same total
ordering on Var′ ∪ Const. Thus, since G is balanced, N(ν) � �0,k , ν and ν0 agree on B, and ν0[Var′ ← Var] is a solution
of the restriction of G0 • Gk to Var′ , it follows that ν satisfies Property 2 in the claim, which concludes. �
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By Proposition 11 and Theorem 4, it follows that the termination condition represents a criterion for checking termina-
tion and termination w.r.t. a designated control point of simple GCS. Hence, we obtain the following result.

Corollary 1. The termination problem and the termination problem w.r.t. a designated control point of simple GCS can be solved in
polynomial time.

Note that Corollary 1 can also be directly deduced from Property 1 of Theorem 3. We conclude this subsection by making
the following observation, which will be used in Section 4.3.

Corollary 2. For each state s of S with control point q, s ∈ UnbS iff s ∈ InfS .

Proof. The result easily follows from Proposition 11, Lemma 4, and Lemma 9. �
4.3. Strong termination for simple GCS

First, we outline the proposed approach to solve strong termination for simple GCS. We define a polynomial-time check-
able condition on simple GCS, called unboundedness condition, such that the K -bounded approximation scheme is sound and
complete w.r.t. this condition. We show that this condition characterizes the simple GCS whose set of unbounded states
with initial control point is non-empty. By Proposition 11, Theorem 4, and Corollary 2, the termination condition character-
izes the simple GCS such that the set of unbounded states whose control point is the one associated with the self-loop is
empty. Thus, we obtain polynomial-time algorithms to solve strong termination and strong termination w.r.t. a designated
control point of simple GCS. Moreover, we show that UnbS is effectively MG representable and one can compute separately
and in polynomial time the K -bounded approximation of the computable MG representation σ(S) of UnbS (we are not
able to give an upper bound on the size of σ(S)).

The rest of this subsection is organized as follows. After having formally defined the unboundedness condition (Defini-
tion 18), we show by Proposition 12 that it represents a necessary condition for the existence of unbounded states with
initial control point, and, additionally, the K -bounded approximation scheme is sound and complete w.r.t. the unbounded-
ness condition. Next, we provide by Lemma 15, a characterization of the set of unbounded states of S with initial control
point under the assumption that S satisfies the unbounded condition. Similarly to the characterization lemma for non-
termination, the unboundedness characterization is given in terms of a subset of the lower and upper variables of G , called
the set of unconstrained variables for unboundedness (Definition 19) (however, here, the proof of the characterization lemma
is more involved). The characterization lemma is then used in the main result of this subsection (Theorem 5) to show that
one can construct an MG representation of UnbS whose K -bounded approximation can be computed in polynomial time.
Finally, by using Lemma 15 and Lemma 3 in Section 4.1, we show (Theorem 6) that the unboundedness condition is also a
sufficient condition for the existence of unbounded states with initial control point.

Unboundedness condition. In order to define the unboundedness condition, we need the following preliminary definition.

Definition 17. The transitional MG G0 (associated with the edge from the initial control point of the fixed simple GCS S)
is bounded if the following hold:

• for all 1 � i � L, G0 |� l � l
′
i for some lower variable l of G0 in Var;

• for all 1 � i � U , G0 |� u
′
i � u for some upper variable u of G0 in Var.

Thus, G0 is bounded if each lower (resp., upper) variable of G in Var′ is lower (resp., upper) bounded in G0 by a lower
(resp., upper) variable of G0 in Var. Recall that

G |� l1 �2 · · ·�L lL < MIN � b1 �′2 · · ·�′B bB � MAX < u1 �′′2 · · ·�′′U uU

where �2 · · ·�L,�′2 · · ·�′B ,�′′2 · · ·�′′U ∈ {<,=}. Since G0 • G is satisfiable and G and G0 are complete, it follows that

G0 |� l
′
1 �2 · · ·�L l

′
L < MIN � b

′
1 �′2 · · ·�′B b

′
B � MAX < u

′
1 �′′2 · · ·�′′U u

′
U .

Hence, the total ordering induced by the complete MG G0 over Var′ ∪ Const corresponds to the total ordering induced by G
on Var ∪ Const. As a consequence, boundedness of G0 ensures that for each state s0 with control point q0, the set of states
reachable in [[S]] from s0 in a single step is finite.

Definition 18 (Unboundedness condition). We say that the fixed simple GCS S satisfies the unboundedness condition if one of
the following holds:
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• either G0 is bounded and S /∈ T C ,
• or G0 is not bounded and none of the following properties holds:

lower variables: there is a lower variable l of G0 in Var such that
– either G0 |� l � l

′
i and G |� li < l

′
i for some 1 � i � L,

– or G0 |� l � l
′
i , G |� li = l

′
i , and G |� l

′
j < l j for some 1 � i < j � L.

upper variables: there is an upper variable u of G0 in Var such that
– either G0 |� u

′
i � u and G |� u

′
i < ui for some 1 � i � U ,

– or G0 |� u
′
i � u, G |� ui = u

′
i , and G |� u

′
j > u j for some 1 � j < i � U .

Intuitively, the unboundedness condition requires that S does not satisfy the termination condition if G0 is bounded,
and the following hold otherwise: (i) there is no lower (resp., upper) variable of G in Var′ – or equivalently of G in Var –
whose value strictly increases (resp., decreases) along each run of S and at the same time is lower (resp., upper) bounded
in G0 by a lower (resp., upper) variable of G0 in Var, and (ii) there is no pair of lower (resp., upper) variables of G in Var′
whose distance strictly decreases along each run of S , and at the same time is lower (resp., upper) bounded in G0 by a
lower (resp., upper) variable of G0 in Var. Let UC be the class of simple GCS satisfying the unboundedness condition. We
make the following observation.

Proposition 12. S ∈ UC if and only if �S�K ∈ UC . Moreover, if S /∈ UC , then all the states with initial control point q0 are strongly
terminating.

Proof. The first part of the proposition easily follows from Definitions 15, 17, and 18. For the second part of the proposition,
assume that S /∈ UC , and let s0 be a state with control point q0. We need to show that s0 is strongly terminating. We
distinguish two cases:

• G0 is bounded: hence, the set of states reachable from s0 in a single step is finite (note that these states have con-
trol point q). Thus, it suffices to show that each state from control point q is strongly terminating. Since S /∈ UC , by
Definition 18, S ∈ T C . Thus, by Proposition 11, the result follows in this case.

• G0 is not bounded: since S /∈ UC , by Definition 18, either the condition for the lower variables or the condition for the
upper variable in Definition 18 is satisfied. Hence, the result easily follows. �

Characterization of the set of unbounded states with initial control point. It remains to consider the case when S ∈ UC . We first
provide (under the assumption that S ∈ UC), a characterization of the set of unbounded states of S with control point q0.
This characterization is similar to the characterization lemma for non-termination given in Section 4.2 (Lemma 9), but the
set Unc of unconstrained variables is defined differently.

Definition 19 (Unconstrained variables for unboundedness). We define four integers L0, U0, Lc , and Uc as follows: L0 is the
smallest 1 � i � L such that G0 |� l � l

′
i for some lower variable l of G0 in Var (if such an i does not exist, we set L0 = L+1),

while U0 is the greatest 1 � i � U such that G0 |� u
′
i � u for some upper variable u of G0 in Var (if such an i does not

exist, we set U0 = 0). Moreover, Lc and Uc are defined as in Definition 16 if G0 is bounded, and as follows otherwise: Lc

is the smallest L0 � i � L + 1 such that G |� li = l
′
i , while Uc is the greatest 0 � i � U0 such that G |� u

′
i = ui . Note that if

G0 is not bounded, 1 � L0 � Lc � L+ 1 and 0 � Uc � U0 � U . The set of unconstrained variables w.r.t. G0 in Var, written Unc0,
consists of the lower variables l1 . . . lL0−1 and the upper variables uU0+1, . . . ,uU . We denote by Unc0

′ the corresponding
set in Var′ . Moreover, the set of unconstrained variables for unboundedness in Var, written Unc, consists of the lower variables
l1 . . . lLc−1 and the upper variables uUc+1, . . . ,uU . We denote by Unc′ the corresponding set in Var′ . Note that if G0 is not
bounded, then Unc0 ⊆ Unc. (See Fig. 7.)

Here, the term “unconstrained” used to denote the variables in Unc ∪ Unc′ has a weaker meaning than the one in
Section 4.2. Indeed, here the distances (gaps) between the primed unconstrained variables x′ and y′ in Unc′ such that
G |� x′ 
= y′ are not in general unbounded, since they may be constrained by the values of the variables in Unc0 (see
Lemma 11). However, if G0 is not bounded and S ∈ UC , then we will show that Unc0 is non-empty and for a given
initial state (q0, ν0), the set of the values assumed by the variables in Unc0 in the states (q, ν) reachable from (q0, ν0) is
unbounded. This will allow us to provide (under the assumption that S ∈ UC) a characterization of the set of unbounded
states of S with control point q0 similar to the characterization lemma for non-termination given in Section 4.2. Now, we
proceed with the technical details.

We make the following observations (in particular, if G0 is not bounded, then the sets of unconstrained variables Unc0

and Unc are non-empty). Recall that lL+1, l
′ def= MIN and u0,u

′ def= MAX.
L+1 0
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Fig. 7. Unconstrained variables for unboundedness in the transitional MG G .

Lemma 10. The following hold:

1. An upper (resp., lower) variable x′ of G in Var′ is upper (resp., lower) bounded in G0 by some upper (resp., lower) variable of G0
in Var iff x′ /∈ Unc0

′ .
2. For all lower variables li ∈ Unc0 , G0 |� l

′
i < l

′
L0

and G |� li < lL0 .
3. For all upper variables ui ∈ Unc0 , G0 |� u

′
U0

< u
′
i and G |� uU0 < ui .

4. For all lower variables li ∈ Unc, G0 |� l
′
i < l

′
Lc

and G |� li < lLc .
5. For all upper variables ui ∈ Unc, G0 |� u

′
Uc

< u
′
i and G |� uUc < ui .

6. For each valuation ν0 over Var, the set of valuations {ν(Var\Unc) | (q, ν) is reachable from (q0, ν0) in [[S]]} is finite.
7. If G0 is not bounded, then Unc0 and Unc are non-empty.

Proof. Properties 1–5 easily follow from Definitions 17 and 19, and the observation that the total ordering on Var′ ∪ Const
induced by the complete transitional MG G0 corresponds to the total ordering induced by G on Var ∪ Const. For Property 6,
fix a valuation ν0 over Var. Let l be a lower variable of G0 in Var such that G0 |� l � l

′
Lc

if Lc 
= L+1, and l=MIN otherwise.
Moreover, let u be an upper variable of G0 in Var such that G0 |� u

′
Uc

� u if Uc 
= 0, and u=MAX otherwise. Note that by
Definitions 17 and 19, l and u are well-defined. Moreover, for each state (q, ν) reachable from (q0, ν0) in [[S]], it holds that
ν0(l) � ν(x) � ν0(u) for all x ∈ Var \Unc. Hence, Property 6 follows. It remains to prove Property 7. Let G0 be non-bounded.
By Definition 17, either there is a lower variable li such that l

′
i is not lower bounded in G0 by any lower variable of G0 in

Var, or there is an upper variable ui such that u
′
i is not upper bounded in G0 by any upper variable of G0 in Var. Thus, by

Property 1, it follows that Unc0 
= ∅. Thus, since Unc0 ⊆ Unc, the result follows. �
Now, we show that if S satisfies the unboundedness condition and G0 is not bounded, then no primed lower (resp.,

upper) unconstrained variable is lower (resp., upper) bounded in G by a lower (resp., upper) variable in Unc \ Unc0.

Lemma 11. Assume that S ∈ UC and G0 is not bounded. Then, the following hold:

Lower variables: for all li ∈ Unc \ Unc0 and l j ∈ Unc, G 
|� li � l
′
j .

Upper variables: for all ui ∈ Unc and u j ∈ Unc \ Unc0 , G 
|� u
′
i � u j .

Proof. Lower variables. We assume that the result does not hold and derive a contradiction. Hence, there are li ∈ Unc \ Unc0
and l j ∈ Unc such that G |� li � l

′
j . Since li /∈ Unc0, by Lemma 10(1), there is a lower variable l of G0 in Var such that

G0 |� l � l
′
i . Moreover, since G0 is not bounded, by Definition 19, L0 � i < Lc and 1 � j < Lc . We distinguish two cases:

• j � i: hence, G |� l
′
j � l

′
i . Since G |� li � l

′
j , it follows that G |� li � l

′
i .

• j > i: since G |� li � l
′
j , by applying repeatedly Lemma 1(1) in Section 4.1, it follows that there is i � h � j so that

G |� lh � l
′
h . Note that L0 � h < Lc . Moreover, since G |� li � lh , it hold that G0 |� l

′
i � l

′
h .6 Thus, since G0 |� l � l

′
i , it

follows that G0 |� l � l
′
h .

6 Recall that the total ordering induced by G0 on Var′ ∪ Const corresponds to the total ordering induced by G on Var ∪ Const.
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Thus, in both cases we obtain that G |� lk � l
′
k and G0 |� l � l

′
k for some L0 � k < Lc and lower variable l of G0 in Var.

Since G is complete, G |� lk � l
′
k for some � ∈ {<,=}, which is a contradiction by definition of Lc (Definition 19) and the

fact that S ∈ UC and G0 is not bounded. Hence, the result follows.

Upper variables. This case is analogous to the previous case with the unique difference that now we use Lemma 2(1) in
Section 4.1. Thus, we omit the details here. �

For a valuation ν over Var, let N0(ν) and Nc(ν) be the natural numbers defined as follows:

N0(ν)
def= min

{∣∣ν(x)− ν(y)
∣∣ ∣∣ x, y ∈ Unc0 ∪ {lL0 ,uU0}, and either G |� x < y or G |� y < x

}
,

Nc(ν)
def= min

{∣∣ν(x)− ν(y)
∣∣ ∣∣ x, y ∈ Unc ∪ {lLc ,uUc }, and either G |� x < y or G |� y < x

}
where the minimum of the empty set is 0. Thus, for a valuation ν over Var, N0(ν) (resp., Nc(ν)) represents the minimum
over the distances between the values of variables x and y in Unc0 ∪ {lL0 ,uU0 } (resp., x, y ∈ Unc ∪ {lL,uU }) such that
G 
|� x= y. Note that if G0 is not bounded, then, since Unc0 ⊆ Unc, it holds that Nc(ν) � N0(ν).

Now, in order to provide a characterization of the set of unbounded states of S with initial control point, we give
three technical lemmata (Lemmata 12–14 below). The first lemma holds under the assumption that G0 is not bounded,
and ensures the following property. Let s0 be a state of S with initial control point q0 and (q, ν) be a state satisfying the
following requirement: (q, ν) is reachable from s0 in [[S]] in a single step and ν is a solution of GVar (the restriction of G
to Var). Then, the set of states (q, ν ′) satisfying the same requirement as (q, ν) and such that ν and ν ′ agree on Var \ Unc0
is infinite, and the associated set of natural numbers N0(ν

′) is infinite as well.

Lemma 12. Assume that G0 is not bounded. Let ν0 ⊕ ν ∈ Sat(G0) and ν ∈ Sat(G V ar). Then, the following set of natural numbers is
infinite{

N0
(
ν ′

) ∣∣ ν0 ⊕ ν ′ ∈ Sat(G0), ν
′ ∈ Sat(GVar), and ν and ν ′ agree on Var \ Unc0

}
.

Proof. By Lemma 10(1), no upper (resp., lower) variable in Unc0
′ can be upper (resp., lower) bounded in G0 by a variable

in (Var ∪ Var′) \ Unc0
′ . Moreover, by Lemma 10(7), if G0 is not bounded, then Unc0

′ is non-empty. Thus, since the total
ordering on Var′ ∪ Const induced by G0 corresponds to the total ordering induced by G on Var ∪ Const, by Lemma 10(2–3)
and definition of N0(ν), the result easily follows. �

Let � ∈ N be the maximum over the edge weights of G . The second technical lemma ensures the following crucial
property. Let π = (q, ν0) . . . (q, νn) be a non-null run of S such that ν0 and νn agree on Var \ Unc. Then, for all k � 1 and
valuations ν ∈ Sat(GVar) such that ν and ν0 agree on Var \Unc, if Nc(ν) is sufficiently large, then there is also a run of length
greater than k from (q, ν) (intuitively, obtained by pumping the pseudo-cycle π ).

Lemma 13 (Pumping lemma for unboundedness). Let ν0 ⊕ ν ′0 ∈ Sat(G) and ν ∈ Sat(GVar) such that ν0 and ν agree on Var \ Unc,

(ν ′0)Var\Unc ∈ Sat(GVar\Unc), and � Nc(ν)
|Var|+1 � > �. Then, there exists a valuation ν ′ ∈ Sat(GVar) such that ν ⊕ ν ′ ∈ Sat(G), ν ′0 and ν ′

agree on Var \ Unc, and Nc(ν
′) � � Nc(ν)

|Var|+1 �.

Proof. Let ν0, ν ′0, and ν as in the statement of the lemma. First, we observe the following.

Claim. The restriction of ν ⊕ ν ′0 to Var ∪ (Var′ \ Unc′) is a solution of the restriction of G to Var ∪ (Var′ \ Unc′).

Proof of the claim. By hypothesis, ν ∈ Sat(GVar), Nc(ν) > �, and the restriction of ν ⊕ ν ′0 to (Var \ Unc) ∪ (Var′ \ Unc′) is
a solution of the restriction of G to (Var \ Unc) ∪ (Var′ \ Unc′). Moreover, by Lemma 10(4–5), the following hold: (i) for all
li ∈ Unc, G |� li < lLc = l

′
Lc

, (ii) for all ui ∈ Unc, G |� u
′
Uc
= uUc < ui , and (iii) for all x′ ∈ Var′ \Unc′ , G |� l

′
Lc
� x′ � u

′
Uc

. Thus,
by definition of Nc(ν), the result easily follows. �

Now, we prove Lemma 13. Since G is satisfiable, there exists a linear ordering of the set of vertices Unc∪Unc′ ∪ {uUc , lLc }
which is consistent with the constraints of G (in particular, for all li ∈ Unc, G |� li < lLc and G |� l

′
i < lLc , and for all ui ∈

Unc, G |� uUc < ui and G |� uUc < u
′
i ). Moreover, for two consecutive vertices u, v ∈ {uUc , . . . ,uU } (resp., u, v ∈ {l1, . . . , lLc }),

with G 
|� u = v , the maximum number of variables in Unc′ which lie (according to the above linear ordering) between u
and v is at most |Var|, and |ν(u)− ν(v)|� Nc(ν). By hypothesis, � Nc(ν)

|Var|+1 �> � and (ν ′0)Var\Unc ∈ Sat(GVar\Unc). Thus, since G

is balanced, by the claim above, it follows that we can assign to the variables in Unc′ integers values in such a way that the
corresponding extension ν ′ of (ν ′0)Var\Unc satisfies the statement of the lemma. �

The third technical lemma, which is a consequence of Lemma 11, is a variant of the pumping lemma above and holds
under the assumption that S ∈ UC and G0 is not bounded.
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Lemma 14. Assume that S ∈ UC and G0 is not bounded. Let ν0 ⊕ ν ′0 ∈ Sat(G) and ν ∈ Sat(GVar) such that ν0 and ν agree on

Var \Unc0 , ν ′0 ∈ Sat(GVar), and � N0(ν)
|Var|+1 �> �. Then, there exists a valuation ν ′ ∈ Sat(GVar) such that ν⊕ν ′ ∈ Sat(G), ν ′0 and ν ′ agree

on Var \ Unc, and Nc(ν
′)� � N0(ν)

|Var|+1 �.

Proof. Let ν0, ν ′0, and ν be as in the statement of the lemma. First, we observe the following.

Claim. The restriction of ν ⊕ ν ′0 to Var ∪ (Var′ \ Unc′) is a solution of the restriction of G to Var ∪ (Var′ \ Unc′).

Proof of the claim. By hypothesis, ν ∈ Sat(GVar), N0(ν) > �, and the restriction of ν ⊕ ν ′0 to (Var \ Unc0) ∪ (Var′ \ Unc′)
is a solution of the restriction of G to (Var \ Unc0) ∪ (Var′ \ Unc′). Moreover, by Lemma 10(2–3), the following hold: (i)
for all li ∈ Unc0, G |� li < lL0 � lLc = l

′
Lc

, (ii) for all ui ∈ Unc0, G |� u
′
Uc
= uUc � uU0 < ui , and (iii) for all x′ ∈ Var′ \ Unc′ ,

G |� l
′
Lc
� x′ � u

′
Uc

. Thus, by definition of N0(ν), the result easily follows. �
Now, we prove Lemma 14. By Lemma 11, the upper variables in Unc′ are not upper-bounded by the upper variables in

Unc \ Unc0, and the lower variables in Unc′ are not lower-bounded by the lower variables in Unc \ Unc0. Hence, since G is
satisfiable, there exists a linear ordering of the set of vertices Unc∪Unc′ ∪ {uUc , lLc } which is consistent with the constraints

uU0 < u
′
Uc+1 � · · ·� u

′
U ∧ l

′
1 � · · ·� l

′
Lc−1 < lL0

and with the constraints of G (in particular, G |� uU0 < uU0+1 � · · ·� uU and G |� l1 � · · ·� lL0−1 < lL0 ). Moreover, for two
consecutive vertices u, v ∈ {uU0 ,uU0+1, . . . ,uU } (resp., u, v ∈ {l1, . . . , lL0−1, lL0 }), with G 
|� u = v , the maximum number of
variables in Unc′ which lie (according to the above linear ordering) between u and v is at most |Var|, and |ν(u)− ν(v)|�
N0(ν). By hypothesis, � N0(ν)

|Var|+1 �> � and ν ′0 ∈ Sat(GVar). Thus, since G is balanced, by the claim above, it follows that we can

assign to the variables in Unc′ integers values in such a way that the corresponding extension ν ′ of (ν ′0)Var\Unc satisfies the
statement of the lemma. �

By Lemmata 12–14, we obtain the following characterization of the set of states in UnbS with control point q0 (under
the assumption that S ∈ UC).

Lemma 15 (Characterization lemma for unboundedness). Let S ∈ UC and s0 be a state of S with control point q0 . Then, s0 ∈ UnbS
iff there is a state (q, ν) reachable from s0 in [[S]] by a run of length at least 2, and there is a non-null run of S from (q, ν) to a state
(q, ν ′) such that ν and ν ′ agree in Var \ Unc.

Proof. Let S ∈ UC and s0 = (q0, ν0) be a state of S with control point q0. For the right implication ⇒, assume that
(q0, ν0) ∈ UnbS . Hence, the set of lengths of the finite runs from (q0, ν0) is infinite. Then, by Lemma 10(6), the result
follows.

For the left implication ⇐, assume that there are a run of S of length at least 2 from (q0, ν0) to a state (q, ν) and a
non-null run of S from (q, ν) to a state (q, ν ′) such that ν and ν ′ agree in Var \ Unc. First, assume that G0 is bounded.
Then, since S ∈ UC , by Definition 18, S /∈ T C . Since G0 is bounded, the set Unc is defined as in Definition 16. Thus, by the
characterization lemma for non-termination (Lemma 9), it follows that (q0, ν0) ∈ InfS ⊆ UnbS , and the result follows. Now,
assume that G0 is not bounded. By hypothesis there is a run π from (q0, ν0) of the form π = (q0, ν0)−→ (q, ν1)−→ (q, ν2)−→
· · · −→ (q, ν)−→ · · · −→ (q, ν ′) such that ν and ν ′ agree in Var \Unc and the subrun (q, ν)−→ · · · −→ (q, ν ′) has non-null length.
Let us consider the prefix of π of length 2 given by (q0, ν0)−→ (q, ν1)−→ (q, ν2), and let S(ν2) be the set of valuations over
Var given by

S(ν2)
def= {

ν ′2
∣∣ ν0 ⊕ ν ′2 ∈ Sat(G0 • G), ν ′2 ∈ Sat(GVar), and ν2 and ν ′2 agree on Var \ Unc

}
.

Since ν0⊕ ν1 ∈ Sat(G0), ν1 ⊕ ν2 ∈ Sat(G), and ν2 ∈ Sat(GVar), by Lemmata 12 and 14, it follows that the set S(ν2) is infinite,
and the set {Nc(ν

′
2) | ν ′2 ∈ S(ν2)} is infinite as well. Let us consider the suffix π ′ of π , (q, ν2)−→ · · · −→ (q, ν)−→ · · · −→ (q, ν ′).

Let h � 1. Since ν and ν ′ agree in Var \ Unc and for each ν ′2 ∈ S(ν2), ν ′2 ∈ Sat(GVar) and ν2 and ν ′2 agree in Var \ Unc,
Lemma 13 (applied repetitively to the single steps of the suffix π ′) ensures the following property: there is nh ∈N such that
for all ν ′2 ∈ S(ν2) with Nc(ν

′
2)� nh , there is a finite run from (q, ν ′2) of length at least h. Since the set {Nc(ν

′
2) | ν ′2 ∈ S(ν2)} is

infinite and there is a finite run from (q0, ν0) to (q, ν ′2) for all ν ′2 ∈ S(ν2), we deduce that there is a finite run from (q0, ν0)

of length at least h. Since h is arbitrary, we obtain that (q0, ν0) is unbounded. Hence, the result follows. This concludes the
proof of the lemma. �
Construction of an MG representation of UnbS . By using the characterization lemma for unboundedness (Lemma 15), we can
prove the main result of this subsection.
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Theorem 5. The set UnbS is MG representable and one can construct an MG representation of UnbS , written σ(S), satisfying the
following:

1. �σ(S)�K can be computed in polynomial time;
2. �σ(S)�K = �σ(�S�K )�K (�S�K is a simple GCS).

Proof. By Corollary 2, for each state s of S with control point q, s ∈ InfS iff s ∈ UnbS . Thus, by Theorem 3, it suffices to
prove the version of the theorem obtained by replacing UnbS with Unbq0

S , where Unbq0
S denotes the set of states in UnbS

having control point q0. We distinguish two cases:

• S /∈ UC: by Proposition 12, Unbq0
S = Unbq0

�S�K
= ∅, hence, in this case, the result trivially holds.

• S ∈ UC: for this case, the proof of the result is similar to the proof of Theorem 3 for the case S /∈ T C . The difference is
that now we use the characterization lemma for unboundedness (Lemma 15) instead of the characterization lemma for
non-termination (Lemma 9). Thus, we omit the details here. �

Additional results on the unboundedness condition. By using the characterization lemma for unboundedness (Lemma 15) and
Lemma 3 in Section 4.1, we show that the unboundedness condition is also a sufficient condition for the existence of
unbounded states with initial control point q0.

Theorem 6. If S ∈ UC , then the set of states s with control point q0 such that s ∈ UnbS is non-empty.

Proof. Let S ∈ UC . First, we show that the pair of integers (Lc, Uc) of Definition 19 is well-formed w.r.t. G . If G0 is bounded,
then S /∈ T C and Lc and Uc are as defined in Definition 16. Hence, by Lemma 4, the result follows. Now, let G0 be
non-bounded. By Lemma 10(1), for all Lc � i � L (resp., 1 � i � Uc), li (resp., ui ) is lower (resp., upper) bounded in G0 by a
lower (resp., upper) variable of G0 in Var. Thus, by Definitions 18 and 19, the result follows.

Now, we prove the theorem. By the characterization lemma for unboundedness (Lemma 15), it suffices to show that
there are k � 1, n � 1, and valuations ν0, ν , and ν ′ over Var such that (ν0 ⊕ ν) ∈ Sat(G0 • Gk), (ν ⊕ ν ′) ∈ Sat(Gn), and ν and
ν ′ agree on Var \ Unc. Since the pair (Lc, Uc) is well-formed w.r.t. G , this can be proved as in the second part of the proof
of Theorem 4 (which is based on the application of Lemma 3 in Section 4.1), and we omit the details here. �

By Proposition 12 and Theorem 6, it follows that the negation of the unboundedness condition represents a criterion
for checking strong termination w.r.t. the initial control point of simple GCS. Moreover, by Proposition 11, Theorem 4,
and Corollary 2, the termination condition represents a criterion for checking strong termination w.r.t. the control point
associated with the self-loop of simple GCS. Hence, we obtain the following result.

Corollary 3. The strong termination problem and the strong termination problem w.r.t. a designated control point of simple GCS can
be solved in polynomial time.

Note that Corollary 3 can also be directly deduced from Property 1 of Theorem 5.

5. Fairness and (strong) termination for unrestricted GCS

In this section, we address fairness and (strong) termination for the whole class of GCS. The proposed approach consists
of two main steps. For a GCS S and a set F ⊆ Q (S) of accepting control points, first we show (Theorem 7 and Lemmata 16
and 17) that it is possible to construct two finite families F(S, F ) and U(S) of simple GCS such that the following hold:

• InfS,F corresponds to the set of non-terminating states with initial control point of the simple GCS in F(S, F ), and
• UnbS corresponds to the set of unbounded states with initial control point of the simple GCS in U(S).

Then, we show (Theorems 8 and 9) that it is possible to compute separately and in exponential time the K -bounded
abstractions of the simple GCS in F(S, F ) and U(S) (we are not able to give upper bounds on the sizes of F(S, F ) and
U(S)), which are sound and complete w.r.t. the existence of non-terminating states and unbounded states, respectively.
Now, we proceed with the technical details.

Let S be a GCS. For a non-null finite path ℘ of S such that s(℘)= t(℘) (i.e., ℘ is cyclic), (℘)ω denotes the infinite path
℘℘ . . . . An infinite path ℘ of S of the form ℘ = ℘′(℘′′)ω is said to be ultimately periodic. A state s of S is neatly unbounded
w.r.t. an infinite path ℘ of S , if there is a sequence of finite runs (πn)n∈N of S starting from s such that {|πn| | n ∈ N} is
infinite and for each n ∈N, πn is an instance of the prefix of ℘ of length |πn|. We make the following observation.

Proposition 13. Let S be a GCS, s0 be an S-state such that s0 ∈ UnbS . Then, s0 is neatly unbounded w.r.t. some infinite path of S .
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Proof. By hypothesis, there is a sequence of finite runs (πn)n∈N of S starting from s0 such that |πn| = n for each n ∈ N.
Since the set of S-edges is finite, it easily follows that for all h ∈N, there is a subsequence (πh

n )n∈N of (πn)n∈N and a finite
path ℘h of S of length h such that the following hold:

• for each n ∈N, |πh
n |� h and the prefix of πh

n of length h is an instance of ℘h;
• (πh+1

n )n∈N is a subsequence of (πh
n )n∈N;

• ℘h is a prefix of ℘h+1.

Hence, the sequence (℘h)h�1 corresponds to an infinite path ℘ of S , where ℘h is its prefix of length h. Moreover, it follows
that there is a subsequence (π ′n)n∈N of (πn)n∈N such that for each n � 1, |π ′n| � n and the prefix of π ′n of length n is an
instance of ℘n . Hence, state s0 is neatly unbounded w.r.t. the infinite path ℘ , and the result follows. �

The key result which allows us to reduce fairness and strong termination for unrestricted GCS to non-termination and
strong termination for simple GCS, respectively, is represented by the following theorem which is proved by using Ramsey’s
theorem in its infinite version [31].

Theorem 7 (Characterization theorem). Let S be a GCS, s0 be an S state, F ⊆ Q (S) and PS be the finite set of sample paths of S
satisfying Theorem 2. Then, the following hold:

1. s0 ∈ InfS,F iff there is an infinite run of S starting from s0 which is an instance of an ultimately periodic path ℘0 · (℘)ω such
that ℘0,℘ ∈PS , s(℘) ∈ F , G℘0 • G℘ is satisfiable, and G℘ is idempotent;

2. s0 ∈ UnbS iff s0 is neatly unbounded w.r.t. an ultimately periodic path ℘0 · (℘)ω such that ℘0,℘ ∈PS , G℘0 • G℘ is satisfiable,
and G℘ is idempotent.

Proof. Let S be a GCS, s0 be an S state, F ⊆ Q (S) and PS be the finite set of sample paths of S satisfying Theorem 2.
We prove Property 2 (Property 1 is similar). The left implication ⇐ of Property 2 is obvious. For the right implication
⇒, assume that s0 ∈ UnbS . Then, by Proposition 13, there is an infinite path ℘∞ of S such that s0 is neatly unbounded
w.r.t. ℘∞ .

For each ℘ ∈ PS , we denote by [℘] the set of non-null finite paths ℘′ of S such that s(℘′) = s(℘), t(℘′)= t(℘), �℘′
implies �℘ , and �G℘′ �K = �G℘�K . Let H be the finite set given by H = {[℘] | ℘ ∈ PS }. For each non-null finite path ℘′
of S , we associate to ℘′ a color given by some element [℘] ∈ H such that ℘′ ∈ [℘] (note that by Theorem 2 such an
element of H must exist). Let us consider the infinite path ℘∞ . Then, there is a control point q such that ℘∞ is of the form
℘∞ = ℘0℘1℘2 . . . , where for each i � 1, ℘i is a non-null (cyclic) path from q to q. Let us consider the set of positive natural
numbers, and label each pair (i, j) of its elements with i < j with the color of the subpath ℘i . . .℘ j of ℘∞ . By Ramsey’s
theorem (in its infinite version) [31], there is an infinite set I of positive natural numbers such that all the pairs (i, j) with
i, j ∈ I (and i < j) carry the same label in H , say [℘]. It follows that ℘∞ can be written in the form ℘∞ = ℘′0℘′1℘′2 . . . such
that |℘′0|> 0 and for all i � 1, ℘′i ∈ [℘] and ℘′i℘

′
i+1 ∈ [℘]. Hence, in particular, �G℘′i �K = �G℘�K and �G℘′i ℘′i+1

�K = �G℘�K .
By Proposition 7 and associativity of •, we obtain that �G℘�K = �G℘ • G℘�K . Hence, for the cyclic path ℘ ∈ PS , G℘ is
idempotent.

Since s0 is neatly unbounded w.r.t. ℘∞ , there is a sequence of finite runs (πn)n�0 from s0 such that πn is an instance
of the prefix ℘′0℘′1 . . .℘′n of ℘∞ . Let ℘′′0 ∈ PS such that ℘′0 ∈ [℘′′0 ]. Since ℘′i ∈ [℘] for each i � 1 (hence, �℘′i implies �℘ ),

it follows that for each n ∈ N, there is a finite run π ′n starting from s0 which is an instance of the finite path ℘′′0 ℘ · · ·℘︸ ︷︷ ︸
n times

.

Hence, s0 is neatly unbounded w.r.t. the ultimately periodic path ℘′′0 (℘)ω . Moreover, ℘′′0 ,℘ ∈PS , G℘′′0 • G℘ is satisfiable, and
G℘ is idempotent. Hence, the result follows. �

Let S be a GCS, F ⊆ Q (S), and PS be the computable finite set of sample paths of S satisfying Theorem 2. According
to Theorem 7, we define two computable finite families F(S, F ) and U(S) of GCS as follows:

• for a GCS S0, S0 ∈F(S, F ) iff S0 consists of the edges

(

, s(℘0)

) G℘0−−→ t(℘0) and s(℘)
G℘−−→ t(℘)

for some sample paths ℘0,℘ ∈PS such that t(℘0)= s(℘)= t(℘), s(℘) ∈ F , G℘0 • G℘ is satisfiable, and G℘ is idempo-
tent;

• for a GCS S0, S0 ∈ U(S) iff S0 consists of the edges

(

, s(℘0)

) G℘0−−→ t(℘0) and s(℘)
G℘−−→ t(℘)

for some sample paths ℘0,℘ ∈PS such that t(℘0)= s(℘)= t(℘), G℘0 • G℘ is satisfiable, and G℘ is idempotent.
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Note that the special symbol 
 is used just to ensure that the control points (
, s(℘0)) and t(℘0) of the GCS S0 are
distinct. Moreover, if S is complete, then since the composition operator • preserves completeness of transitional MG, by
construction, it follows that the families F(S, F ) and U(S) consist of simple GCS. In particular, by Theorem 7, we easily
obtain the following results (recall that for a family F of GCS, �F�K denotes the set of K -bounded approximations of the
GCS in F ).

Lemma 16 (Reduction lemma for fairness). Let S be a complete GCS and F ⊆ Q (S). Then:

1. F(S, F ) and �F(S, F )�K consist of simple GCS;
2. for a state (q0, ν0) of S , (q0, ν0) ∈ InfS,F iff there is S0 ∈F(S, F ) such that S0 has initial control point (
,q0) and ((
,q0), ν0) ∈

InfS0
;

3. for a GCS S0 , S0 ∈ �F(S, F )�K iff S0 consists of the edges(

, s(℘0)

) �G℘0 �K−−−−→ t(℘0) and s(℘)
�G℘�K−−−−→ t(℘)

for some non-null finite and satisfiable paths ℘0 and ℘ of S such that t(℘0) = s(℘) = t(℘), s(℘) ∈ F , �G℘0�K • �G℘�K is
satisfiable, and �G℘�K is idempotent;

4. �F(S, F )�K can be computed in time O (|E(S)| · |Q (S)|2 · (K + 2)(2|Var|+|Const|)2
);

5. �F(S, F )�K = �F(�S�K , F )�K .

Proof. Since the K -bounded approximation of a simple GCS is a simple GCS too (Proposition 9), Property 1 holds. Prop-
erty 2 directly follows from Theorem 7 and definition of F(S, F ). Property 3 easily follows from definition of F(S, F ),
Theorem 2, Propositions 6 and 7, and the fact that for a transitional MG G , G is idempotent iff �G�K is idempotent. Prop-
erty 4 directly follows from Property 3 and Theorem 1. It remains to prove Property 5. By Proposition 7, the following
holds: for each non-null finite path ℘ of S (resp., �S�K ), there is a non-null finite path ℘′ of �S�K (resp., S) such that
s(℘)= s(℘′), t(℘)= t(℘′), and �G℘�K = �G℘′ �K . Thus, by Property 3, Property 5 follows, which concludes the proof of the
lemma. �
Lemma 17 (Reduction lemma for unboundedness). Let S be a complete GCS. Then:

1. U(S) and �U(S)�K consist of simple GCS;
2. for a state (q0, ν0) of S , (q0, ν0) ∈ UnbS iff there is S0 ∈ U(S) such that S0 has initial control point (
,q0) and ((
,q0), ν0) ∈

UnbS0 ;
3. for a GCS S0 , S0 ∈ �U(S)�K iff S0 consists of the edges(


, s(℘0)
) �G℘0 �K−−−−→ t(℘0) and s(℘)

�G℘�K−−−−→ t(℘)

for some non-null finite and satisfiable paths ℘0 and ℘ of S such that t(℘0)= s(℘)= t(℘), �G℘0�K • �G℘�K is satisfiable, and
�G℘�K is idempotent;

4. �U(S)�K can be computed in time O (|E(S)| · |Q (S)|2 · (K + 2)(2|Var|+|Const|)2
);

5. �U(S)�K = �U(�S�K )�K .

Proof. The proof is similar to the proof of Lemma 16. Thus, we omit the details here. �
For unrestricted GCS, we observe the following.

Proposition 14. Let S be a GCS. Then, one can compute a complete GCS, written C(S), such that [[C(S)]] = [[S]] and the following
hold:

1. Q (C(S)) = Q (S) and |E(C(S))| = O (|E(S)| · 2(2|V ar|+|Const|)2
); moreover, C(S) has the same sets of variables and constants

as S;
2. �C(�S�K )�K = �C(S)�K .

Proof. We need an additional definition. A basic complete transitional MG G is a transitional MG such that

• the weight of each edge is in {0,1};
• for all vertices u and v , either G |� u � v or G |� v � u for some � ∈ {<,=}.

Let Gb be the set of basic complete transitional MG. Evidently, Gb is finite and its cardinality is bounded by
O (2(2|V ar|+|Const|)2

). Moreover, note that for each transitional MG G and G ′ ∈ Gb , G � G ′ is complete. Furthermore,
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Sat(G) =⋃
G ′∈Gb

Sat(G � G ′). Then, C(S) is obtained from S by replacing each edge q G−→ q′ with the edges q G�G ′−−−→ q′ ,
where G ′ ∈ Gb . Evidently, [[C(S)]] = [[S]] and Property 1 holds. Note that each G ′ ∈ Gb is K -bounded. Thus, by Proposi-
tion 7, we obtain that for all transitional MG G and G ′ ∈ Gb , �G � G ′�K = �G�K � G ′ . Hence, Property 2 holds as well, which
concludes. �

Now, we can prove the main results of this section.

Theorem 8 (Fairness for unrestricted GCS). Let S be a GCS and F ⊆ Q (S). Then, InfS,F is MG representable and one can build an
MG representation σ(S, F ) of InfS,F such that:

1. �σ(S, F )�K can be computed in time O (|E(S)| · |Q (S)|2 · (K + 2)(2|Var|+|Const|)2
);

2. �σ(S, F )�K = �σ(�S�K , F )�K ;
3. given q0 ∈ Q (S) and a K -bounded MG G over Var, checking whether G is in the q0-component of �σ(S, F )�K can be done in

polynomial space.

Proof. We distinguish two cases:

• S is complete: hence, the computable family F(S, F ) of GCS consists of simple GCS. By Theorem 3, given a simple
GCS S0 with initial control point q0, one can compute a finite set G(S0) of MG over Var such for each valuation ν over
Var, (q0, ν) ∈ InfS0

iff ν ∈ Sat(G) for some G ∈ G(S0). Moreover, �G(S0)�K can be computed in time polynomial in the
size of S0 and �G(S0)�K = �G(�S0�K )�K . Then, σ(S, F ) is defined as

σ(S, F )
def=

{ ⋃
{S0∈F(S,F )|S0 has initial control point (
,q)}

G(S0)

}
q∈Q (S)

. (1)

Note that σ(S, F ) is effectively computable. Moreover, by Lemma 16(2), it follows that σ(S, F ) is an MG representation
of InfS,F . Thus, the first part of the theorem holds. Now, let us consider Properties 1–3.

Proof of Property 1. Since for all simple GCS S0, �G(S0)�K = �G(�S0�K )�K , we obtain⌊
σ(S, F )

⌋
K =

{ ⋃
{S0∈�F(S,F )�K |S0 has initial control point (
,q)}

⌊
G(S0)

⌋
K

}
q∈Q (S)

. (2)

By Lemma 16(4), the family �F(S, F )�K of simple GCS can be computed in time O (|E(S)| · |Q (S)|2 · (K +
2)(2|Var|+|Const|)2

). Thus, since for all simple GCS S0, �G(S0)�K can be computed in time polynomial in the size of
S0, by Eq. (2), Property 1 follows. �
Proof of Property 2. By Lemma 16(5), �F(S, F )�K = �F(�S�K , F )�K . Thus, by Eq. (2), Property 2 follows. �
Proof of Property 3. We outline an NPspace algorithm to check whether for a given q0 ∈ Q (S) and a K -bounded
MG G over Var, G is in the q0-component of �σ(S, F )�K . Since NPspace = Pspace (by Savitch’s theorem), the result
follows. Initially, a control point q ∈ F is guessed. Then, at each step, the nondeterministic algorithm guesses two
non-null finite paths ℘0 and ℘ of S such that s(℘0) = q0 and s(℘) = q, and it computes the GCS S0 having the

edges (
, s(℘0))
�G℘0 �K−−−−−→ t(℘0) and s(℘)

�G℘�K−−−−→ t(℘). The algorithm keeps in memory only the MG �G℘0�K and �G℘�K
associated with the paths ℘0 and ℘ generated so far, together with their source and target control points. If the current
GCS S0 corresponds to a simple GCS such that t(℘0) = s(℘) = t(℘) = q and G ∈ �G(S0)�K (since �G(S0)�K can be
computed in polynomial time in the size of S0, this check can be done in polynomial time in the size of S0), then
the algorithm terminates with success. Otherwise, the algorithm chooses two edges of S from control points t(℘0) and

t(℘), say t(℘0)
G0−−→ q′ and t(℘)

G ′−−→ q′′ , computes the MG ��G℘0�K • �G0�K �K and ��G℘�K • �G ′�K �K associated with
the currently guessed paths, and re-writes the memory by replacing �G℘0�K and �G℘�K with ��G℘0�K • �G0�K �K and
��G℘�K • �G ′�K �K , and t(℘0) and t(℘) with q′ and q′′ , respectively, and the procedure is repeated. Correctness of the
procedure easily follows from Lemma 16(3), Eq. (2), and Proposition 7. �

• S is not complete: we can assume that the theorem holds for complete GCS. By Proposition 14, one can compute a

complete GCS C(S) such that [[C(S)]] = [[S]]. Thus, we set σ(S, F )
def= σ(C(S), F ), and the first part of the theorem

holds.

Proof of Property 1. Since Property 1 holds for complete GCS, �σ(C(S), F )�K can be computed in time O (|E(C(S))| ·
|Q (C(S))|2 · (K + 2)(2|Var|+|Const|)2

). Thus, by Proposition 14, we obtain that �σ(S, F )�K can be computed in time
O (|E(S)| · |Q (S)|2 · (K + 2)(2|Var|+|Const|)2

), and Property 1 follows. �
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Proof of Property 2. Note that �S�K is not complete. Then,⌊
σ(S, F )

⌋
K = ⌊

σ(C
(
S

)
, F )

⌋
K

= ⌊
σ

(⌊
C(S)

⌋
K , F

)⌋
K Property 2 holds for complete GCS

= ⌊
σ

(⌊
C
(�S�K

)⌋
K , F

)⌋
K by Proposition 14

= ⌊
σ

(
C
(�S�K

)
, F

)⌋
K Property 2 holds for complete GCS

= ⌊
σ

(�S�K , F
)⌋

K .

Thus, Property 2 holds. �
Proof of Property 3. Note that by the proof of Proposition 14, an edge of C(S) is of the form q G�G ′−−−→ q′ , where q G−→ q′
is an edge of S , and G ′ is an arbitrary basic complete transitional MG. Thus, by the proof of Property 3 when S is
complete, the result easily follows. �

This concludes the proof of the theorem. �
A similar result holds for unboundedness.

Theorem 9 (Unboundedness for unrestricted GCS). Let S be a GCS. Then, UnbS is MG representable and one can construct an MG
representation σ(S) of UnbS such that:

1. �σ(S)�K can be computed in time O (|E(S)| · |Q (S)|2 · (K + 2)(2|Var|+|Const|)2
);

2. �σ(S)�K = �σ(�S�K )�K ;
3. given q0 ∈ Q (S) and a K -bounded MG G over Var, checking whether G is in the q0-component of �σ(S)�K can be done in

polynomial space.

Proof. The proof is similar to the proof of Theorem 8. The difference is that we use Lemma 17 instead of Lemma 16, and
Theorem 5 instead of Theorem 3. Thus, we omit the details here. �

By Theorem 8(3), Theorem 9(3), and Propositions 1 and 2, we obtain the following result.

Corollary 4. The termination problem, the strong termination problem, and the fairness problem of GCS, and their versions w.r.t. a
designated state and w.r.t. a control point are all Pspace-complete.

6. The constrained branching-time temporal logic GCCTL∗

In this section, we introduce the constrained branching-time temporal logic GCCTL∗ and investigate the related satisfia-
bility and model checking problems.

6.1. Syntax and semantics of GCCTL∗

The logic GCCTL∗ is an extension of standard logic CTL∗ [22], where atomic propositions are replaced with transitional
GC. As for standard CTL∗ , there are two types of formulas in GCCTL∗: state formulas ϕ , whose satisfaction is related to a
specific state, and path formulas ψ , whose satisfaction is related to a specific path. Formally, for the fixed set of variables Var
and the fixed set of integer constants Const, the state formulas ϕ and path formulas ψ of GCCTL∗ are inductively defined as
follows:

ϕ := � | ϕ ∨ ϕ | ϕ ∧ ϕ | Aψ | Eψ,

ψ := ϕ | ξ | ψ ∨ψ | ψ ∧ψ | ©ψ |�ψ | ψ Uψ

where � denotes “true”, E (“for some path”) and A (“for all paths”) are path quantifiers, ξ is a transitional GC, and ©
(“next”), U (“until”), and � (“always”) are the usual linear temporal operators. We also use the following classical shortcut:

♦ψ
def= �Uψ (“eventually”). Since GC constraints are not closed under negation, the logic is not closed under negation as

well.7 The set of state formulas ϕ forms the language GCCTL∗ . We also consider the existential and universal fragments
E–GCCTL∗ and A–GCCTL∗ of GCCTL∗ , obtained by disallowing the universal and existential path quantifiers, respectively.
For a path GCCTL∗ formula ψ , a maximal subformula of ψ is a subformula ϑ of ψ such that there is an occurrence of ϑ in
ψ which is not in the scope of a path quantifier.

7 If we allow negation, then the successor relation is definable and by [21], basic decision problems become undecidable.
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GCCTL∗ formulas are interpreted over (possibly infinite) directed graphs G = 〈S,→,μ〉 augmented with a mapping μ
assigning to each vertex (or state) a valuation over Var. For an infinite path π = s0 −→ s1 −→ . . . of G, we denote the suffix
si −→ si+1 −→ . . . of π by π i , and the i-th state of π by π(i). Let s ∈ S and π be an infinite path of G. For a state formula
ϕ and a path formula ψ , the satisfaction relations (G, s) |� ϕ and (G,π) |�ψ , meaning that ϕ holds at state s and ψ holds
along π in G, are inductively defined as follows (we omit the clauses for conjunction and disjunction which are standard):

(G, s) |� Aψ
def⇔ for each infinite path π of G from s, (G,π) |�ψ,

(G, s) |� Eψ
def⇔ there is an infinite path π of G from s such that (G,π) |�ψ,

(G,π) |� ϕ
def⇔ (G,π(0)) |� ϕ,

(G,π) |� ξ
def⇔ μ(π(0))⊕μ(π(1)) |� ξ,

(G,π) |�©ψ
def⇔ (G,π1) |�ψ,

(G,π) |��ψ
def⇔ for all i � 0, (G,π i) |�ψ,

(G,π) |�ψ1 Uψ2
def⇔ there is i � 0 such that (G,π i) |�ψ2 and for all j < i, (G,π j) |�ψ1.

Note that the dual until operator Ũ can be expressed in the logic since: ψ1 Ũψ2 ≡�ψ2∨(ψ2 U (ψ1∧ψ2)). A GCCTL∗ formula
ϕ is satisfiable iff (G, s) |� ϕ for some labeled graph G and state s of G. The model checking problem of GCS against GCCTL∗
is checking for a given GCS S , state s of S , and GCCTL∗ formula ϕ , whether (G(S), s) |� ϕ , where G(S) is obtained from
[[S]] by adding the mapping which assigns to each state of S the associated valuation over Var. We denote by [[ϕ]]S the set
of states s of S such that (G(S), s) |� ϕ .

Example 3. Let us consider the requirement: “there is an infinite run from the given state such that variables x and y
behave like clocks with rates at least k and k′ , respectively”. This can be expressed by the E–GCCTL∗ formula

E�
[((

x′ = 0
)∨ (

x′ − x
)
� k

)∧ ((
y′ = 0

)∨ (
y′ − y

)
� k′

)]
.

We can also use our framework to solve verification of non-local constraints (between variables at states arbitrarily far
away from each other), which are not directly expressible in GCCTL∗ . As a relevant example, we consider unboundedness
requirements on the values of a given variable along an infinite run.8 For each x ∈ Var, let us denote by ξx a special atomic
formula (unboundedness constraint) that holds along an infinite run π iff the set of x-values along π is unbounded. Formally,

(G,π) |� ξx
def⇔ {[

μ
(
π(i)

)]
(x)

∣∣ i � 0
}

is infinite

where G= 〈S,→,μ〉. Let E–GCCTL∗ub be the extension of E–GCCTL∗ with these constraints. We show the following result.

Theorem 10. Model checking GCS against E–GCCTL∗ub can be reduced in polynomial time to model checking GCS against
E–GCCTL∗ .

6.1.1. Proof of Theorem 10
Fix a GCS S over Var and an E–GCCTL∗ub formula ϕ over Var. We construct in polynomial-time an extension Varext of

Var, a GCS Sext over Varext , and an E–GCCTL∗ formula f (ϕ) over Varext as follows. For each x ∈ Var, let xr and xprop be
fresh copies of x. Intuitively, xr is used as register to keep track of the current value of variable x, and xprop is used as atomic
proposition. Then, Varext is the extension of Var with these new variables. Moreover, Sext is defined as follows:

• for each y ∈ Var and q ∈ Q (S), let qy be a fresh copy of q. Then,

Q (Sext)
def= Q (S)∪

⋃
q∈Q (S)

⋃
y∈Var

{qy}.

• E(Sext) is obtained from E(S) by replacing each edge q
ξ−→ p in E(S) with the following edges, where y and z range

over Var:
– the edges q

ξ∧ξ ′−−−→ p and q
ξ∧ξ ′−−−→ p y , where

ξ ′ =
∧

x∈Var

(
x′r = xr

)∧ (xprop > 0);

8 Such properties are very useful when checking e.g. the risk of having an unbounded number of duplications of a critical data in a security system
which significantly impacts the control enforcement cost for this data.
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– the edges qz
ξ∧ξ ′′−−−→ p and qz

ξ∧ξ ′′−−−→ p y , where

ξ ′′ = (
z′r = z

)∧ (zprop = 0)∧
∧

x∈Var\{z}

(
x′r = xr

)∧ (xprop > 0).

Intuitively, the proposition “xprop = 0” is used to mark states in which the current value of variable x is stored in the
corresponding register xr . Moreover, whenever “xprop > 0” holds, then the value of register xr is not modified. Finally, the
E–GCCTL∗ formula f (ϕ) is obtained from ϕ by replacing each occurrence of an unboundedness constraint ξx with the
E–GCCTL∗ path formula f (ξx)= f<(ξx)∨ f>(ξx), where for each ∼∈ {<,>}, f∼(ξx) is defined as follows:(

�♦(xprop = 0)
)∧©�

(
(xprop = 0)→©[

(xprop > 0)U
(
(xprop = 0)∧ (x∼ xr)

)])
.

Intuitively, by requiring that the proposition “xprop = 0” holds infinitely often, we require that the value of register xr of x
is changed infinitely often. Furthermore, every time the register xr is modified, the old value must be > than the current
value (or symmetrically <). Thus, along an infinite run we have an infinite number of updates of x with larger and larger
values (symmetrically, with smaller and smaller values). Theorem 10 directly follows from the following result.

Theorem 11. For each state s of S , one can compute in linear-time a state sext of Sext so that (G(S), s) |� ϕ iff (G(Sext), sext) |� f (ϕ).

In order to prove Theorem 11, we need additional definitions and preliminary results. A well-formed mapping is a function
Υ : N → Var such that: N ⊆N and for each x ∈ Var, Υ −1(x) is infinite. Evidently, the following holds.

Lemma 18. Let ξx1 , . . . , ξxn be unboundedness constraints over Var and π be an infinite run of S of the form π = (q0, ν0) −→
(q1, ν1) . . . . Then, ξx1 ∧ · · · ∧ ξxn holds along π iff there is a well-formed mapping Υ : N → Var such that for each 1 � i � n,

1. there is ∼i∈ {<,>} so that for each h ∈ Υ −1(xi), νnext(h)(xi)∼i νh(xi), where next(h) is the smaller k > h such that Υ (k)= xi
(note that such a next(h) exists).

For a state (q, ν) of S , an extension of (q, ν) is a state of Sext of the form (q′, ν ′) such that ν ′ is an extension of ν ,
and the following hold: either q′ = q and ν ′(xprop) > 0 for each x ∈ Var, or for some y ∈ Var, q′ = qy , ν ′(yprop) = 0 and
ν ′(xprop) > 0 for each x ∈ Var \ {y}. An extension of an infinite run π of S is an infinite run π ′ of Sext such that for each
i � 0, state π ′(i) is an extension of π(i). Now, we prove the following result.

Lemma 19. Let ξx1 , . . . , ξxn be unboundedness constraints over Var, π be an infinite run of S starting from (q, ν), and (q′, ν ′) be an
extension of (q, ν). Then, ξx1 ∧ · · · ∧ ξxn holds along π iff there is an extension π ′ of π starting from (q′, ν ′) such that (G(Sext),π

′) |�
f (ξx1 )∧ · · · ∧ f (ξxn ).

Proof. (⇒) Assume that ξx1 ∧ · · · ∧ ξxn holds along π = (q0, ν0) −→ (q1, ν1) . . . , where (q0, ν0) = (q, ν). By Lemma 18,
there is a well-formed mapping Υ : N → Var such that for each 1 � i � n, Property 1 in Lemma 18 holds. Let π ′ =
(q′0, ν ′0), (q′1, ν ′1), . . . be the infinite sequence of states of Sext defined as follows: (q′0, ν ′0)= (q′, ν ′) and for all i > 0,

• q′i = qi if i /∈ N , and q′i = (qi)Υ (i) otherwise;
• (ν ′i )Var = νi and for each x ∈ Var, ν ′i (xr)= ν ′i−1(x) if i − 1 ∈ Υ −1(x), and ν ′i (xr)= ν ′i−1(xr) otherwise;

• for each x ∈ Var, ν ′i (xprop)= 0 if i ∈ Υ −1(x), and ν ′i (xprop)= 1 otherwise.

By definition of Sext , it follows that π ′ is an infinite run of Sext starting from (q′, ν ′) which is an extension of π . Moreover,
since Υ satisfies Property 1 in Lemma 18, by construction it easily follows that (G(Sext),π

′) |� f (ξx1 )∧ · · · ∧ f (ξxn ).
(⇐) Assume that π ′ is an extension of π = (q0, ν0)−→ (q1, ν1) . . . starting from (q′, ν ′) such that (G(Sext),π

′) |� f (ξx1 )∧· · · ∧ f (ξxn ). Then, by construction, there is a well-formed mapping Υ : N → Var such that for each 1 � i � n, Property 1 in
Lemma 18 holds. Thus, by Lemma 18, the result follows. �

Theorem 11 directly follows from the following result, which is proved by using Lemma 19 (since ϕ is an existential
formula, we can assume that ϕ = Eψ for some path formula ψ ).

Lemma 20. Let Eψ be a subformula of ϕ . Then, for each state s of S and extension sext of s, (G(S), s) |� Eψ iff (G(Sext), sext) |�
f (Eψ).

Proof. The proof is by structural induction on Eψ . By induction hypothesis, we can assume that the result holds for each
state subformula of ψ of the form Eψ ′ .
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(⇒) Assume that (G(S), s) |� Eψ . Then, there is an infinite run π of S starting from s such that (G(S),π) |� ψ . Let
ξx1 , . . . , ξxn be all and only the unboundedness constraints over Var that hold along π . By Lemma 19, there is an extension
π ′ of π starting from sext such that (G(Sext),π

′) |� f (ξx1 )∧ · · · ∧ f (ξxn ). Since for each suffix (π ′)i of π ′ , (G(Sext), (π
′)i) |�

f (ξx1 ) ∧ · · · ∧ f (ξxn ) holds as well, and ψ is in positive normal form (and negation is never used), by a nested structural
induction, it easily follows that for each maximal subformula ψ ′ of ψ and i � 0, (G(S),π i) |� ψ ′ implies (G(Sext), (π

′)i) |�
f (ψ ′). Hence, the result follows.

(⇐) Assume that (G(Sext), sext) |� f (Eψ). Then, there is an infinite run π ′ of Sext starting from sext such that
(G(Sext),π

′) |� f (ψ). By definition of Sext , it easily follow that π ′ is an extension of some infinite run π of S starting
from s. Let ξx1 , . . . , ξxn be all and only the unboundedness constraints over Var such that (G(Sext),π

′) |� f (ξx1 )∧· · ·∧ f (ξxn ).
By Lemma 19, ξx1 , . . . , ξxn hold along π . Since for each suffix (π ′)i of π ′ , (G(Sext), (π

′)i) |� f (ξx1 ) ∧ · · · ∧ f (ξxn ) holds as
well, and ψ is in positive normal form (and negation is never used), by a nested structural induction, it follows that for
each maximal subformula ψ ′ of ψ and i � 0, (G(Sext), (π

′)i) |� f (ψ ′) implies (G(S),π i) |�ψ ′ . Hence, the result follows. �
6.2. Decision procedures

In this subsection, we investigate decidability and complexity issues for satisfiability and model checking of GCCTL∗ and
its fragments E–GCCTL∗ and A–GCCTL∗ . By [16], model checking GCS against GCCTL∗ is undecidable. It is straightforward
to extend this negative result to model checking GCS against A–GCCTL∗ .

Theorem 12. Model checking GCS against A–GCCTL∗ is undecidable.

Proof. We say that a GCS S is total if for each control point q, the disjunction of all transitional GC labeling the edges
with source q is a valid formula, i.e. every valuation over Var ∪ Var′ satisfies the formula (note that we can effectively check
this condition). Note that in a total GCS S , each state has at least a successor. Let NE–GCCTL∗ be the logic defined exactly
as E–GCCTL∗ with the unique difference that an atomic formula is the negation of a transitional GC. Now, we observe
that positive boolean combinations of negations of transitional GC allow to express increment and decrement of a counter
variable, and test for zero. For example, x′ = x+ 1 is equivalent to ¬(x′ − x � 2) ∧ ¬(x− x′ � 0), and x = 0 is equivalent
to ¬(x � 1)∧¬(−x � 1). It follows that one can easily encode in NE–GCCTL∗ the evolution of a Minsky counter machine.
Hence, undecidability of its satisfiability and model checking (w.r.t. the class of total GCS) problems easily follows. Now, we
observe that over total GCS, NE–GCCTL∗ is the dual of A–GCCTL∗ . Hence, undecidability of model checking GCS against
A–GCCTL∗ follows. �

In the following we show that model checking GCS against E–GCCTL∗ and satisfiability for E–GCCTL∗ and A–GCCTL∗
are instead decidable and Pspace-complete. The decidability status for satisfiability of full GCCTL∗ remains open.

First, we consider model checking GCS against E–GCCTL∗ . The proposed approach is a generalization of the standard
automata-theoretic approach for model checking finite-state systems against standard linear temporal logic LTL [33]. Recall
that for a finite alphabet Σ , a Büchi (nondeterministic finite-state word) automaton over Σ is a tuple A = 〈P , p0,�, F 〉,
where P is the finite set of states, p0 ∈ P is the initial state, � is the finite set of transitions of the form p σ−→ p′ , where
p, p′ ∈ P and σ ∈ Σ , and F ⊆ P is the set of accepting states. An infinite run of A is an infinite sequence π (from the
initial state p0) of the form π = p0

σ0−−→ p1
σ1−−→ p2 . . . such that pi

σi−−→ pi+1 ∈� for all i � 0. The run π is accepting if for
infinitely many i � 0, pi ∈ F . The ω-language L(A) of A is the set of infinite words w = w(0)w(1) . . . over Σ such that

there is an accepting infinite run of the form π = p0
w(0)−−−→ p1

w(1)−−−→ p2 . . . . The following is a well-known result [33].

Proposition 15. (See [33].) Given an LTL formula φ over a finite set Prop of atomic propositions, one can construct in singly exponential
time a Büchi automaton Aφ over 2Prop of size 2O (|φ|) such that L(Aφ) is the set of infinite words over 2Prop satisfying φ .

Let ψ be a path E–GCCTL∗ formula. Let At(ψ) be the set of atomic formulas (i.e., transitional GC) which are maximal
subformulas of ψ and St(ψ) be the set of existential state formulas Eψ ′ which are maximal subformulas of ψ . A ψ-valuation
is an infinite word over the finite alphabet 2At(ψ)∪St(ψ) . Note that ψ can be seen as an LTL formula, written LTL(ψ), over
the set of atomic propositions given by At(ψ) ∪ St(ψ). In accordance with this, we denote by Aψ the Büchi automaton
over the alphabet 2At(ψ)∪St(ψ) associated with LTL(ψ) and satisfying Proposition 15. By the semantics of E–GCCTL∗ and
Proposition 15, we easily obtain the following result.

Lemma 21. Let S be a GCS, s be an S-state, and Eψ be E–GCCTL∗ formula. Then, (G(S), s) |� Eψ iff there are an infinite run
π = (q0, ν0)−→ (q1, ν1) . . . of S with (q0, ν0)= s and a ψ-valuation X = X(0)X(1) . . . such that X ∈L(Aψ) and for all i � 0,

• for all ξ ∈ X(i), νi ⊕ νi+1 ∈ Sat(ξ);
• for all Eψ ′ ∈ X(i), (G(S), (qi, νi)) |� Eψ ′ .

Now, we can prove the main result of this subsection.
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Theorem 13. Given a GCS S and an E–GCCTL∗ formula ϕ , [[ϕ]]S is MG representable and one can construct an MG representation
of [[ϕ]]S , written π(S,ϕ), satisfying the following:

1. �π(S,ϕ)�K can be built in time O (|E(S)| · |Q (S)|2 · 2O (|ϕ|) · (K + 2)O ((2|Var|+|Const|)2));
2. for a K -bounded MG G on Var and q ∈ Q (S), checking whether G is in the q-component of �π(S,ϕ)�K can be done in polynomial

space.

Proof. Fix a GCS S . For an E–GCCTL∗ formula ϕ , we construct π(S,ϕ) and prove Properties 1 and 2 by induction on the
structure of ϕ . If ϕ is either � or a conjunction or a disjunction of E–GCCTL∗ formulas, then the result easily follows from
the induction hypothesis, Proposition 5, and Proposition 7. The remaining case is when ϕ = Eψ for some path E–GCCTL∗
formula ψ . We prove the result by a reduction to the fairness problem of GCS. By the induction hypothesis, we can assume
that the theorem holds for each state formula θ such that θ ∈ St(ψ). Let Aψ = 〈P , p0,�, F 〉 be the Büchi finite state
automaton over 2At(ψ)∪St(ψ) associated with LTL(ψ). We construct two GCS Sϕ and Sbd

ϕ as follows:

• Q (Sϕ)
def= Q (S)× P and Q (Sbd

ϕ )
def= Q (S)× P . Thus, Q (Sϕ)= Q (Sbd

ϕ ) and a control point of Q (Sϕ) consists of a pair
(q, p), where q is a control point of S and p is a state of Aψ .

• (q, p)
G−→ (q′, p′) is an edge of Sϕ iff there are an edge of S of the form q

G0−−→ q′ and a transition p X−→ p′ of Aψ with
X ∩ St(ψ)= {θ1, . . . , θk} and X ∩ At(ψ)= {ξ1, . . . , ξh} such that

G = G0 � G1 � · · · � Gk � G(ξ1) � · · · � G(ξh)

where for all 1 � j � k, the MG G j belongs to the q-component of the computable MG-representation π(S, θ j) of
[[θ j]]S .

• (q, p)
G−→ (q′, p′) is an edge of Sbd

ϕ iff there are an edge of S of the form q
G0−−→ q′ and a transition p X−→ p′ of Aψ with

X ∩ St(ψ)= {θ1, . . . , θk} and X ∩ At(ψ)= {ξ1, . . . , ξh} such that

G = �G0�K � G1 � · · · � Gk �
⌊

G(ξ1)
⌋

K � · · · �
⌊

G(ξh)
⌋

K

where for all 1 � j � k, the MG G j belongs to the q-component of �π(S, θ j)�K .

Note that by construction ((q, p0), ν) ∈ InfSϕ,Q (S)×F iff there are an infinite run π = (q0, ν0) −→ (q1, ν1) . . . of S with
(q0, ν0)= (q, ν) and a ψ-valuation X = X(0)X(1) . . . such that X ∈L(Aψ) and for all i � 0, the following hold:

• for all ξ ∈ X(i), νi ⊕ νi+1 ∈ Sat(ξ);
• for all Eψ ′ ∈ X(i), νi ∈ Sat(G) for some MG G belonging to the qi -component of π(S,Eψ ′). Hence, for all Eψ ′ ∈ X(i),

(G(S), (qi, νi)) |� Eψ ′ .

Thus, by Lemma 21, the following claim follows.

Claim 1. (q, ν) ∈ [[ϕ]]S if and only if there is an infinite run of Sϕ from ((q, p0), ν) which is fair w.r.t. Q (S)× F (i.e., ((q, p0), ν) ∈
InfSϕ,Q (S)×F ).

Moreover, by construction, the induction hypothesis, and Propositions 7 and 15, we easily obtain the following.

Claim 2. Sbd
ϕ can be built in time O (|E(S)| · |Q (S)|2 · 2O (|ϕ|) · (K + 2)O ((2|Var|+|Const|)2)) starting from S and {�π(S, θ)�K | θ ∈ X}.

Moreover, Sbd
ϕ = �Sϕ�K .

Now, by using Claims 1 and 2, we construct an MG representation π(S,ϕ) of [[ϕ]]S and show that it satisfies Prop-
erties 1 and 2 of the theorem. Let σF (Sϕ) be the computable MG representation of InfSϕ,Q (S)×F satisfying the statement
of Theorem 8. Then, for each q ∈ Q (S), the q-component of π(S,ϕ) is the (q, p0)-component of σF (Sϕ). By Claim 1, it
follows that π(S,ϕ) is a computable MG representation of [[ϕ]]S . By Claim 2, Sbd

ϕ = �Sϕ�K , hence, by Property 2 of Theo-

rem 8, �σF (Sϕ)�K = �σF (Sbd
ϕ )�K . Thus, since Q (Sbd

ϕ ) has cardinality bounded by |Q (S)| · 2O (|ϕ|) and E(Sbd
ϕ ) has cardinality

bounded by |E(S)| · 2O (|ϕ|) · (K + 2)(2|Var|+|Const|)2
(the MG of Sbd

ϕ are K -bounded), by Property 1 of Theorem 8 and Claim 2,
Property 1 in the theorem follows. Now, let us consider Property 2. By the induction hypothesis, we can assume that Prop-
erty 2 holds for each formula in St(ψ). Moreover, by the above considerations, it suffices to show that given a K -bounded
MG G over Var and (q, p) ∈ Q (Sbd

ϕ ), checking whether G is in the (q, p)-component of �σF (Sbd
ϕ )�K can be done in space

polynomial in the sizes of S and ϕ . By Property 3 of Theorem 8, this check can be done in space polynomial in the size of
Sbd

ϕ . However, we can do better as follows. In fact, as illustrated in the proof of Theorem 8, the nondeterministic algorithm

that checks whether G is in the (q, p)-component of �σF (Sbd
ϕ )�K keeps in memory only the K -bounded MG �G℘0�K and
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�G℘�K associated with the guessed two non-null finite paths ℘0 and ℘ generated so far, together with their source and
target control points. If the successful termination condition is not satisfied, then:

(a) the algorithm chooses two edges e0 and e of Sbd
ϕ from control points t(℘0) and t(℘), and

(b) computes the K -bounded transitional MG associated with the new guessed paths ℘0 · e0 and ℘ · e.

Now, by definition of Sbd
ϕ , the K -bounded transitional MG labeling the edge e0 (resp., e) depend on the MG belonging to

the components of �π(S, θ)�K , where θ ∈ St(ψ). Then, we modify part (a) of the algorithm as follows:

(a′) the algorithm guesses two edges e0 and e from control points t(℘0) and t(℘) whose labels are K -bounded transi-
tional MG, and checks that e0 and e are indeed edges of Sbd

ϕ . If the check is negative, then the algorithm terminates
unsuccessfully. Otherwise, the algorithm performs part (b).

Recall that the finite-state automaton Aψ can be constructed on-the-fly [33]. Then, the crucial observation is that by the
induction hypothesis, the check in (a′) can be done in space polynomial in the sizes of S and the state subformulas θ ∈
St(ψ). Hence, the nondeterministic algorithm runs in space polynomial in the sizes of S and ϕ . Since NPspace = Pspace,
Property 2 in the theorem follows, which concludes. �
Theorem 14. Model checking GCS against E–GCCTL∗ and satisfiability of E–GCCTL∗ and A–GCCTL∗ are Pspace-complete.

Proof. The lower bounds directly follow from Pspace-hardness of model checking and satisfiability for the existential and
universal fragments of standard CTL∗ (see, e.g., [27]). Now, let us consider the upper bounds.

Upper bound for model checking GCS against E–GCCTL∗: the proof is by a linear-time reduction to the problem of checking
for a given GCS S , control point q, and E–GCCTL∗ formula ϕ , whether (G(S), (q, ν)) |� ϕ for some valuation ν over Var
(by Theorem 13, this last problem is in Pspace). Fix a GCS S , a state (q0, ν0) of S , and an E–GCCTL∗ formula ϕ . W.l.o.g. we
assume that ϕ does not contain occurrences of �. Moreover, we can assume that ν0(x) ∈ Const for each x ∈ Var (otherwise,
we extend Const by including the integers ν0(x) with x ∈ Var). Let G= be the transitional MG corresponding to the GC given
by

∧
x∈Var x= ν0(x) and q′0 /∈ Q (S) be a fresh control point. We construct a new GCS S0 as follows: S0 is obtained from S

by adding for each edge of S of the form q0
G−→ q, the edge q′0

G�G=−−−−→ q. We claim that (q0, ν0) ∈ [[ϕ]]S iff (q′0, ν) ∈ [[ϕ]]S0

for some valuation ν over Var, hence the result follows. The claim directly follows from the following facts, which can be
easily proved:

• Let T and T0 be the unwindings of [[S]] and [[S0]] starting from (q0, ν0) and (q′0, ν0), respectively. If we replace the
label (q′0, ν0) of the root of T0 with the label (q0, ν0), then the resulting labeled tree is isomorphic to T .

• For a valuation ν over Var such that ν 
= ν0, (q′0, ν) has no successors in [[S0]]. Hence, (q′0, ν) /∈ [[ϕ]]S0 .

Upper bound for satisfiability of E–GCCTL∗: the proof is by a linear-time reduction to the problem of checking for a given
GCS S , control point q, and E–GCCTL∗ formula ϕ , whether (G(S), (q, ν)) |� ϕ for some valuation ν over Var. Let S0 be the
GCS having a unique edge (which is a self-loop) of the form q G−→ q such that G is equivalent to true. Evidently, given an
E–GCCTL∗ formula ϕ , ϕ is satisfiable iff (G(S0), (q, ν)) |� ϕ for some valuation ν over Var.

Upper bound for satisfiability of A–GCCTL∗: in fact, we consider satisfiability of A–GCCTL∗ restricted to the class of labeled
graphs admitting at least an infinite path (without this restriction, by the semantics of the universal path quantifier, each
A–GCCTL∗ formula would be satisfiable). Formally, an A–GCCTL∗ formula ϕ is strongly satisfiable iff (G, s) |� ϕ for some
labeled graph G and state s of G such that there is some infinite path of G from s. The upper bound for the considered
problem is shown by a linear-time reduction to satisfiability of E–GCCTL∗ . Let ϕ be an A–GCCTL∗ formula, and let Eϕ̃
be the E–GCCTL∗ formula, where ϕ̃ is obtained from ϕ by removing each occurrence of the universal path quantifier.
Evidently, ϕ is strongly satisfiable iff Eϕ̃ is satisfiable. Hence, the result follows. �
7. Concluding remarks

We conclude by giving some future research directions.
A possible direction is connected to the termination analysis of GCS. In particular, in termination analysis of programs,

a classical method is the ranking function argument. In this method, the goal is finding a witness for uniform termination,
i.e. a mapping (global ranking function) that associates a rank to every state of the program over a well-founded ordered
domain (such as the set of natural numbers) and such that every transition of the program decreases the rank. For applica-
tions, an explicit ranking expression may provide an easy-to-verify witness for termination, since verification only amounts
to checking it against every transition. Moreover, since a ranking function provides a witness for a termination proof, it
is interesting for program certification. For example, for the class of MCS, A. Ben-Amram in [8] provides a procedure to
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construct explicit global ranking functions in singly exponential time. It would be interesting to generalize the approach
proposed by Ben-Amram for the more expressive class of GCS.

Regarding the logic GCCTL∗ , an intriguing question left open is the decidability status for satisfiability of full GCCTL∗ .
We think that this is an important issue that deserves future investigation. Notice that the argument used for undecidability
of model-checking MCS or IRA against CTL extended with MC [16] relies on the observation that existential and universal
quantification over counter variables can be simulated by the path quantifiers of the logic and by using the fact that the
formalism is infinite-branching (in particular, one can ensure that a variable assumes all the possible values in the successors
of a given state). The “infinitely-branching requirement” which is crucial in the undecidability argument for model-checking
cannot be applied to the satisfiability problem, and in fact, one can show that the logic GCCTL∗ satisfies the bounded-tree
model property. Hence, establishing the decidability status for satisfiability of GCCTL∗ seems challenging.

Moreover, it would be interesting to investigate extensions of GCCTL∗ with mechanisms allowing one to compare vari-
ables at states arbitrarily far away from each other. In logical languages, these mechanisms are usually expressed by the
use of freeze quantifiers and register variables. The freeze mechanism allows one to store a value in a register and to test
later the value in the register with a current value. This operator is useful to compare values at distinct states of Kripke-like
structures and has found applications in many logical frameworks such as real-time logics, hybrid logics, and regular linear-
time logic LTL extended with Presburger constraints. However, it is well-known that the freeze operator can easily lead to
undecidability. Thus, a goal is to individuate weak and still interesting “freeze” mechanisms which may lead to decidable
and possibly tractable logics. For the logic GCCTL∗ , a possibility would be to permit atomic formulas of the form x−♦y � k,
or ♦y− x � k, or x−�y � k, or �y− x � k (k ∈N), where ♦y means “for some future value of y” and �y means “for each
future value of y”. Thus, for example, x−�y � 1 asserts that the future values of y remain below the current value of x. We
conjecture that for this extension, Theorem 14 still holds. Our intuition is that for the existential fragment of this extension,
model checking GCS might be solved by using an approach similar to the one proposed in [5] for model checking timed
automata against metric temporal logic without singular intervals.

Finally, there are other important questions left open in this paper. We have shown that it is possible to compute Pres-
burger representations for the sets of terminating, strong terminating, and fair states of a GCS. The same holds for the set of
states of a GCS satisfying a given E–GCCTL∗ formula. The possibility of computing these representations is crucially based
on Theorem 2, or, equivalently, on the possibility of computing an MG representation of the binary reachability relation of a
GCS. In particular, an elementary algorithm (for example, a singly exponential time algorithm) for constructing the finite set
of sample paths of Theorem 2 would lead to elementary algorithms for computing the above Presburger representations. On
the other hand, we are not able to give an upper bound on the time complexity of the proposed algorithm that computes
the set of sample paths (the algorithm is based on a fixpoint iteration whose termination is guaranteed by a suitable decid-
able well-quasi-ordering defined over the set of transitional MG). This means that our method cannot be trivially extended
in order to show that the above Presburger representations can be computed in elementary time/space. Moreover, we be-
lieve that answering these questions is not trivial, due to analogous questions for other classes of infinite-state formalisms.
For example, the computation of the finite set of sample paths is similar to the computation of the coverability graph of a
Petri net, and it is known that the size of the coverability graph can be non-primitive-recursive [15].

Appendix A

A.1. Proof of Theorem 2

In order to prove Theorem 2, we need additional preliminary results. Recall that for a set S , a pre-order  over S is
a reflexive and transitive (binary) relation on S . The pre-order  is a well-quasi-ordering if, additionally, for every infinite
sequence y0, y1, y2, . . . of elements of S , there exist indices i < j such that yi  y j .

Definition 20 (Pre-order on transitional MG). We define a pre-order  on transitional MG as follows: G  G ′ if either G ′ is
unsatisfiable, or for each edge u k−→ v of G , there is an edge in G ′ of the form u k′−→ v such that k′ � k. Note that G  G ′
implies Sat(G ′)⊆ Sat(G).

Definition 21 (Pre-order on finite paths of a GCS). Let S be a GCS. We denote by  S be the pre-order over the set of non-null
finite paths of S defined as follows: ℘  ℘′ if s(℘)= s(℘′), t(℘)= t(℘′), �G℘�K = �G℘′ �K , and G℘  G℘′ . Moreover, given
two finite sets P and P ′ of non-null finite paths of S , we write P !S P ′ iff for each ℘′ ∈ P ′ there is ℘ ∈ P such that
℘  S ℘′ . Note that !S is a pre-order.

Lemma 22. The pre-orders  and  S (for a GCS S) are well-quasi-orderings.

Proof. Since the set of K -bounded transitional MG is finite and the set of control points of a GCS S is finite, the result
easily follows from well-quasi-ordering of the relation �h (for a fixed h ∈ N) defined over the set of h-tuples of natural
numbers as (n1, . . . ,nh) �h (m1, . . . ,mh) if ni � mi for each 1 � i � h [29]. �
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Lemma 23. Let S be a GCS and ℘  S ℘′ . Then, for each non-null finite path ℘′′ of S such that s(℘′′)= t(℘)= t(℘′), it holds that
℘℘′′  S ℘′℘′′ .

Proof. Let ℘  S ℘′ and ℘′′ as in the statement of the lemma. By the definition of the composition operator and definition
of  , for all transitional MG G, G ′, G ′′ , G  G ′ implies G • G ′′  G ′ • G ′′ . Thus, since G℘  G℘′ (by hypothesis) and the
composition operator is associative, we obtain that G℘℘′′ = G℘ • G℘′′  G℘′ • G℘′′ = G℘′℘′′ . Moreover, since �G℘�K = �G℘′ �K

(by hypothesis), by Proposition 7, it follows that �G℘℘′′ �K = �G℘′℘′′ �K . Hence, the result follows. �
Lemma 24. Let S be a GCS and P1,P2, . . . be an infinite sequence of finite sets of non-null finite paths of S such that Pi+1 !S Pi
for each i � 1. Then, there is k � 1 such that Pk !S Pk+1 .

Proof. We assume the contrary and derive a contradiction. Hence, Pi+1 !S Pi and Pi 
!S Pi+1 for each i � 1. Then, we
deduce the following:

Claim. For each j > 1, there is ℘ j ∈P j such that for all i < j and ℘ ∈Pi , ℘ �S ℘ j .

Proof of the claim. assume the contrary and derive a contradiction. Then, there is j > 1 such that for each ℘ j ∈P j , there is
i < j and ℘i ∈ Pi so that ℘i  S ℘ j . Since P j−1 !S Pi for each i < j, it follows that for each ℘ j ∈ P j , there is ℘ ∈ P j−1 so
that ℘  S ℘ j . This means that P j−1 !S P j , which is a contradiction. �

By the claim above, we deduce the existence of an infinite sequence ℘1,℘2, . . . of non-null finite paths of S such that
℘i �S ℘ j for all 1 � i < j. Since  S is a well-quasi-ordering, we obtain a contradiction, and the result follows. �

Now, we can prove Theorem 2.

Theorem 2. Given a GCS S , one can compute a finite set PS of non-null finite paths of S such that: for each non-null finite path ℘′ of
S , there is a path ℘ ∈PS so that s(℘)= s(℘′), t(℘)= t(℘′), �G℘�K = �G℘′ �K , and �℘′ implies �℘ (hence, Sat(G℘′ )⊆ Sat(G℘)).

Proof. For each k � 1, let Pk be the finite set of non-null finite paths of S of length at most k. First, we prove the following.

Claim. Let k � 1. If Pk !S Pk+1 , then Pk !S Ph for each h � k+ 1.

Proof of the claim. let Pk !S Pk+1. It suffices to show that Pk+1 !S Pk+2 (recall that !S is a pre-order). Let ℘ ∈Pk+2. We
need to show that there is ℘′ ∈Pk+1 such that ℘′  S ℘ . If ℘ ∈Pk+1, the result is obvious. Otherwise, ℘ can be written in
the form ℘ = ℘k+1℘1 such that ℘k+1 ∈Pk+1 and |℘1| = 1. Since Pk !S Pk+1, there is a path ℘k ∈Pk such that ℘k  S ℘k+1.
Let ℘′ = ℘k℘1. Note that ℘′ is well-defined and ℘′ ∈Pk+1. Moreover, by Lemma 23, ℘′  ℘ . Hence, the result follows. �

Now, we can prove the theorem. Since Pk ⊆ Pk+1 for all k � 1, it holds that Pk+1 !S Pk for all k � 1. Hence, by
Lemma 24, it is defined the smallest k0 � 1 such that Pk0 !S Pk0+1. Note that k0 can be effectively computed. We set PS
to the computable finite set Pk0 . By the claim above, the definition of the pre-order !S , and Proposition 8, it follows that
PS satisfies the statement of the theorem, which concludes. �
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