Verification of gap-order constraint abstractions of counter systems ${ }^{\text {«r }}$

Laura Bozzelli ${ }^{\text {a,* }}$, Sophie Pinchinat ${ }^{\text {b }}$
${ }^{\text {a }}$ Technical University of Madrid (UPM), 28660 Boadilla del Monte, Madrid, Spain
${ }^{\text {b }}$ IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

ARTICLE INFO

Article history:

Received 7 November 2012
Received in revised form 20 November 2013
Accepted 2 December 2013
Communicated by P. Aziz Abdulla

Keywords:

Abstractions of counter systems
Temporal logics with Presburger constraints Model checking
Verification of infinite-state systems
Complexity and decidability issues

Abstract

We investigate verification problems for gap-order constraint systems (GCS), an (infinitelybranching) abstract model of counter machines, in which constraints (over \mathbb{Z}) between the variables of the source state and the target state of a transition are gap-order constraints (GC) [32]. GCS extend monotonicity constraint systems [7], integral relation automata [16], and constraint automata in [19]. First, we address termination and fairness analysis of GCS. Since GCS are infinitely-branching, termination does not imply strong termination, i.e. the existence of an upper bound on the lengths of the runs from a given state. We show that the termination problem, the strong termination problem, and the fairness problem for GCS (the latter consisting in checking the existence of infinite runs in GCS satisfying acceptance conditions à la Büchi) are decidable and PsPAcE-complete. Moreover, for each control location of the given GCS, one can build a GC representation of the set of counter variable valuations from which termination (resp., strong termination, resp., fairness) does not hold (resp., does not hold, resp., does hold). Next, we consider a constrained branching-time logic, GCCTL*, obtained by enriching CTL* with GC, thus enabling expressive properties and subsuming the setting of [16]. We establish that, while model-checking GCS against the universal fragment of GCCTL* is undecidable, model-checking against the existential fragment, and satisfiability of both the universal and existential fragments are instead decidable and PsPACE-complete (note that the two fragments are not dual since GC are not closed under negation). Moreover, our results imply PSPACE-completeness of known verification problems that were shown to be decidable in [16] with no elementary upper bounds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Abstractions of counter systems. One standard approach in formal analysis is the abstraction-based one: the analysis is performed on an abstraction of the given system, specified in some weak computational formalism for which checking the properties of interest is decidable. The relation between the abstraction and the concrete system is usually specified as a semantic over-approximation. This ensures that the approach is conservative, by giving a decision procedure that (for correct systems) is sound but in general incomplete. Such a methodology has been applied in particular to the verification of counter systems which represent a widely investigated complete computational model, used for instance to model broadcast

[^0]protocols [23] and programs with pointer variables [11]. Counter systems extend finite-state systems by allowing a finite set of counter variables, with each counter taking values from the infinite domain of integers. Moreover, constraints on the transitions specify the relation between the variables of the target state and the variables of the source state. Though simple problems like reachability are already undecidable for 2-counter Minsky machines [28], interesting abstractions of counter systems have been studied, for which expressive classes of verification problems have been shown to be decidable. Many of these abstractions are in fact restrictions: examples include Petri nets [29], reversal-bounded counter machines [25], and flat counter systems [10,17]. Genuine abstractions are obtained by approximating counting operations by non-functional fragments of Presburger constraints between the variables of the target state and the variables of the source state. Examples include the class of Monotonicity Constraint Systems (MCS) [7] and its variants, like constraint automata in [19], and integral relation automata (IRA) [16], for which the (monotonicity) constraints (MC) are boolean combinations of inequalities of the form $u<v$ or $u \leqslant v$, where u and v range over variables or integer constants. MCS and their subclasses (namely, sizechange systems) have found important applications for automated termination proofs of functional programs (see e.g. [7,8]). Richer classes of non-functional fragments of Presburger constraints have been investigated, e.g. difference bound constraints [18], and their extension, namely octagon relations [13], where it is shown that the transitive closure of a single constraint is Presburger definable (these results are useful for the verification of safety properties for flat counter systems). Note that difference bound constraints over (real-valued or integer-valued) variables (clocks) are also used as guards of transitions in timed automata [4]. Size-change systems extended with difference bound constraints over the natural number domain have been investigated in [6]: there, the atomic difference constraints are of the form $x-y^{\prime} \geqslant c$, where c is an integer constant, and y^{\prime} (resp., x) range over the variables of the target (resp., source) state. Termination for this class of systems is shown to be undecidable. To regain decidability, the authors consider a restriction, where at most one bound per target variable in each transition is allowed.

Temporal logics with Presburger constraints. An important classification of temporal logics is based on the underlying nature of time. In the linear-time setting, formulas are interpreted over linear sequences (corresponding to single computations of the system), and temporal operators are provided for describing the ordering of events along a single computation path. In the branching-time setting, formulas are instead interpreted over computation trees, which describe all the possible computations of the system from a designated initial state. Branching-time temporal logics are in general more expressive than linear-time temporal logics since they provide both temporal operators for describing properties of a path in the computation tree, and path quantifiers for describing the branching structure in computation trees.

In order to specify behavioral properties of counter systems, standard propositional linear-time temporal logics (like LTL [30]) and propositional branching-time temporal logics (like CTL* [22]) can be extended by replacing atomic propositions with Presburger constraints, which usually refer to the values of the (counter) variables at two consecutive states along a computation path (run). These enriched temporal logics allow to specify properties of counter systems that go beyond simple reachability. Hence, basic decision problems are generally undecidable. However, decidability has been established for various interesting fragments. We focus on fragments where the constraint language includes MC. For the linear-time setting, many decidable fragments of full Presburger LTL have been obtained either by restricting the underlying constraint language, see e.g. [19,21], or by restricting the logical language, see e.g. [12,17]. In particular, satisfiability and model checking (w.r.t. constraint automata) of standard LTL extended with MC are decidable and Pspace-complete [19] (which matches the complexity of LTL). For the branching-time setting, to the best of our knowledge, very few decidability results are known. The extension of standard CTL* with MC, here denoted by MCCTL*, has been introduced in [16], where it is shown that model checking IRA against its existential and universal fragments is decidable (by contrast, model checking for the full logic MCCTL* is undecidable, even for its CTL-like fragment ${ }^{1}$). As done in [21], adding periodicity constraints and the ability for a fixed $k \geqslant 1$, to compare the variable values at states of a run at distance at most k, decidability of the above problems is preserved [14]. However, no elementary upper bounds for these problems are known [16,14]. Moreover, it is shown in [20] that model checking a subclass of finitely-branching flat counter machines w.r.t. full Presburger CTL* is decidable. In this subclass of systems, counting acceleration over every cycle in the control graph is Presburger definable. Thus, since the relation between the variables at the current and next state is functional and the control graph is flat (i.e., it contains only simple cycles), Presburger definability can be extended in a natural way to the set of states satisfying a given formula.

Our contribution. We investigate verification problems for an (infinitely-branching) abstract model of counter machines, we call gap-order constraint systems (GCS), in which constraints (over \mathbb{Z}) between the variables of the source state and the target state of a transition are (transitional) gap-order constraints (GC) [32]. These constraints are positive boolean combinations of inequalities of the form $u-v \geqslant k$, where u, v range over variables and integer constants, and k is a natural number. Thus, GC can express simple relations on variables such as lower and upper bounds on the values of individual variables, and equality, and gaps (minimal differences) between values of pairs of variables. GC have been introduced in the field of constraint query languages (constraint Datalog) for deductive databases [32], and also have found applications in the analysis of safety properties for parameterized systems [1,2], and for determining state invariants in counter systems [24]. As pointed

[^1]out in [2], using GC for expressing the enabling conditions of transitions allow to handle a large class of protocols, where the behavior depends on the relative ordering of values among variables, rather than the actual values of these variables.

GCS strictly extend IRA (and its variants, namely, MCS and the constraint automata in [19]). This because GC extend $M C$ and, differently from MC, are closed under existential quantification (but not under negation). Moreover, the parameterized systems investigated in [1,2] correspond to the parameterized version of GCS, where a system consists of an arbitrary number of processes which are instances of the same GCS (additionally, transitions of a process can specify global conditions which check the current local states and variables of all, or some of, other active processes). This framework is useful to verify correctness regardless of the number of processes. However, basic decision problems like reachability for the parameterized version of GCS are undecidable [1,2]. Decidability of reachability can be regained for a restricted class of parameterized systems in which processes have at most one integer local variable [1,2].

Note that if we extend the constraint language of GCS by allowing either negation, or, equivalently, constraints of the form $u-v \geqslant-k$, with $k \in \mathbb{N}$, then the resulting class of systems can trivially emulate Minsky counter machines, leading to undecidable basic decision problems. Moreover, note that GC extended with constraints of the form $u-v \geqslant-k$, with $k \in \mathbb{N}$, correspond to standard diagonal bound constraints [4,18]. As mentioned above, these constraints are used as guards in timed automata [4], where (integer-valued or real-valued) variables (clocks) record the elapsed time among events. However, guards in timed automata express constraints only over the clocks of the source state, and clocks are synchronized, i.e., they always advance at same speed. Hence, timed automata with integer-valued clocks and GCS are incomparable formalisms.

In this paper, first we address termination analysis of GCS. Since GCS are infinitely-branching, termination (i.e., the nonexistence of states from which there is an infinite run) does not imply the existence of an upper bound on the lengths of the runs from a given state. ${ }^{2}$ The fulfillment of this last condition, we call strong termination, can be a necessary requirement in some contexts, such as running-time analysis [3] for infinitely-branching formalisms. Strong termination has been addressed in [9]. There, it is shown that for the subclass of MCS where integer constants are disallowed except for 0 , checking strong termination is PsPACE-complete. For termination and strong termination of GCS, we establish the following results.

1. For each control location of the given GCS, the set of variable valuations from which strong termination (resp., termination) does not hold is effectively GC representable;
2. Checking strong termination (resp., termination) and strong termination (resp., termination) from a designated state in GCS are decidable and PsPACE-complete.

The proposed approach is as follows. First, we consider a subclass of GCS, called simple GCS: we establish our first result for simple GCS, and provide two polynomial-time checkable conditions for verifying strong termination and termination in simple GCS. Second, for a given unrestricted $\operatorname{GCS} \mathcal{S}$, we show that one can construct a finite family \mathcal{F} of simple GCS such that the union of the sets of strongly-terminating (resp., terminating) states of the single components in \mathcal{F} correspond to the set of strongly-terminating (resp., terminating) states of \mathcal{S}. Then, we show that it is possible to compute separately and in exponential time suitable abstractions of the simple GCS in \mathcal{F} (we are not able to give an upper bound on the size of \mathcal{F}), which preserve the fulfillment of the above polynomial-time checkable conditions for simple GCS. This leads to exponential-time procedures for solving strong termination (resp., termination) and strong termination (resp., termination) from a designated state in GCS. Finally, we show that in fact, the considered problems are PsPACE-complete. A potential application of our results on strong termination of GCS is to use them as a basic tool in running-time analysis (based on GCS abstraction) of infinitely-branching computational systems. Note that concurrent open systems are usually infinitelybranching because of the ongoing interaction with an unpredictable environment, and GCS can be used to abstractly model such an interaction. Moreover, note that our results extend the known results about termination and strong termination of MCS [9,8] in two directions: (i) we consider a strict extension of MCS, namely GCS, and (ii) our symbolic algorithm builds a GC representation of the set of non-strongly-terminating states (resp., non-terminating states), a very substantial information compared to the algorithm in [9,8]. For example, by using such a decidable finite representation, one can check whether two GCS have the same set of strongly-terminating (resp., terminating) states.

We also investigate the fairness problem for GCS (which is crucial for the verification of liveness properties), that is checking the existence of infinite runs satisfying acceptance conditions à la Büchi over the set of control locations. We show that this problem is decidable and PsPACE-complete; moreover, for the given GCS, one can compute a GC representation of the set of states from which there is a 'fair' infinite run. The proposed approach is a generalization of that used for solving non-termination of GCS.

Finally, we address verification problems of GCS against a strict extension, denoted by GCCTL*, of the logic MCCTL* (given in complete positive normal form) [16] obtained by adding transitional GC. Note that while MCCTL* is closed under negation, its strict extension GCCTL* is not (if we allow negation, the resulting logic would be undecidable also for small fragments). We show that while model-checking GCS against the universal fragment of GCCTL* is undecidable, model checking GCS against the existential fragment of GCCTL*, and satisfiability of both the existential and universal fragments of GCCTL* are instead decidable and PsPACE-complete (which matches the complexity of finite-state model checking and

[^2]satisfiability for the existential and universal fragments of standard CTL* [27]). Note that the existential and universal fragments of GCCTL* are not dual. Moreover, for a given GCS \mathcal{S} and existential GCCTL* formula φ, the set of states in \mathcal{S} satisfying φ is effectively GC representable. Since the existential fragment of GCCTL* subsumes the existential fragment of MCCTL*, and the existential and universal fragments of MCCTL* are dual, our results imply PsPACE-completeness for model-checking (w.r.t. IRA or GCS) of both the existential and universal fragments of MCCTL*. Hence, in particular, we solve complexity issues left open in [16] (see also [14]).

The rest of this paper is organized as follows. In Section 2, we introduce the framework of GCS. In Section 3, we recall some basic polynomial-time computable operations on GC. Moreover, we introduce a sound and complete (w.r.t. satisfiability) approximation scheme of GC, and give constructive results on the reachability relation in GCS. In Section 4, we address termination, strong termination, and fairness for the class of simple GCS. Then, in Section 5, we extend the results of Section 4 to the general framework of GCS. Next, in Section 6, we introduce the logic GCCTL* and investigate decidability and complexity issues for satisfiability and model checking (w.r.t. GCS) of GCCTL* and its existential and universal fragments. Finally, in Section 7, we give some concluding remarks.

2. Gap-order constraint systems

Let \mathbb{Z} be the set of integers and \mathbb{N} be the set of natural numbers. Throughout this paper, we fix a finite set Var $=$ $\left\{x_{1}, \ldots, x_{r}\right\}$ of variables, a finite set of integer constants Const $\subseteq \mathbb{Z}$ such that $0 \in$ Const, and a primed copy of Var, $\operatorname{Var}^{\prime}=$ $\left\{x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right\}$. For an arbitrary finite set of variables V, an (integer) valuation over V is a mapping of the form $v: V \rightarrow \mathbb{Z}$, assigning to each variable in V an integer value. For $V^{\prime} \subseteq V, v_{V^{\prime}}$ denotes the restriction of v to V^{\prime}. For two valuations v and ν^{\prime} over Var, the composition of v and ν^{\prime}, written $\nu \oplus \nu^{\prime}$, is the valuation over $\operatorname{Var} \cup \operatorname{Var} r^{\prime}$ which behaves like v over Var and like ν^{\prime} over $\operatorname{Var}^{\prime}$. Formally, $\left(\nu \oplus \nu^{\prime}\right)\left(x_{i}\right)=\nu\left(x_{i}\right)$ and $\left(\nu \oplus \nu^{\prime}\right)\left(x_{i}^{\prime}\right)=v^{\prime}\left(x_{i}\right)$ for all $1 \leqslant i \leqslant r$.

Notation. In the following, for a valuation $v: V \rightarrow \mathbb{Z}$, we also consider the extension of v over the domain $V \cup \mathbb{Z}$ which behaves like v over V and it is the identity mapping over \mathbb{Z}. With a little abuse of notation, this extension of v is denoted still by v (in particular, $v(c)=c$ for all $c \in \mathbb{Z}$).

Definition 1. (See [32].) For a finite set V of variables, a (conjunctive) gap-order constraint (GC for short) over V (and Const) is a finite conjunction ξ of inequalities of the form $u-v \geqslant k$, where $u, v \in V \cup$ Const and $k \in \mathbb{N}$. W.l.o.g. we assume that for all $u, v \in V \cup$ Const, there is at most one conjunct in ξ of the form $u-v \geqslant k$ for some k. A valuation $v: V \rightarrow \mathbb{Z}$ satisfies ξ if for each conjunct $u-v \geqslant k$ of $\xi, v(u)-v(v) \geqslant k$. We denote by $\operatorname{Sat}(\xi)$ the set of such valuations. A transitional GC is a GC over Var $\cup \operatorname{Var}^{\prime}$.

We use graph representations to manipulate GC in terms of (gap-order) Monotonicity Graphs (MG for short) [16]. ${ }^{3}$ A different graph representation of GC can be found in [32].

Definition 2. (See [16].) For a finite set V of variables, a (gap-order) monotonicity graph (MG for short) over V (and Const) is a directed weighted graph G with set of vertices $V \cup$ Const and edges $u \xrightarrow{k} v$ labeled by natural numbers k, and such that for all vertices u and v, there is at most one edge from u to v. The set $\operatorname{Sat}(G)$ of solutions of G is the set of valuations v over V such that for each edge $u \xrightarrow{k} v$ in G, it holds that $v(u)-v(v) \geqslant k$. A transitional MG is an MG over $\operatorname{Var} \cup \operatorname{Var}^{\prime}$. GC and MG are equivalent formalisms since there is a trivial linear-time computable bijection assigning to each GC ξ an MG $G(\xi)$ such that $\operatorname{Sat}(G(\xi))=\operatorname{Sat}(\xi)$.

Definition 3. A gap-order constraint system (GCS) (over Var and Const) is a finite directed labeled graph \mathcal{S} such that each edge is labeled by a transitional GC. $Q(\mathcal{S})$ denotes the set of vertices in \mathcal{S}, called control points, and $E(\mathcal{S})$ the set of edges.

For a finite path \wp of a $\operatorname{GCS} \mathcal{S}, s(\wp)$ and $t(\wp)$ denote the source and target control points of \wp. For a finite path \wp and a path \wp^{\prime} such that $t(\wp)=s\left(\wp^{\prime}\right)$, the composition of \wp and \wp^{\prime}, written $\wp \wp^{\prime}$, is defined as usual.

The semantics of a GCS \mathcal{S} is given by an infinite directed graph $\llbracket \mathcal{S} \rrbracket$ defined as follows:

- the vertices of $\llbracket \mathcal{S} \rrbracket$, called states of \mathcal{S}, are the pairs of the form (q, v), where q is a control point of \mathcal{S} and $v: \operatorname{Var} \rightarrow \mathbb{Z}$ is a valuation over Var;
- there is an edge in $\llbracket \mathcal{S} \rrbracket$ from (q, v) to $\left(q^{\prime}, v^{\prime}\right)$ iff there is a (labeled) edge in \mathcal{S} of the form $q \xrightarrow{\xi} q^{\prime}$ such that $v \oplus v^{\prime} \in$ $\operatorname{Sat}(\xi)$. We say that the edge of $\llbracket \mathcal{S} \rrbracket$ from (q, ν) to $\left(q^{\prime}, v^{\prime}\right)$ is an instance of the edge $q \xrightarrow{\xi} q^{\prime}$ of \mathcal{S}.

A path of $\llbracket \mathcal{S} \rrbracket$ is called a run of \mathcal{S}. The length $|\wp|$ (resp., $|\pi|$) of a path \wp (resp., run π) of \mathcal{S} is defined in the standard way. A non-null path (resp., non-null run) of \mathcal{S} is a path (resp., run) of \mathcal{S} of non-null length. Let $\wp=q_{0} \xrightarrow{\xi_{0}} q_{1} \xrightarrow{\xi_{1}} q_{2}, \ldots$

[^3]

Fig. 1. A GCS.
be a path of \mathcal{S}. A run π of \mathcal{S} is an instance of \wp if π is of the form $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \rightarrow\left(q_{2}, v_{2}\right), \ldots$ and for each $i,\left(q_{i}, v_{i}\right) \rightarrow\left(q_{i+1}, v_{i+1}\right)$ is an instance of $q_{i} \xrightarrow{\xi_{i}} q_{i+1}$. Given $F \subseteq Q(\mathcal{S})$, an infinite run $\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \rightarrow \ldots$ of \mathcal{S} is fair w.r.t. F if for infinitely many $i \geqslant 0, q_{i} \in F$. A state s of \mathcal{S} is terminating if there is no infinite run of \mathcal{S} starting from s. A state s of \mathcal{S} is unbounded if the set of lengths of the finite runs of \mathcal{S} starting from s is unbounded (equivalently, infinite). A state s of \mathcal{S} is strongly terminating if it is not unbounded. Since $\llbracket \mathcal{S} \rrbracket$ may be infinitely-branching, termination and strong termination are distinct concepts. In particular, strong termination implies termination, but the vice-versa in general does not hold. This is illustrated by the following example.

Example 1. Fig. 1 depicts a GCS \mathcal{S} consisting of a unique control point q and two self-loops. We deduce that each state s of \mathcal{S} is terminating. For this, we assume the contrary and derive a contradiction. Hence, there is an infinite run $\pi=\left(q, v_{0}\right) \rightarrow$ $\left(q, \nu_{1}\right) \rightarrow \ldots$ of \mathcal{S}. By construction, for all $i \geqslant 0$, the following hold: $\left(\nu\left(x_{1}\right), \nu\left(x_{2}\right)\right) \in \mathbb{N} \times \mathbb{N}$, and either $\nu_{i+1}\left(x_{1}\right)<\nu_{i}\left(x_{1}\right)$, or $v_{i+1}\left(x_{1}\right)=v_{i}\left(x_{1}\right)$ and $v_{i+1}\left(x_{2}\right)<v_{i}\left(x_{2}\right)$. Hence, along the run π, the pair (x_{1}, x_{2}) decreases strictly w.r.t. the lexicographic order over $\mathbb{N} \times \mathbb{N}$. Since the latter is a well-founded order, π cannot be infinite. Thus, each state of \mathcal{S} is terminating. On the other hand, one can easily check that each state $s=(q, v)$ with $\nu\left(x_{1}\right)>0$ and $v\left(x_{2}\right) \geqslant 0$ is unbounded. Indeed, for each $k \geqslant 2$, a run from s of length k can be obtained as follows: for the first step of the run, we use the left edge in Fig. 1, obtaining a state $s^{\prime}=\left(q, v^{\prime}\right)$, where $v^{\prime}\left(x_{1}\right)=v\left(x_{1}\right)-1$ and $v^{\prime}\left(x_{2}\right)>k$. Then, the successive $k-1$ steps of the run are obtained as instances of the right edge in Fig. 1.

Investigated problems. Let \mathcal{S} be a GCS. We denote by $\operatorname{Inf}_{\mathcal{S}}$ the set of non-terminating states of \mathcal{S} and by Unb $\mathcal{S}_{\mathcal{S}}$ the set of unbounded states of \mathcal{S}. Note that $\operatorname{Inf}_{\mathcal{S}} \subseteq U n b_{\mathcal{S}}$. Moreover, for a set F of control points of \mathcal{S}, we denote by $\operatorname{Inf} \mathcal{S}_{\mathcal{S}, F}$ the set of states of \mathcal{S} from which there is an infinite run that is fair w.r.t. F. Note that $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}=\operatorname{Inf} \mathcal{S}_{\mathcal{S}, \mathrm{Q}(\mathcal{S})}$.

Definition 4 (MG-representability of sets of states). A set U of states of a GCS \mathcal{S} is MG representable if there is a family $\left\{\mathcal{G}_{q}\right\}_{q \in Q(\mathcal{S})}$ of finite sets of MG over Var such that $\bigcup_{G \in \mathcal{G}_{q}} \operatorname{Sat}(G)=\{v \mid(q, v) \in U\}$ for each $q \in Q(\mathcal{S})$.

In other terms, a set U of states of a GCS \mathcal{S} is MG representable if for each control point $q \in Q(\mathcal{S})$, the set of valuations v over Var such that $(q, v) \in U$ corresponds to the set of valuations satisfying some finite disjunction of GC over Var. In this paper, we study some verification questions for GCS. In particular, we consider the following decision problems:

- Termination Problem: given a GCS \mathcal{S}, is the set $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ empty?
- Strong Termination Problem: given a GCS \mathcal{S}, is the set Unb $\mathcal{S}_{\mathcal{S}}$ empty?
- Fairness Problem: given a GCS \mathcal{S} and $F \subseteq Q(\mathcal{S})$, is the set $\operatorname{Inf}_{\mathcal{S}, F}$ non-empty?

We will show that the problems above are all PsPACE-complete and the sets $\operatorname{Unb}_{\mathcal{S}}$ and $\operatorname{Inf} \mathcal{S}_{\mathcal{F}}$ for a given GCS \mathcal{S} and $F \subseteq Q(\mathcal{S})$, are effectively MG representable. Moreover, for each of the mentioned problems \mathfrak{P}, we also investigate the version of \mathfrak{P} w.r.t. a designated state and the version of \mathfrak{P} w.r.t. a designated control point, which are defined in the obvious way. For example, the strong termination problem w.r.t. a designated state (resp., a control point) is checking, for a given GCS \mathcal{S} and state s of \mathcal{S} (resp., control point $q \in Q(\mathcal{S})$), whether $s \notin U n b_{\mathcal{S}}$ (resp., $(q, v) \notin U n b_{\mathcal{S}}$ for every valuation v over Var). We conclude this section by observing two facts.

Proposition 1. Let \mathfrak{P} be the termination (resp., strong termination, resp., fairness) problem. Then, the version of \mathfrak{P} w.r.t. a designated state can be reduced in linear-time to the version of \mathfrak{P} w.r.t. a control point.

Proof. Fix a GCS \mathcal{S}, a state $\left(q_{0}, \nu_{0}\right)$ of \mathcal{S}, and $F \subseteq Q(\mathcal{S})$. W.l.o.g. we can assume that $v_{0}(x) \in$ Const for each $x \in \operatorname{Var}$ (otherwise, we extend Const by including the integers $\nu_{0}(x)$ with $x \in \operatorname{Var}$). Let $\xi_{=}$be the GC given by $\bigwedge_{x \in \operatorname{Var}} x=\nu_{0}(x)$, and $q_{0}^{\prime} \notin Q(\mathcal{S})$ be a fresh control point. We construct a new GCS \mathcal{S}_{0} as follows: \mathcal{S}_{0} is obtained from \mathcal{S} by adding for each edge of \mathcal{S} of the form $q_{0} \xrightarrow{\xi} q$, the edge $q_{0}^{\prime} \xrightarrow{\xi \wedge \xi=} q$. By construction, it easily follows that: (i) $\left(q_{0}, v_{0}\right) \notin \operatorname{Inf} \mathcal{\mathcal { S }}$ iff $\left(q_{0}^{\prime}, v\right) \notin \operatorname{Inf} \mathcal{S}_{0}$ for each valuation v over Var, (ii) $\left(q_{0}, \nu_{0}\right) \notin U n b_{\mathcal{S}}$ iff $\left(q_{0}^{\prime}, \nu\right) \notin U n b_{\mathcal{S}_{0}}$ for each valuation v over Var, and (iii) $\left(q_{0}, \nu_{0}\right) \in \operatorname{Inf} \mathcal{S}, F$ iff $\left(q_{0}^{\prime}, v\right) \in \operatorname{Inf} \mathcal{S}_{0}, F$ for some valuation v over Var. Hence, the result follows.

Proposition 2. The termination problem, the strong termination problem, the fairness problem, and their versions w.r.t. a designated state and w.r.t. a control point are all PsPACE-hard.

Proof. It is known that for Boolean Programs [26], termination and termination w.r.t. a designated state are Pspace-complete [26]. Since GCS subsume Boolean Programs and Boolean Programs are finitely-branching (hence, for these systems, strong
termination corresponds to termination), by Proposition 1, it follows that the termination problem and the strong termination problem for GCS, and their versions w.r.t. a designated state and w.r.t. a control point are Pspace-hard. For the fairness problem and its versions w.r.t. a designated state and w.r.t. a control point, it suffices to observe that the fairness problem subsumes the dual of the termination problem and PSPACE $=$ coPsPACE .

Remark 1. For the ease of presentation, we do not allow disjunction in the gap-order constraints labeling the edges of a GCS. Note that disjunctions of (conjunctive) GC can be emulated by multiple edges from a given source control point to a given target control point. Even if the disjunctive normal form of an arbitrary gap-order constraint ξ may be of size singly exponential in the size of ξ, our main results (see Theorems 8,9 , and 13 in the rest of the paper) can be trivially generalized to GCS whose edges are labeled by arbitrary gap-order constraints.

Convention. We will use MG representations to manipulate (conjunctive) GC; therefore, we assume that the edge-labels in GCS are transitional MG.

3. Preliminary results

This section is organized as follows. First, in Section 3.1, we recall some basic operations on MG [16] which can be computed in polynomial time. Then, in Section 3.2, we define a sound and complete (w.r.t. satisfiability) approximation scheme of MG and show that the basic operations on MG preserve soundness and completeness of this approximation. Finally, in Section 3.3, we give constructive results on the reachability relation in GCS.

3.1. Known properties of monotonicity graphs

Let G be an MG over V. We say that G is satisfiable if $\operatorname{Sat}(G) \neq \emptyset$. For $V^{\prime} \subseteq V$, the restriction of G to V^{\prime}, written $G_{V^{\prime}}$, is the MG over V^{\prime} given by the subgraph of G whose set of vertices is $V^{\prime} \cup$ Const. For all vertices u, v of G, we denote by $p_{G}(u, v)$ the least upper bound (possibly ∞) of the weight sums on all paths in G from u to v (we set $p_{G}(u, v)=-\infty$ if there is no such a path). The MG G is normalized if the following hold:

- for all vertices u, v of G, if $p_{G}(u, v)>-\infty$, then $p_{G}(u, v) \neq \infty$ and $u \xrightarrow{p_{G}(u, v)} v$ is an edge of G;
- for all constants $c_{1}, c_{2} \in$ Const, $p_{G}\left(c_{1}, c_{2}\right) \leqslant c_{1}-c_{2}$.

The following two propositions (Propositions 3 and 4) summarize some known basic properties of MG [16] (in particular, checking satisfiability of MG or, equivalently, GC can be done in polynomial time).

Proposition 3. (See [16].) An MG G is satisfiable $\Leftrightarrow G$ contains no loop with positive weight sum and for all c_{1}, $c_{2} \in$ Const, $p_{G}\left(c_{1}, c_{2}\right) \leqslant c_{1}-c_{2}$ (this can be checked in polynomial time).

Definition 5 (Closure of MG). (See [16].) For a satisfiable MG G over V, the closure of G, denoted by \bar{G}, is the MG over V defined as follows: for all vertices $u, v \in V \cup$ Const, there is an edge $u \xrightarrow{k} v$ in \bar{G} iff $p_{G}(u, v)>-\infty$ and $k=p_{G}(u, v)$ (note that since G is satisfiable, by Proposition $\left.3, p_{G}(u, v) \neq \infty\right)$. Moreover, for all unsatisfiable MG G over V, we use a unique closure corresponding to some MG $G_{\text {nil }}$ over V such that $\left(G_{\text {nil }}\right)_{\emptyset}$ is unsatisfiable (recall that $\left(G_{n i l}\right)_{\emptyset}$ denotes the MG given by the subgraph of $G_{\text {nil }}$ whose set of vertices is Const). As for satisfiable MG, the closure of an unsatisfiable MG G is denoted by \bar{G}.

Proposition 4. (See [16].) Let G be an MG over V. Then:

1. If G is normalized and $V^{\prime} \subseteq V$, then G is satisfiable and every solution of $G_{V^{\prime}}$ can be extended to a whole solution of G.
2. If G is satisfiable, then its closure \bar{G} can be computed in polynomial time. Moreover, \bar{G} is normalized and $\operatorname{Sat}(\bar{G})=\operatorname{Sat}(G)$.

We conclude this subsection by recalling some effective operations on MG which can be computed in polynomial time. Let $\operatorname{Var}^{\prime \prime}=\left\{x_{1}^{\prime \prime}, \ldots, x_{r}^{\prime \prime}\right\}$ be an additional copy of Var $=\left\{x_{1} \ldots, x_{r}\right\}$.

Definition 6. (See [16].) Let G be an MG over V and G^{\prime} be an MG over V^{\prime}.

1. Projection: if $V^{\prime} \subseteq V$, the projection of G over V^{\prime} is the MG given by $(\bar{G})_{V^{\prime}}$.
2. Intersection: the intersection $G \sqcap G^{\prime}$ of G and G^{\prime} is the MG over $V \cup V^{\prime}$ defined as follows: $u \xrightarrow{k} v$ is an edge of $G \sqcap G^{\prime}$ iff either (1) $u \xrightarrow{k} v$ is an edge of G (resp., G^{\prime}) and there is no edge from u to v in G^{\prime} (resp., G), or (2) $k=\max \left(\left\{k^{\prime}, k^{\prime \prime}\right\}\right)$, $u \xrightarrow{k^{\prime}} v$ is an edge of G and $u \xrightarrow{k^{\prime \prime}} v$ is an edge of G^{\prime}.

Fig. 2. A transitional MG G, its closure \bar{G}, and the composition $G \bullet G$.
3. Composition: assume that G and G^{\prime} are two transitional MG. Let $G^{\prime \prime}$ be obtained from G^{\prime} by renaming any variable x_{i}^{\prime} into $x_{i}^{\prime \prime}$ and x_{i} into x_{i}^{\prime}. The composition $G \bullet G^{\prime}$ of G and G^{\prime} is the transitional MG obtained from the projection of $G \sqcap G^{\prime \prime}$ over Var \cup Var" by renaming any variable $x_{i}^{\prime \prime}$ into x_{i}^{\prime}.

Fig. 2 depicts a satisfiable transitional MG, its closure \bar{G}, and the composition $G \bullet G$. As we will see in Section 3.3, the composition operator allows to capture the binary reachability relation in a GCS for a fixed non-null finite path in the control graph. By Definition 6 and Proposition 4, we easily obtain the following known result [16], which essentially asserts that MG (or, equivalently, GC) are closed under intersection and existential variable quantification.

Proposition 5. (See [16].) Let G be an MG over V and G^{\prime} be an MG over V^{\prime}.

1. Projection: if G^{\prime} is the projection of G over V^{\prime}, then for $v^{\prime}: V^{\prime} \rightarrow \mathbb{Z}, v^{\prime} \in \operatorname{Sat}\left(G^{\prime}\right)$ if and only if $\nu^{\prime}=\left.v\right|_{V^{\prime}}$ for some $v \in \operatorname{Sat}(G)$.
2. Intersection: for $v: V \cup V^{\prime} \rightarrow \mathbb{Z}, v \in \operatorname{Sat}\left(G \sqcap G^{\prime}\right)$ if and only if $\left.\nu\right|_{V} \in \operatorname{Sat}(G)$ and $\left.\nu\right|_{V^{\prime}} \in \operatorname{Sat}\left(G^{\prime}\right)$. Hence, for $V=V^{\prime}$, Sat $\left(G \sqcap G^{\prime}\right)=$ $\operatorname{Sat}(G) \cap \operatorname{Sat}\left(G^{\prime}\right)$.
3. Composition: assume that G and G^{\prime} are transitional MG. Then, for all $v, v^{\prime}: \operatorname{Var} \rightarrow \mathbb{Z} . v \oplus \nu^{\prime} \in \operatorname{Sat}\left(G \bullet G^{\prime}\right)$ if and only if $\nu \oplus \nu^{\prime \prime} \in \operatorname{Sat}(G)$ and $\nu^{\prime \prime} \oplus \nu^{\prime} \in \operatorname{Sat}\left(G^{\prime}\right)$ for some $\nu^{\prime \prime}: \operatorname{Var} \rightarrow \mathbb{Z}$. Moreover, the composition operator \bullet is associative.

3.2. Approximation scheme of monotonicity graphs

Note that for the fixed sets Var and Const of variables and constants, the class of transitional MG is infinite (since the edge-weights are arbitrary natural numbers). In this subsection, we introduce a sound and complete (w.r.t. satisfiability) finite over-approximation scheme of (transitional) MG. The latter is based on the use of a cut-off value K for finitely abstracting the edge-weights (gaps) in MG.

In the rest of this paper, we denote by K the positive natural number given by

$$
K \stackrel{\text { def }}{=} \max \left(\left\{\left|c_{1}-c_{2}\right|+1 \mid c_{1}, c_{2} \in \text { Const }\right\}\right)
$$

that is the maximum distance between the constants in Const plus one. For each $h \in \mathbb{N}$, we denote by $\lfloor h\rfloor_{K}$ the minimum between h and K.

Definition 7 (K-bounded approximation). An MG G is K-bounded if the weights of the edges of G are bounded by K. For an MG G over V, its K-bounded approximation, denoted by $\lfloor G\rfloor_{K}$, is the K-bounded MG over V obtained from G by replacing each edge-weight h of G with $\lfloor h\rfloor_{K}$. For a set \mathcal{G} of MG, $\lfloor\mathcal{G}\rfloor_{K}$ denotes the set of K-bounded MG given by $\left\{\lfloor G\rfloor_{K} \mid G \in \mathcal{G}\right\}$. We extend the previous set operation to families of sets of MG in the obvious way. For a GCS \mathcal{S}, its K-bounded approximation $\lfloor\mathcal{S}\rfloor_{K}$ is the GCS obtained by replacing each MG of \mathcal{S} with its K-bounded approximation. For a set \mathcal{F} of GCS, $\lfloor\mathcal{F}\rfloor_{K}$ denotes the set $\left\{\lfloor\mathcal{S}\rfloor_{K} \mid \mathcal{S} \in \mathcal{F}\right\}$.

Note that each K-bounded transitional MG has at most $2|\operatorname{Var}|+\mid$ Const \mid vertices and for all vertices u and v, there is at most one edge from u to v, and this edge has the form $u \xrightarrow{h} v$, where $h=0,1, \ldots, K$. Hence, we obtain the following upper bound on the cardinality of the finite set of K-bounded transitional MG.

Remark 2. The number of K-bounded transitional MG is bounded by $(K+2)^{(2|V a r|+|C o n s t|)^{2}}$, that is singly exponential in the number of variables and constants and in the size of the binary encoding of the constants.

Now, we show that the K-bounded approximation scheme is sound and complete w.r.t. satisfiability, and basic operations on MG preserve soundness and completeness of this approximation. These results (Propositions 6 and 7) are crucial since they represent the basis for solving in an asymptotical optimal way the considered verification questions on GCS.

Proposition 6. For an MG G, G is satisfiable iff $\lfloor G\rfloor_{K}$ is satisfiable. Moreover, $\lfloor\bar{G}\rfloor_{K}=\left\lfloor\overline{[G\rfloor_{K}}\right\rfloor_{K}$.

Proof. By Proposition 3 and definition of K-bounded MG, it easily follows that G is satisfiable iff $\lfloor G\rfloor_{K}$ is satisfiable. It remains to show that $\lfloor\bar{G}\rfloor_{K}=\left\lfloor\overline{\lfloor G\rfloor_{K}}\right\rfloor_{K}$. If G is unsatisfiable, then $\lfloor G\rfloor_{K}$ is unsatisfiable as well. Hence, G and $\lfloor G\rfloor_{K}$ have the same closure, and the result holds in this case. Now, assume that G is satisfiable. From the first part of the proposition and Proposition $4(2),\lfloor\bar{G}\rfloor_{K}$ and $\left\lfloor\overline{[G\rfloor_{K}}\right\rfloor_{K}$ are both satisfiable. Thus, by definition of K-bounded MG it suffices to show the following:

Property 1: for each edge $u \xrightarrow{k} v$ of \bar{G}, there is an edge $u \xrightarrow{k^{\prime}} v$ of $\overline{[G\rfloor_{K}}$ such that $\lfloor k\rfloor_{K}=\left\lfloor k^{\prime}\right\rfloor_{K}$;
Property 2: for each edge $u \xrightarrow{k} v$ of $\overline{[G\rfloor_{K}}$, there is an edge $u \xrightarrow{k^{\prime}} v$ of \bar{G} such that $\lfloor k\rfloor_{K}=\left\lfloor k^{\prime}\right\rfloor_{K}$.
Proof of Property 1. Let $u \xrightarrow{k} v$ be an edge in \bar{G}. Then, $k=p_{G}(u, v)$. Thus, there is a path p of G from u to v whose weight sum is k. We distinguish two cases:

- p contains an edge of weight greater than or equal to K. Hence, $k \geqslant K$. By definition of $\lfloor G\rfloor_{K}$, there is a path of $\lfloor G\rfloor_{K}$ from u to v of weight sum greater than or equal to K. It follows that there is an edge $u \xrightarrow{k^{\prime}} v$ of $\overline{[G]_{K}}$ such that $k^{\prime} \geqslant K$. Since $\lfloor k\rfloor_{K}=\left\lfloor k^{\prime}\right\rfloor_{K}=K$, in this case Property 1 holds.
- p contains only edges of weight smaller than K. By definition of $\lfloor G\rfloor_{K}, p$ is also a path of $\lfloor G\rfloor_{K}$. Since $p_{\lfloor G\rfloor_{K}}(u, v) \leqslant$ $p_{G}(u, v)=k$ and the weight sum of p is $k, u \xrightarrow{k} v$ must be also an edge of $\overline{[G\rfloor_{K}}$, and Property 1 holds in this case as well.

Proof of Property 2. Let $u \xrightarrow{k} v$ be an edge in $\overline{[G]_{K}}$. By definitions of K-bounded MG and closure of a satisfiable MG, it follows that $u \xrightarrow{k^{\prime}} v$ is an edge of \bar{G} for some k^{\prime}. Recall that for an MG and vertices u and v, there is at most one edge from u to v. Thus, by Property 1, we obtain that $\lfloor k\rfloor_{K}=\left\lfloor k^{\prime}\right\rfloor_{K}=K$, and Property 2 follows. This concludes the proof of Proposition 6.

Proposition 7. For MG G and $G^{\prime},\left\lfloor G \sqcap G^{\prime}\right\rfloor_{K}=\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$. Moreover, if G and G^{\prime} are transitional, then $\left\lfloor G \bullet G^{\prime}\right\rfloor_{K}=\left\lfloor\lfloor G\rfloor_{K} \bullet\right.$ $\left.\left\lfloor G^{\prime}\right\rfloor_{K}\right\rfloor_{K}$.

Proof. First, we prove that $\left\lfloor G \sqcap G^{\prime}\right\rfloor_{K}=\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$. It suffices to show the following:
Property 1: for each edge $u \xrightarrow{k} v$ of $G \sqcap G^{\prime}$, there is an edge $u \xrightarrow{k^{\prime}} v$ of $\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$ such that $\lfloor k\rfloor_{K}=k^{\prime}$;
Property 2: for each edge $u \xrightarrow{k} v$ of $\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$, there is an edge $u \xrightarrow{k^{\prime}} v$ of $G \sqcap G^{\prime}$ such that $k=\left\lfloor k^{\prime}\right\rfloor_{K}$.
Proof of Property 1. Let $u \xrightarrow{k} v$ be an edge in $G \sqcap G^{\prime}$. By Definition 6 , there are three cases:

- $u \xrightarrow{k} v$ is an edge of G and there is no edge from u to v in G^{\prime}. It follows that $u \xrightarrow{\lfloor k\rfloor_{K}} v$ is an edge of $\lfloor G\rfloor_{K}$ and there is no edge from u to v in $\left\lfloor G^{\prime}\right\rfloor_{K}$. Hence, $u \xrightarrow{\lfloor k\rfloor_{K}} v$ is an edge of $\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$. Thus, in this case Property 1 holds.
- $u \xrightarrow{k} v$ is an edge of G^{\prime} and there is no edge from u to v in G. This case is similar to the previous one.
- G has an edge $u \xrightarrow{h} v, G^{\prime}$ has an edge $u \xrightarrow{h^{\prime}} v$, and $k=\max \left(\left\{h, h^{\prime}\right\}\right)$. It follows that there is an edge $u \xrightarrow{k^{\prime}} v$ of $\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$ with $k^{\prime}=\max \left(\left\{\lfloor h\rfloor_{K},\left\lfloor h^{\prime}\right\rfloor_{K}\right\}\right)$. Since $\left\lfloor\max \left(\left\{h, h^{\prime}\right\}\right)\right\rfloor_{K}=\max \left(\left\{\lfloor h\rfloor_{K},\left\lfloor h^{\prime}\right\rfloor_{K}\right\}\right)$, Property 1 holds in this case as well.

Proof of Property 2. Let $u \xrightarrow{k} v$ be an edge in $\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime}\right\rfloor_{K}$. Then, there must be an edge of $G \sqcap G^{\prime}$ of the form $u \xrightarrow{k^{\prime}} v$ for some k^{\prime}. Recall that for an MG and vertices u and v, there is at most one edge from u to v. Thus, by Property 1, we obtain that $k=\left\lfloor k^{\prime}\right\rfloor_{K}=K$, and Property 2 follows.

In order to conclude the proof of Proposition 7, it remains to show that for transitional MG G and $G^{\prime},\left\lfloor G \bullet G^{\prime}\right\rfloor_{K}=$ $\left\lfloor\lfloor G\rfloor_{K} \bullet\left\lfloor G^{\prime}\right\rfloor_{K}\right\rfloor_{K}$. Let $G^{\prime \prime}$ be obtained from G^{\prime} by renaming any variable x_{i}^{\prime} into $x_{i}^{\prime \prime}$ and x_{i} into x_{i}^{\prime}. By Definition 6 and definition of K-bounded MG, it suffices to prove that $\left\lfloor\overline{G \sqcap G^{\prime \prime}}\right\rfloor_{K}=\left\lfloor\overline{\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime \prime}\right\rfloor_{K}}\right\rfloor_{K}$. By Proposition 6 and the first part of Proposition 7, it holds that $\left\lfloor\overline{G \sqcap G^{\prime \prime}}\right\rfloor_{K}=\left\lfloor\overline{\left\lfloor G \sqcap G^{\prime \prime}\right\rfloor_{K}}\right\rfloor_{K}$ and $\left\lfloor G \sqcap G^{\prime \prime}\right\rfloor_{K}=\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime \prime}\right\rfloor_{K}$. Hence, $\left\lfloor\overline{G \sqcap G^{\prime \prime}}\right\rfloor_{K}=\left\lfloor\overline{\lfloor G\rfloor_{K} \sqcap\left\lfloor G^{\prime \prime}\right\rfloor_{K}}\right\rfloor_{K}$, which concludes the proof of Proposition 7.

3.3. Results on the reachability relation in GCS

In this subsection, we give constructive results on the reachability relation in GCS.

Definition 8 (Reachability relation for a finite path). Let \mathcal{S} be a GCS. For a finite path \wp of \mathcal{S}, the reachability relation w.r.t. \wp, denoted by \rightsquigarrow_{\wp}, is the binary relation on the set of valuations over Var defined as follows: for all $\nu, \nu^{\prime}: \operatorname{Var} \rightarrow \mathbb{Z}, \nu m_{\wp} \nu^{\prime}$ iff
there is a run of \mathcal{S} from $(s(\wp), \nu)$ to $\left(t(\wp), \nu^{\prime}\right)$ which is an instance of the path \wp. For a transitional MG G, G characterizes the reachability relation \rightsquigarrow_{\wp} iff $\operatorname{Sat}(G)=\left\{\nu \oplus \nu^{\prime} \mid \nu \rightsquigarrow_{\wp} \nu^{\prime}\right\}$. A finite path \wp of \mathcal{S} is satisfiable if there is a run which is an instance of \wp (i.e., there are valuations v and ν^{\prime} such that $v \rightsquigarrow_{\wp} \nu^{\prime}$).

Fix a GCS \mathcal{S}. We associate to each non-null finite path \wp of \mathcal{S} a transitional MG G_{\wp} and a transitional K-bounded MG $G^{b d}$, defined by induction on \wp as follows:

- $\wp=q \xrightarrow{G} q^{\prime}: G_{\wp} \stackrel{\text { def }}{=} G$ and $G_{\wp} \stackrel{\text { def }}{=}\lfloor G\rfloor_{K}$;
$\bullet \wp=\wp^{\prime} \wp^{\prime \prime},\left|\wp^{\prime}\right|>0$, and $\wp^{\prime \prime}=q \xrightarrow{G} q^{\prime}: G_{\wp} \stackrel{\text { def }}{=} G_{\wp^{\prime}} \bullet G$ and $G_{\wp}^{b d} \stackrel{\text { def }}{=}\left\lfloor G_{\wp^{\prime}}^{b d} \bullet\lfloor G\rfloor_{K}\right\rfloor_{K}$.
Note that G_{\wp} is the composition of the transitional MG along the edges of \wp. By a straightforward induction on the length of the path \wp and by using Propositions 5 and 7, we obtain the following result.

Proposition 8. For a non-null finite path \wp of \mathcal{S}, $G_{\wp}^{b d}=\left\lfloor G_{\wp}\right\rfloor_{K}$ and G_{\wp} characterizes the reachability relation \rightsquigarrow_{\wp}.
For the given GCS \mathcal{S}, define $\mathcal{G}_{\mathcal{S}}^{K}$ as

$$
\mathcal{G}_{\mathcal{S}}^{K} \stackrel{\text { def }}{=}\left\{\left(\left\lfloor G_{\wp}\right\rfloor_{K}, s(\wp), t(\wp)\right) \mid \wp \text { is a satisfiable non-null finite path of } \mathcal{S}\right\} .
$$

Thus, $\mathcal{G}_{\mathcal{S}}^{K}$ keeps tracks of the K-bounded approximations of the transitional MG associated with the satisfiable non-null finite paths \wp of \mathcal{S} together with the source and target control points of \wp. Note that $\mathcal{G}_{\mathcal{S}}^{K}$ is finite since the set of transitional K-bounded MG is finite. In particular, by Remark 2, the cardinality of $\mathcal{G}_{\mathcal{S}}^{K}$ is bounded by $\left.|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|V a r|+|C o n s t|}\right)^{2}$. Moreover, by Proposition $8, \mathcal{G}_{\mathcal{S}}^{K}$ is exactly the set $\left\{\left(G_{\wp}^{b d}, s(\wp), t(\wp)\right) \mid \wp\right.$ is a non-null finite path and $G_{\wp}^{b d}$ is satisfiable $\}$. It follows that we can compute the set $\mathcal{G}_{\mathcal{S}}^{K}$ by the following transitive closure procedure: initialize a set B to $\left\{\left(\lfloor G\rfloor_{K}, q, q^{\prime}\right) \mid\right.$ $q \xrightarrow{G} q^{\prime}$ is an edge of \mathcal{S} and $\lfloor G\rfloor_{K}$ is satisfiable\} and repeat the following step until no more elements can be added to B (at this point $B=\mathcal{G}_{\mathcal{S}}^{K}$): for each $\left(G^{b d}, q, q^{\prime}\right) \in B$ and edge $q^{\prime} \xrightarrow{G} q^{\prime \prime}$ of \mathcal{S} include in B also ($\left\lfloor G^{b d} \bullet\lfloor G\rfloor_{K}\right\rfloor_{K}, q, q^{\prime \prime}$), unless $\left\lfloor G^{b d} \bullet\lfloor G\rfloor_{K}\right\rfloor_{K}$ is unsatisfiable. Thus, we obtain the following result.

Theorem 1. For a GCS \mathcal{S}, the size of $\mathcal{G}_{\mathcal{S}}^{K}$ is bounded by $O\left(|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \operatorname{Const|})^{2}}\right)$ and $\mathcal{G}_{\mathcal{S}}^{K}$ can be computed in time $O(|E(\mathcal{S})|$. $\left.|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$.

By [16] (see also [14]), for a GCS \mathcal{S}, the reflexive transitive closure of the transition relation of $\llbracket \mathcal{S} \rrbracket$ is effectively GC definable (a similar result can be found in [32], where it is shown that for Datalog queries with GC, there is a closed form evaluation). The GC representation can be computed by a fixpoint iteration whose termination is guaranteed by a suitable decidable well-quasi-ordering defined over the set of transitional MG. By an insight in the proof given in [16] (see also [14]), and applying the K-bounded approximation scheme, we easily obtain the following result. For completeness, we give a proof of Theorem 2 in Appendix A.1. Note that we are not able to give an upper bound on the cardinality of the set $\mathcal{P}_{\mathcal{S}}$.

Theorem 2. Given a GCS \mathcal{S}, one can compute a finite set $\mathcal{P} \mathcal{S}^{0}$ of non-null finite paths of \mathcal{S} such that for each non-null finite path \wp^{\prime} of \mathcal{S}, there is a path $\wp \in \mathcal{P}$ S so that $s(\wp)=s\left(\wp^{\prime}\right), t(\wp)=t\left(\wp^{\prime}\right),\left\lfloor G_{\wp}\right\rfloor_{K}=\left\lfloor G_{\wp^{\prime}}\right\rfloor_{K}$, and $\rightsquigarrow_{\wp^{\prime}}$ implies \rightsquigarrow_{\wp} (hence, $\operatorname{Sat}\left(G_{\wp^{\prime}}\right) \subseteq \operatorname{Sat}\left(G_{\wp}\right)$).

By Theorem 2, one can compute a GC representation of the binary reachability relation (for arbitrary finite paths) in a GCS \mathcal{S}. Although we are not able to provide an upper bound on the size of this GC representation, it is important to highlight, as we show below, that the reachability problem in GCS between two given states can be solved in singly exponential time. This problem is closely related to the recognition problem investigated in [32], which asks for a given Datalog query with gap-order constraints (consisting of a program P and a generalized relational database) and a given ground relational tuple $A(t)$, whether $A(t)$ is in the full-model of the query (corresponding to the bottom-up evaluation of the query). Revesz in [32] provided an exponential-time algorithm to solve this problem (which is polynomial-time bounded for a fixed program P). We use an approach similar to the one in [32] to show that the reachability problem in GCS can be solved in singly exponential time. ${ }^{4}$ First, we observe that the K-bounded approximation scheme is sound and complete w.r.t. the valuations v assigning to each variable an integer in Const.

Claim. Let G be an MG over V (and Const) and $v: V \rightarrow \mathbb{Z}$ such that $v(x) \in$ Const for all $x \in V$. Then, $v \in \operatorname{Sat}(G)$ iff $v \in \operatorname{Sat}\left(\lfloor G\rfloor_{K}\right)$.

[^4]Proof of the claim. If $v \in \operatorname{Sat}(G)$, the $v \in \operatorname{Sat}\left(\lfloor G\rfloor_{K}\right)$ (since $\operatorname{Sat}(G) \subseteq \operatorname{Sat}\left(\lfloor G\rfloor_{K}\right)$). For the proof of the converse implication, we assume that $v \in \operatorname{Sat}\left(\lfloor G\rfloor_{K}\right)$ and $v \notin \operatorname{Sat}(G)$, and derive a contradiction. Hence, by construction, there must be an edge $u \xrightarrow{h} v$ of G and an edge $u \xrightarrow{\lfloor h\rfloor_{K}} v$ of $\lfloor G\rfloor_{K}$ such that $v(u)-v(v)<h$ and $v(u)-v(v) \geqslant\lfloor h\rfloor_{K}$. By hypothesis, $v(u)-v(v) \leqslant$ $\max \left\{\left|c_{1}-c_{2}\right| \mid c_{1}, c_{2} \in\right.$ Const $\}<K$. It follows that $\lfloor h\rfloor_{K}<K$, hence, $\lfloor h\rfloor_{K}=h$, which is a contradiction, and we are done.

For a given GCS \mathcal{S} and given states $\left(q_{0}, \nu_{0}\right)$ and $\left(q_{1}, v_{1}\right)$ of \mathcal{S}, in order to check if $\left(q_{1}, v_{1}\right)$ is reachable from (q_{0}, v_{0}), we proceed as follows. Fist, we extend Const by including all the integers $v_{0}(x)$ and $v_{1}(x)$ with $x \in \operatorname{Var}$. If $\left(q_{1}, v_{1}\right)=\left(q_{0}\right.$, $\left.v_{0}\right)$, then the check is positive. Now, assume that $\left(q_{1}, v_{1}\right) \neq\left(q_{0}, v_{0}\right)$. Then, $\left(q_{1}, v_{1}\right)$ is reachable from $\left(q_{0}, v_{0}\right)$ iff there is a satisfiable non-null finite path \wp of \mathcal{S} such that $s(\wp)=q_{0}, t(\wp)=q_{1}$, and $\nu_{0} \oplus \nu_{1} \in \operatorname{Sat}\left(G_{\wp}\right)$. By Theorem 1 , one can compute in singly exponential time the following set

$$
\mathcal{G}_{\mathcal{S}}^{K} \stackrel{\text { def }}{=}\left\{\left(\left\lfloor G_{\wp}\right\rfloor_{K}, s(\wp), t(\wp)\right) \mid \wp \text { is a satisfiable non-null finite path of } \mathcal{S}\right\} .
$$

Thus, by the claim above (and since Const includes all the integers $\nu_{0}(x)$ and $\nu_{1}(x)$ with $x \in \operatorname{Var}$), we obtain that $\left(q_{1}, \nu_{1}\right)$ is reachable from $\left(q_{0}, v_{0}\right)$ iff there is a triple $\left(G, q_{0}, q_{1}\right) \in \mathcal{G}_{\mathcal{S}}^{K}$ such that $\nu_{0} \oplus v_{1} \in \operatorname{Sat}(G)$. Hence, the reachability problem between two given states of a given GCS can be solved in singly exponential time.

3.4. Outline of the main results

In this subsection, we outline the approach proposed for solving the considered verification questions for GCS. The approach consists of two main steps.

Step 1. First, in Section 4, we address termination and strong termination for a subclass of GCS, we call simple GCS. The control graph of these GCS consists just of a self-loop and an additional edge which connects the initial control point with the control point of the self-loop. We define two polynomial-time checkable conditions on simple GCS, namely the termination condition and the unboundedness condition. Then, we show that the first condition characterizes the simple GCS \mathcal{S} whose set $\operatorname{Inf}_{\mathcal{S}}$ of non-terminating states is empty (Proposition 11 and Theorem 4), while the second one characterizes the simple GCS whose set of unbounded states with initial control point is non-empty (Proposition 12 and Theorem 6). Additionally, and importantly, the K-bounded approximation scheme is sound and complete w.r.t. these two conditions (Proposition 11 and Proposition 12). Then, by using these two conditions and the results of the previous subsections, we establish the main results for simple GCS (Theorem 3 and Theorem 5):

- Main results of Section 4. For a simple GCS \mathcal{S}, one can compute MG representations of the sets $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ and $U^{\prime} b_{\mathcal{S}}$, and K-bounded approximations of these representations can be computed in polynomial time. Moreover, the latter coincide with the K-bounded approximations of the MG representations associated with the sets $\operatorname{Inf} \mathcal{S}_{\rfloor_{K}}$ and $U n b_{\lfloor\mathcal{S}\rfloor_{K}}$.
Step 2. In Section 5, we address fairness and (strong) termination for the whole class of GCS. For a GCS \mathcal{S} and a set $F \subseteq Q(\mathcal{S})$ of accepting control points, by using Theorem 1, the computable finite set of sample finite paths of Theorem 2, and Ramsey's theorem in its infinitary version [31], we show (Theorem 7 and Lemmata 16 and 17) that it is possible to construct two finite families $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ of simple GCS such that the following hold:
- Inf $\mathcal{S}_{\mathcal{F}, F}$ corresponds to the set of non-terminating states with initial control point of the single components in $\mathcal{F}(\mathcal{S}, F)$,
- $U n b_{\mathcal{S}}$ corresponds the set of unbounded states with initial control point of the single components in $\mathcal{U}(\mathcal{S})$, and
- the K-bounded approximations of $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ can be computed in singly exponential time.

Then, by using the main results of Section 4, we obtain the main results of Section 5 (Theorems 8 and 9).

- Main results of Section 5. For a GCS \mathcal{S} and a set $F \subseteq Q(\mathcal{S})$ of accepting control points, one can compute MG representations of the sets $\operatorname{Inf} \mathcal{S}_{\mathcal{F}}$ and $U n b_{\mathcal{S}}$, and the K-bounded approximations of these representation can be computed in polynomial time. Moreover, the latter coincide with the K-bounded approximations of the MG representations associated with the sets $\operatorname{Inf}\left\lfloor_{\lfloor\mathcal{S}\rfloor_{K}, F}\right.$ and $U n b_{\lfloor\mathcal{S}\rfloor_{K}}$. Note that this last result is crucial to solve in an optimal way the model checking problem of GCS against the existential fragment of the logic GCCTL* (see Section 6).
These results lead to singly exponential time algorithms to solve termination, strong termination, and fairness for the whole class of GCS. In fact, we also show that these algorithms need only polynomial space.

4. Fairness and (strong) termination for simple GCS

In this section, we address fairness and (strong) termination for a subclass of GCS, we call simple GCS. Before defining this subclass, we need additional definitions and notation.

For an MG G and vertices u and v, the notation $G \models u<v$ means that there is path in G from v to u with weight sum $k>0$. Moreover, $G \models u \leqslant v$ means that there is a path of G from v to u, and $G \models u=v$ means $G \models u \leqslant v$ and $G \models v \leqslant u$. Also, we write $G \models u_{1} \triangleleft_{1} \cdots \triangleleft_{n-1} u_{n}$ to mean that $G \models u_{i} \triangleleft_{i} u_{i+1}$ for each $1 \leqslant i<n$, where $\triangleleft_{i} \in\{<, \leqslant,=\}$.

q_{0} : initial control point

Fig. 3. The control graph of a simple GCS.

A complete transitional MG G_{1}

A balanced transitional MG G_{2}

Fig. 4. A complete transitional MG and a balanced transitional MG.
Definition 9 (Complete transitional MG). A transitional MG G is complete if the following hold:

- for all vertices u and $v, G \models u \leqslant v$ implies $G \models u \triangleleft v$ for some $\triangleleft \in\{<,=\}$;
- for all $u, v \in \operatorname{Var} \cup$ Const, either $G \models u \leqslant v$ or $G \models v \leqslant u$;
- for all $u, v \in \operatorname{Var}^{\prime} \cup$ Const, either $G \models u \leqslant v$ or $G \models v \leqslant u$.

A GCS \mathcal{S} is complete if each MG in \mathcal{S} is complete.
Intuitively, complete transitional MG induce a total ordering on the set of vertices in Var \cup Const and a total ordering on the set of vertices in $V a r^{\prime} \cup$ Const.

Remark 3. For a transitional MG G, G is complete iff $\lfloor G\rfloor_{K}$ is complete.
Definition 10. A transitional MG G is (weakly) idempotent if $\lfloor G \bullet G\rfloor_{K}=\lfloor G\rfloor_{K}$.
Definition 11 (Simple GCS). A simple GCS is a complete GCS \mathcal{S} consisting of just two edges of the form $q_{0} \xrightarrow{G_{0}} q$ and $q \xrightarrow{G} q$ such that $q_{0} \neq q, G_{0} \bullet G$ is satisfiable, and G is idempotent. We say that q_{0} is the initial control point of \mathcal{S}. (See Fig. 3.)

Evidently, for a simple GCS, the fairness problem can be trivially reduced in linear time to the dual of the termination problem. Thus, in the following we focus on termination and strong termination of simple GCS. The rest of this section is organized as follows. In Section 4.1, we establish some basic properties of simple GCS. Then, in Sections 4.2 and 4.3, we address termination of simple GCS and strong termination of simple GCS, respectively.

4.1. Basic properties of simple GCS

We need two additional definitions.

Definition 12 (Balanced transitional MG). A transitional MG G is balanced if for all $u, v \in \operatorname{Var} \cup$ Const and $\triangleleft \in\{<,=\}, G \models u \triangleleft v$ if and only if $G \models u^{\prime} \triangleleft v^{\prime}$ (where for $u \in \operatorname{Var} \cup$ Const, we write u^{\prime} to denote the corresponding variable in $\operatorname{Var}^{\prime}$ if $u \in \operatorname{Var}$, and u itself otherwise).

Intuitively, for a balanced transitional MG, the partial orderings induced by G on the set of vertices Var \cup Const and on the set of vertices $V a r^{\prime} \cup$ Const coincide.

Example 2. Let $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and Const $=\{0,3\}$. Fig. 4 depicts two transitional MG G_{1} and G_{2}. Note that G_{1} is complete but non-balanced, while G_{2} is balanced but non-complete.

Definition 13 (Lower, upper, and bounded variables). We denote by MAX (resp., MIN) the maximum (resp., minimum) of Const. For a transitional MG G and $y \in \operatorname{Var} \cup \operatorname{Var}^{\prime}, y$ is a lower (resp., upper) variable of G if $G \models y<\operatorname{MIN}$ (resp., $G \models M A X<y$). Moreover, y is a bounded variable of G if $G \models M I N \leqslant y$ and $G \models y \leqslant M A X$.

The following two propositions summarize some basic properties of simple GCS.

Fig. 5. Partial ordering of the variables in the transitional MG G.
Proposition 9. For a GCS \mathcal{S}, \mathcal{S} is simple iff if $\lfloor\mathcal{S}\rfloor_{K}$ is simple.
Proof. The result directly follows from Remark 3 and Propositions 6 and 7.
For a transitional MG G and $k \geqslant 1$, define $G^{k} \stackrel{\text { def }}{=} \underbrace{G \bullet \ldots \bullet G}_{k \text { times }}$.
Proposition 10. For a simple $\operatorname{GCS} \mathcal{S}$ with edges $q_{0} \xrightarrow{G_{0}} q$ and $q \xrightarrow{G} q$, the following hold:

1. G_{0} is satisfiable and for all $k \geqslant 1, G_{0} \bullet G^{k}$ and G^{k} are satisfiable as well;
2. G is balanced;
3. Let \mathcal{L} (resp., \mathcal{U}, resp., \mathcal{B}) be the set of lower (resp., upper, resp., bounded) variables of G in Var. Then, \mathcal{L}, \mathcal{U}, and \mathcal{B} represent a partition of Var.

Proof. Since $G_{0} \bullet G$ is satisfiable (\mathcal{S} is a simple GCS), by definition of the composition operator, it follows that G_{0} and G are satisfiable as well. Since the composition operator is associative and G is idempotent, by using Proposition 7, we obtain that $\left\lfloor G_{0} \bullet G^{k}\right\rfloor_{K}=\left\lfloor G_{0} \bullet G\right\rfloor_{K}$ and $\left\lfloor G^{k}\right\rfloor_{K}=\lfloor G\rfloor_{K}$. Thus, since the K-bounded approximation preserves satisfiability of MG (Proposition 6), Property 1 follows. Property 2 directly follows from Property 1 (in particular, $G \bullet G$ is satisfiable), the definition of the composition operator, and the fact that G is complete (\mathcal{S} is a simple GCS). Finally, Property 3 directly follows from the facts that G is satisfiable and complete.

In the rest of Section 4 , we fix a simple GCS \mathcal{S} with edges $q_{0} \xrightarrow{G_{0}} q$ and $q \xrightarrow{G} q$. We denote by L_{1}, \ldots, L_{L} (resp., $\mathrm{U}_{1}, \ldots, \mathrm{U}_{U}$) the lower (resp., the upper) variables of G in Var, and by $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{B}$ the bounded variables of G in Var. (See Fig. 5.) By Proposition $10(3), \operatorname{Var}=\left\{L_{1}, \ldots, L_{L}, U_{1}, \ldots, U_{U}, B_{1}, \ldots, B_{B}\right\}$ and we can assume that

$$
G \models \mathrm{~L}_{1} \triangleleft_{2} \cdots \triangleleft_{L} \mathrm{~L}_{L}<M I N \leqslant \mathrm{~B}_{1} \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime} \mathrm{B}_{B} \leqslant M A X<\mathrm{U}_{1} \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \mathrm{U}_{U}
$$

where $\triangleleft_{2} \cdots \triangleleft_{L}, \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime}, \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \in\{<,=\}$. Since G is balanced (Proposition $10(3)$), it follows that the lower variables (resp., upper variables) of G in $\operatorname{Var}^{\prime}$ are $\mathrm{L}_{1}^{\prime}, \ldots, \mathrm{L}_{L}^{\prime}$ (resp., $\mathrm{U}_{1}^{\prime}, \ldots, \mathrm{U}_{U}^{\prime}$), and the bounded variables of G in $\operatorname{Var}^{\prime}$ are $\mathrm{B}_{1}^{\prime}, \ldots, \mathrm{B}_{B}^{\prime}$. Moreover,

$$
G \models \mathrm{~L}_{1}^{\prime} \triangleleft_{2} \cdots \triangleleft_{L} \mathrm{~L}_{L}^{\prime}<M I N \leqslant \mathrm{~B}_{1}^{\prime} \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime} \mathrm{B}_{B}^{\prime} \leqslant M A X<\mathrm{U}_{1}^{\prime} \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \mathrm{U}_{U}^{\prime} .
$$

Notation. Define $\mathrm{L}_{L+1} \stackrel{\text { def }}{=} M I N, \mathrm{~L}_{L+1}^{\prime} \stackrel{\text { def }}{=} M I N, \mathrm{U}_{0} \xlongequal{=} \operatorname{def} M A X$, and $\mathrm{u}_{0}^{\prime} \stackrel{\text { def }}{=} M A X$.
We conclude this subsection by giving three technical preliminary lemmata, which are fundamental to understand the "interaction" between the variables in Var and those in $\operatorname{Var}^{\prime}$ for the idempotent transitional MG G associated with the self-loop of the fixed simple GCS \mathcal{S}. The first two lemmata (Lemmata 1 and 2) are a consequence of the idempotence of G.

Lemma 1 (Lower variables). For all $1 \leqslant i<j \leqslant L$, the following hold:

1. $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime} \Rightarrow$ either $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{j}^{\prime}$ or $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j-1}^{\prime}$.
2. $G \models \mathrm{~L}_{i}^{\prime} \leqslant \mathrm{L}_{j} \Rightarrow$ either $G \models \mathrm{~L}_{j}^{\prime} \leqslant \mathrm{L}_{j}$ or $G \models \mathrm{~L}_{i}^{\prime} \leqslant \mathrm{L}_{j-1}$.

Proof. We prove Property 1 (Property 2 is similar). Assume that $G \models L_{i} \leqslant L_{j}^{\prime}$ where $1 \leqslant i<j \leqslant L$. Then, since G is idempotent, it easily follows that $G \bullet G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$. Hence, by definition of the composition operator, there is $u \in \operatorname{Var} \cup$ Const such that $G \models \mathrm{~L}_{i} \leqslant u^{\prime}$ and $G \models u \leqslant \mathrm{~L}_{j}^{\prime} .{ }^{5}$ Since $G \models u \leqslant \mathrm{~L}_{j}^{\prime}$, we deduce that u is a lower variable of G in Var, hence $u=\mathrm{L}_{h}$ for some $1 \leqslant h \leqslant L$, and we obtain

[^5]$$
G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{h}^{\prime} \quad \text { and } \quad G \models \mathrm{~L}_{h} \leqslant \mathrm{~L}_{j}^{\prime} .
$$

We distinguish two cases:

- $h \geqslant j$: hence, $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{h}$. Since $G \models \mathrm{~L}_{h} \leqslant \mathrm{~L}_{j}^{\prime}$, we obtain that $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{j}^{\prime}$. Thus, in this case, the result holds.
- $h<j$: hence, $G \models \mathrm{~L}_{h}^{\prime} \leqslant \mathrm{L}_{j-1}^{\prime}$. Since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{h}^{\prime}$, we obtain that $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j-1}^{\prime}$. Thus, the result holds in this case as well.

Lemma 2 (Upper variables). For all $1 \leqslant i<j \leqslant U$, the following hold:

1. $G \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{j} \Rightarrow$ either $G \models \mathrm{U}_{j}^{\prime} \leqslant \mathrm{U}_{j}$ or $G \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{j-1}$.
2. $G \models \mathrm{U}_{i} \leqslant \mathrm{U}_{j}^{\prime} \Rightarrow$ either $G \models \mathrm{U}_{j} \leqslant \mathrm{U}_{j}^{\prime}$ or $G \models \mathrm{U}_{i} \leqslant \mathrm{U}_{j-1}^{\prime}$.

Proof. We prove Property 1 (Property 2 is similar). Assume that $G \models U_{i}^{\prime} \leqslant U_{j}$ where $1 \leqslant i<j \leqslant U$. Then, since G is idempotent, it easily follows that $G \bullet G \models U_{i}^{\prime} \leqslant U_{j}$. Hence, by definition of the composition operator, there is $u \in \operatorname{Var} \cup$ Const such that $G \models u^{\prime} \leqslant \mathrm{U}_{j}$ and $G \models \mathrm{U}_{i}^{\prime} \leqslant u$. Since $G \models \mathrm{U}_{i}^{\prime} \leqslant u$, we deduce that u is an upper variable of G in Var, hence $u=\mathrm{U}_{h}$ for some $1 \leqslant h \leqslant U$, and we obtain

$$
G \models \mathrm{U}_{h}^{\prime} \leqslant \mathrm{U}_{j} \quad \text { and } \quad G \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{h} .
$$

We distinguish two cases:

- $h \geqslant j$: hence, $G \models \mathrm{U}_{j}^{\prime} \leqslant \mathrm{U}_{h}^{\prime}$. Since $G \models \mathrm{U}_{h}^{\prime} \leqslant \mathrm{U}_{j}$, we obtain that $G \models \mathrm{u}_{j}^{\prime} \leqslant \mathrm{U}_{j}$. Thus, in this case, the result holds.
- $h<j$: hence, $G \models \mathrm{U}_{h} \leqslant \mathrm{U}_{j-1}$. Since $G \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{h}$, we obtain that $G \models \mathrm{u}_{i}^{\prime} \leqslant \mathrm{U}_{j-1}$. Thus, the result holds in this case as well.

In Sections 4.2 and 4.3, for each of the two considered problems (termination and strong termination), we define a subset of the upper and lower variables of G, called the set of unconstrained variables, which depends on the specific problem. Here, we capture by Definition 14 and Lemma 3 some common properties of these sets. Thus, Lemma 3 can be seen as a template which will be instantiated in Sections 4.2 and 4.3 with the specific set of unconstrained variables.

Definition 14. Let $L_{c}, U_{c} \in \mathbb{N}$. We say that the pair $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G if the following conditions are satisfied:

- $1 \leqslant L_{c} \leqslant L+1$ and $G \models \mathrm{~L}_{L_{c}}=\mathrm{L}_{L_{c}}^{\prime}$;
- $0 \leqslant U_{c} \leqslant U$ and $G \vDash U_{U_{c}}=U_{U_{c}}^{\prime}$;
- for each $L_{c} \leqslant i \leqslant L, G \not \vDash \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{i}$ and $G \not \vDash \mathrm{~L}_{i}<\mathrm{L}_{i}^{\prime}$;
- for each $1 \leqslant i \leqslant U_{c}, G \not \vDash \mathrm{U}_{i}^{\prime}<\mathrm{U}_{i}$ and $G \not \vDash \mathrm{U}_{i}<\mathrm{U}_{i}^{\prime}$.

The set of unconstrained variables in Var w.r.t. $\left(L_{c}, U_{c}\right)$ is given by $\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{L_{c}-1}, \mathrm{U}_{U_{c}+1}, \ldots, \mathrm{U}_{U}\right\}$.

Lemma 3 (Separation lemma). Let $\left(L_{c}, U_{c}\right)$ be well-formed w.r.t. G. Then:
Lower variables: for all $L_{c} \leqslant i \leqslant L, \sim \in\{<,=,>\}$, and $x \in$ Var,

$$
\left(G \models \mathrm{~L}_{i}^{\prime} \sim x \text { or } G \models \mathrm{~L}_{i} \sim x^{\prime}\right) \quad \Rightarrow \quad G \models \mathrm{~L}_{i} \sim x .
$$

Upper variables: for all $1 \leqslant i \leqslant U_{c}, \sim \in\{<,=,>\}$, and $x \in$ Var,

$$
\left(G \models \mathrm{U}_{i}^{\prime} \sim x \text { or } G \models \mathrm{U}_{i} \sim x^{\prime}\right) \quad \Rightarrow \quad G \models \mathrm{U}_{i} \sim x .
$$

Proof. Lower variables. Let $L_{c} \leqslant i \leqslant L, \sim \in\{<,=,>\}$, and $x \in$ Var such that either $G \models \mathrm{~L}_{i}^{\prime} \sim x$ or $G \models \mathrm{~L}_{i} \sim x^{\prime}$. Assume that $G \models \mathrm{~L}_{i}^{\prime} \sim x$ (the other case is similar). We distinguish three cases:

- \sim is $<$: hence, $G \models \mathrm{~L}_{i}^{\prime}<x$. We need to prove that $G \models \mathrm{~L}_{i}<x$. Assume that x is a lower variable (otherwise, the result is obvious). Then, $x=\mathrm{L}_{j}$ for some $1 \leqslant j \leqslant L$. First, we prove that $i<j$. We assume the contrary and derive a contradiction. Then, $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{i}$. Since $G \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{j}$, we obtain that $G \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{i}$, which is a contradiction because $L_{c} \leqslant i \leqslant L$ and $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G. Thus, $i<j$. Hence, $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}$. Since G is complete, either $G \models \mathrm{~L}_{i}<\mathrm{L}_{j}$ or $G \models \mathrm{~L}_{i}=\mathrm{L}_{j}$. Since $G \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{j}$, the second condition would imply $G \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{i}$, which leads to a contradiction. Thus, $G \models \mathrm{~L}_{i}<\mathrm{L}_{j}$ and the result follows.
- \sim is $>$: this case is similar to the previous one.
- \sim is $=$: hence, $G \models \mathrm{~L}_{i}^{\prime}=x$. We need to prove that $G \models \mathrm{~L}_{i}=x$. Evidently, x is a lower variable. Hence, $x=\mathrm{L}_{j}$ for some $1 \leqslant j \leqslant L$. Assume that $j<i$ (the other case being similar). We claim that there is $j \leqslant h \leqslant i$ such that $G \models L_{h}=L_{h}^{\prime}$. If $j<L_{c}$, then since $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G and $L_{c} \leqslant i \leqslant L$, the claim holds. Now, assume that $L_{c} \leqslant j \leqslant L$. Since $G \models L_{i}^{\prime}=L_{j}$ and $j<i$, by applying repeatedly Lemma $1(1)$, it follows that there is $j \leqslant h \leqslant i$ so that $G \models L_{h} \leqslant \mathrm{~L}_{h}^{\prime}$. Since G is complete, either $G \models \mathrm{~L}_{h}=\mathrm{L}_{h}^{\prime}$ or $G \models \mathrm{~L}_{h}<\mathrm{L}_{h}^{\prime}$. The second condition cannot hold since $L_{c} \leqslant h \leqslant L$ and $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G. Thus, $G \models \mathrm{~L}_{h}^{\prime}=\mathrm{L}_{h}$. Hence, the claim holds. Since $j \leqslant h \leqslant i$ and G is balanced, we have that $G \models \mathrm{~L}_{j} \triangleleft \mathrm{~L}_{h} \triangleleft^{\prime} \mathrm{L}_{i}$ and $G \models \mathrm{~L}_{j}^{\prime} \triangleleft \mathrm{L}_{h}^{\prime} \triangleleft^{\prime} \mathrm{L}_{i}^{\prime}$ for some $\triangleleft, \triangleleft^{\prime} \in\{<,=\}$. Since $G \models \mathrm{~L}_{h}^{\prime}=\mathrm{L}_{h}$ and $G \models \mathrm{~L}_{i}^{\prime}=\mathrm{L}_{j}$, it follows that $G \models \mathrm{~L}_{j} \triangleleft \mathrm{~L}_{h}=\mathrm{L}_{h}^{\prime} \triangleleft^{\prime} \mathrm{L}_{i}^{\prime}=\mathrm{L}_{j}$. Thus, since G is satisfiable, $\triangleleft, \triangleleft^{\prime} \in\{=\}$, hence, $G \models \mathrm{~L}_{i}=\mathrm{L}_{j}$, and we are done.

Upper variables. This case is analogous to the previous case with the unique difference that now we use Lemma 2 . Thus, we omit the details here.

Notation. For a valuation v over $\operatorname{Var}, v\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]$ denotes the valuation over $\operatorname{Var}^{\prime}$ defined as $v\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]\left(x^{\prime}\right)=v(x)$ for each $x \in$ Var.

4.2. Termination of simple GCS

First, we outline the proposed approach to solve termination for simple GCS. We define a polynomial-time checkable condition on simple GCS, called termination condition, such that the K-bounded approximation scheme is sound and complete w.r.t. this condition. We show that this condition characterizes the simple GCS \mathcal{S} whose set $\operatorname{Inf}_{\mathcal{S}}$ of non-terminating states is empty. Moreover, we show that $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ is effectively MG representable and one can compute separately and in polynomial-time the K-bounded approximation of the computable MG representation $\sigma(\mathcal{S})$ of $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ (we are not able to give an upper bound on the size of $\sigma(\mathcal{S})$). These results lead to polynomial-time algorithms to solve termination and termination w.r.t. a designated control point of simple GCS.

The rest of this subsection is organized as follows. After having formally defined the termination condition (Definition 15), we show by Proposition 11 that it represents a sufficient condition for emptiness of $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ (for the fixed simple GCS \mathcal{S}), and, additionally, the K-bounded approximation scheme is sound and complete w.r.t. this condition. Next, we provide by Lemma 9, a characterization of the set of non-terminating states of \mathcal{S} under the assumption that \mathcal{S} does not satisfy the termination condition. The characterization is given in terms of a subset of the lower and upper variables of G, called the set of unconstrained variables for non-termination (Definition 16). The characterization lemma is then used in the proof of the main result of this subsection (Theorem 3) to show that one can construct an MG representation of $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ whose K-bounded approximation can be computed in polynomial time. Finally, by using Lemma 9 and Lemma 3 in Section 4.1, we show (Theorem 4) that the termination condition is also a necessary condition for the emptiness of $\operatorname{Inf} \mathcal{S}$.

Termination condition

Definition 15 (Termination condition). We say that the fixed simple GCS \mathcal{S} satisfies the termination condition if one of the following holds:

Lower variables: either $G \models \mathrm{~L}_{i}<\mathrm{L}_{i}^{\prime}$ for some $1 \leqslant i \leqslant L$,
or $G \models \mathrm{~L}_{i}=\mathrm{L}_{i}^{\prime}$ and $G \models \mathrm{~L}_{j}^{\prime}<\mathrm{L}_{j}$ for some $1 \leqslant i<j \leqslant L$.
Upper variables: either $G \models \mathrm{U}_{i}^{\prime}<\mathrm{U}_{i}$ for some $1 \leqslant i \leqslant U$,
or $G \models \mathrm{U}_{j}=\mathrm{U}_{j}^{\prime}$ and $G \models \mathrm{U}_{i}<\mathrm{U}_{i}^{\prime}$ for some $1 \leqslant i<j \leqslant U$.

Intuitively, the above condition asserts that either there is a lower (resp., upper) variable of G in Var whose value strictly increases (resp., decreases) along each run of \mathcal{S} from control point q, or there are two lower (resp., upper) variables of G in Var such that their distance strictly decreases along each run of \mathcal{S} from q. Let $\mathcal{T C}$ be the class of simple GCS satisfying the termination condition. By Definition 15, we easily obtain the following result (by Proposition $9,\lfloor\mathcal{S}\rfloor_{K}$ is a simple GCS).

Proposition 11. $\mathcal{S} \in \mathcal{T C}$ if and only if $\lfloor\mathcal{S}\rfloor_{K} \in \mathcal{T C}$. Moreover, if $\mathcal{S} \in \mathcal{T C}$, then Inf $\mathcal{S}=\emptyset$ and Unb ${ }_{\mathcal{S}}$ does not contain states from control point q (i.e., each state from q is strongly terminating).

Characterization of the set of non-terminating states. It remains to consider the case when $\mathcal{S} \notin \mathcal{T}$. We first provide (under the assumption that $\mathcal{S} \notin \mathcal{T}$), a characterization of the set of non-terminating states of \mathcal{S} (Lemma 9). For this, we need additional definitions and preliminary results.

Definition 16 (Unconstrained variables for non-termination). We define two integers L_{c} and U_{c} as follows: L_{c} is the smallest $1 \leqslant i \leqslant L+1$ such that $G \models \mathrm{~L}_{i}=\mathrm{L}_{i}^{\prime}$. Finally, U_{c} is the greatest $0 \leqslant i \leqslant U_{c}$ such that $G \models \mathrm{U}_{i}=\mathrm{U}_{i}^{\prime}$. Note that $1 \leqslant L_{c} \leqslant L+1$

Fig. 6. Unconstrained variables for non-termination in the transitional MG G.
and $0 \leqslant U_{c} \leqslant U$. The set of unconstrained variables in Var for non-termination, written Unc, consists of the lower variables $\mathrm{L}_{1} \ldots \mathrm{~L}_{L_{c}-1}$ and the upper variables $\mathrm{U}_{U_{c}+1}, \ldots \mathrm{U}_{U}$. Let $\operatorname{Unc}^{\prime}$ be the corresponding subset in $\operatorname{Var}^{\prime}$. (See Fig. 6.)

By Definitions 15 and 16, evidently, the following holds.

Lemma 4. For a valuation $\nu_{0}: \operatorname{Var} \rightarrow \mathbb{Z}$, the set of valuations $\left\{v_{(V a r \backslash U n c)} \mid(q, v)\right.$ is reachable from $\left(q, \nu_{0}\right)$ in $\left.\llbracket \mathcal{S} \rrbracket\right\}$ is finite. Moreover, if $\mathcal{S} \notin \mathcal{T C}$, then the pair $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G.

Moreover, we make the following observation.

Lemma 5. Assume that $\mathcal{S} \notin \mathcal{T}$ C. Then, the following hold:
Lower variables: for all $1 \leqslant i<L_{c}, G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{c}}$.
Upper variables: for all $U_{c}<i \leqslant U, G \models \mathrm{U}_{U_{c}}<\mathrm{U}_{i}$.

Proof. We consider the case of the lower variables (the other case being similar). Let $1 \leqslant i<L_{c}$. We need to show that $G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{c}}$. We assume the contrary and derive a contradiction. Then, since G is complete and $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{L_{c}}$, it follows that $G \models \mathrm{~L}_{i}=\mathrm{L}_{L_{c}}$. Since G is balanced, $G \models \mathrm{~L}_{i}^{\prime}=\mathrm{L}_{L_{c}}^{\prime}$ holds as well. Thus, since, $G \models \mathrm{~L}_{L_{c}}=\mathrm{L}_{L_{c}}^{\prime}$, we obtain that $G \models \mathrm{~L}_{i}=\mathrm{L}_{i}^{\prime}$ with $i<L_{c}$, which contradicts the definition of L_{c}. Hence, the result follows.

The intuitive meaning of the unconstrained lower (resp., upper) variables is that under the assumption that $\mathcal{S} \notin \mathcal{T} \mathcal{C}$, they can increase (resp., decrease) arbitrarily along a run of \mathcal{S} from control point q. This does not mean that the unconstrained variables can get arbitrary values, but that the distances (gaps) between primed variables x^{\prime} and y^{\prime} in Unc such that $G \models x^{\prime} \neq y^{\prime}$ are not constrained by the values of the variables in Var and the constants in Const, i.e. they are unbounded. In other terms, the unique ordering constraint imposed by G on the variables in $U n c^{\prime}=\left\{\mathrm{L}_{1}^{\prime} \ldots \mathrm{L}_{L_{c}-1}^{\prime}, \mathrm{U}_{U_{c}+1}^{\prime}, \ldots, \mathrm{U}_{U}^{\prime}\right\}$ is the following one

$$
G \models \mathrm{~L}_{1}^{\prime} \leqslant \cdots \leqslant \mathrm{L}_{L_{c}-1}^{\prime}<\mathrm{L}_{L_{c}}^{\prime} \leqslant M I N \leqslant M A X \leqslant \mathrm{U}_{U_{c}}^{\prime}<\mathrm{U}_{U_{c}+1}^{\prime} \leqslant \cdots \leqslant \mathrm{u}_{U}^{\prime}
$$

This is formalized by the following lemma.

Lemma 6. Assume that $\mathcal{S} \notin \mathcal{T}$. Then, the following hold:
Lower variables: for all $1 \leqslant i \leqslant L$ and $1 \leqslant j<L_{c}, G \not \vDash \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$.
Upper variables: for all $U_{c}<i \leqslant U$ and $1 \leqslant j \leqslant U, G \not \vDash \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{j}$.

Proof. Lower variables. Let $1 \leqslant i \leqslant L$ and $1 \leqslant j<L_{c}$. We need to show that $G \not \vDash \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$. We assume the contrary and derive a contradiction. Hence, $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$. We distinguish two cases:

- $j \leqslant i$: hence, $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{i}$. Since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$, it follows that $G \models \mathrm{~L}_{j} \leqslant \mathrm{~L}_{j}^{\prime}$.
- $j>i$: since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$, by applying repeatedly Lemma $1(1)$, it follows that there is $i \leqslant h \leqslant j$ such that $G \models \mathrm{~L}_{h} \leqslant \mathrm{~L}_{h}^{\prime}$.

Thus, in both cases we obtain that $G \models \mathrm{~L}_{k} \leqslant \mathrm{~L}_{k}^{\prime}$ for some $1 \leqslant k<L_{c}$. Since G is complete, it follows that $G \models \mathrm{~L}_{k} \triangleleft \mathrm{~L}_{k}^{\prime}$ for some $\triangleleft \in\{=,<\}$, which is a contradiction by definition of L_{c} (Definition 16) and the hypothesis that $\mathcal{S} \notin \mathcal{T} \mathcal{C}$. Hence, the result follows.

Upper variables. This case is analogous to the previous one with the difference that now we use Lemma 2(1). Thus, we omit the details here.

Now, in order to provide a characterization of the set of non-terminating states of \mathcal{S}, we give two preliminary technical lemmata (Lemmata 7 and 8 below).

Let \succeq_{G} be the partial order (depending on the MG G) on the set of valuations over Var defined as follows: $v^{\prime} \succeq_{G} v$ iff the following properties are satisfied:

- for each bounded variable B_{i} of G in Var, $v^{\prime}\left(\mathrm{B}_{i}\right)=v\left(\mathrm{~B}_{i}\right)$;
- for all $u, v \in \operatorname{Var} \cup$ Const and $\triangleleft \in\{<,=\}, v(u) \triangleleft v(v)$ iff $v^{\prime}(u) \triangleleft v^{\prime}(v)$;
- for all $u, v \in \operatorname{Var} \cup$ Const, if $v(u)-v(v) \geqslant 0$, then $v^{\prime}(u)-v^{\prime}(v) \geqslant v(u)-v(v)$.

Lemma 7 (Simulation lemma). Let $\nu_{1} \oplus \nu_{2} \in \operatorname{Sat}(G)$ and $\nu_{1}^{\prime} \succeq_{G} v_{1}$. Then, $v_{1}^{\prime} \oplus v_{2}^{\prime} \in \operatorname{Sat}(G)$ for some valuation v_{2}^{\prime} over Var such that $v_{2}^{\prime} \succeq_{G} v_{2}$.

Proof. By definition of $\succeq_{G}, \nu_{1}^{\prime}$ and ν_{1} agree on the set of bounded variables of G in Var. Moreover, since $\nu_{1} \oplus \nu_{2} \in \operatorname{Sat}(G)$, $\nu_{1} \oplus \nu_{2}$ induces an ordering of the upper and lower variables of G which is consistent with the constraints of G. Also, by definition of $\succeq_{G}, v_{1}^{\prime}$ induce the same ordering of the upper and lower variables in Var as v_{1}, with the following additional constraint: the distance between the values of two consecutive (upper and lower) variables u, v in Var such that $G \not \vDash u=v$ or the distance between a lower (resp., upper) variable and MIN (resp., MAX) is greater than that associated with ν_{1}. Hence, the existence of a valuation v_{2}^{\prime} such that $v_{1}^{\prime} \oplus v_{2}^{\prime} \in \operatorname{Sat}(G)$ and satisfying the additional requirement $v_{2}^{\prime} \succeq_{G} v_{2}$ easily follows.

The simulation lemma ensures that the existence of a non-null finite run π of \mathcal{S} from a state (q, v) to a state (q, v^{\prime}) such that $v^{\prime} \succeq_{G} v$ implies, in turn, the existence of a non-null run of \mathcal{S} from state $\left(q, v^{\prime}\right)$ to a state of the form ($q, v^{\prime \prime}$) satisfying $v^{\prime \prime} \succeq_{G} v^{\prime}$ (hence, by iterating the reasoning, it follows that there exists also an infinite run of \mathcal{S} from state (q, v)).

Under the assumption that $\mathcal{S} \notin \mathcal{T C}$, the following technical lemma (whose proof is based on Lemma 6) provides for a given state of \mathcal{S} of the form (q, v), a sufficient condition for the existence of a non-null finite run π from (q, v) to a state (q, v^{\prime}) satisfying $v^{\prime} \succeq_{G} v$ (the finite run π can be then "pumped" arbitrarily many times by repeatedly applying the simulation lemma).

Lemma 8 (Pumping lemma for non-termination). Assume that $\mathcal{S} \notin \mathcal{T} \mathcal{C}$. Let (q, v) be a state of \mathcal{S} and π be a non-null finite run of \mathcal{S} from (q, v) leading to a state $\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree on the variables in Var \backslash Unc. Then, there exists a non-null finite run π^{\prime} of \mathcal{S} from (q, v) leading to a state $\left(q, v^{\prime \prime}\right)$ such that $v^{\prime \prime} \succeq_{G} v$.

Proof. Let π be as in the statement of the lemma. Hence, π can be written in the form

$$
(q, v) \rightarrow \cdots \rightarrow\left(q, v_{0}\right) \rightarrow\left(q, v^{\prime}\right)
$$

such that v and ν^{\prime} agree on the variables in $\operatorname{Var} \backslash U n c$. Note that $\nu_{0} \oplus \nu^{\prime} \in \operatorname{Sat}(G)$. We prove that there is a valuation $v^{\prime \prime}$ over Var such that $\nu_{0} \oplus \nu^{\prime \prime} \in \operatorname{Sat}(G)$ and $\nu^{\prime \prime} \succeq_{G} \nu$. Hence, the lemma follows. Let Δ be the maximum over the edge weights of G. First, we show the following.

Claim. There is a valuation $\nu^{\prime \prime}$ over Var satisfying the following properties:

1. $v^{\prime \prime}$ and v agree on Var $\backslash U n c$;
2. $v^{\prime \prime} \succeq_{G} v$;
3. $v^{\prime \prime}\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]$ is a solution of the restriction of G to Var $^{\prime}$;
4. for each upper variable $\mathrm{U}_{i} \in$ Unc (hence, $U_{c}<i \leqslant U$), $v^{\prime \prime}\left(\mathrm{U}_{i}\right)-v_{0}\left(\mathrm{U}_{U}\right)>\Delta$;
5. for each lower variable $\mathrm{L}_{i} \in$ Unc (hence, $1 \leqslant i<L_{c}$), $\nu_{0}\left(\mathrm{~L}_{1}\right)-v^{\prime \prime}\left(\mathrm{L}_{i}\right)>\Delta$.

Proof of the claim. Recall that $U n c=\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{L_{c}-1}, \mathrm{U}_{U_{c}+1}, \ldots, \mathrm{U}_{U}\right\}$ and for each $x \in \operatorname{Var} \backslash \operatorname{Unc}, G \models \mathrm{~L}_{L_{c}} \leqslant x \leqslant \mathrm{U}_{U_{c}}$. Moreover, by Lemma 5, for all $\mathrm{L}_{i}, \mathrm{U}_{j} \in U n c, G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{c}} \leqslant \mathrm{U}_{U_{c}}<\mathrm{U}_{j}$. By hypothesis, $v \in \operatorname{Sat}\left(G_{\operatorname{Var}}\right)$. Thus, since Var $\backslash \operatorname{Unc}$ contains the set of bounded variables of G in Var, we easily deduce the existence of a valuation $v^{\prime \prime} \in \operatorname{Sat}\left(G_{V a r}\right)$ satisfying Properties 1 , 2 , 4, and 5 of the claim. Now, by hypothesis, $\nu_{0} \oplus \nu^{\prime} \in \operatorname{Sat}(G)$ and v and v^{\prime} agree on $\operatorname{Var} \backslash U n c$. Hence, the restriction of $\nu\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]$ to $\operatorname{Var}^{\prime} \backslash U n c^{\prime}$ is a solution of $G_{V a r^{\prime} \backslash U n c^{\prime}}$. Since G is balanced, it follows that $\nu^{\prime \prime}$ can be chosen in such a way that Property 3 in the claim holds as well.

Let $\nu^{\prime \prime}$ be a valuation over Var satisfying the claim above. We prove that $\nu_{0} \oplus \nu^{\prime \prime} \in \operatorname{Sat}(G)$. Thus, since $v^{\prime \prime} \succeq_{G} v$ (Property 2 of the claim), the lemma follows. By hypothesis $\nu_{0} \oplus \nu^{\prime} \in \operatorname{Sat}(G)$ and v and ν^{\prime} agree on the variables in Var \backslash Unc. Thus, by Property 1 of the claim, the restriction of $\nu_{0} \oplus \nu^{\prime \prime}$ to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$ is a solution of the restriction of G to $\operatorname{Var}^{\cup} \cup\left(\operatorname{Var}^{\prime} \backslash \operatorname{Unc}^{\prime}\right)$. Thus, by Property 3 in the claim, in order to prove that $\nu_{0} \oplus \nu^{\prime \prime} \in \operatorname{Sat}(G)$, it remains to show that for each edge $e=x \xrightarrow{k} y^{\prime}$ (resp., $e=y^{\prime} \xrightarrow{k} x$) of G such that $x \in \operatorname{Var}$ and $y^{\prime} \in U n c^{\prime}$, it holds that $v_{0}(x)-v^{\prime \prime}(y) \geqslant k$ (resp., $\left.v^{\prime \prime}(y)-v_{0}(x) \geqslant k\right)$.

Case $e=x \xrightarrow{k} y^{\prime}$ with $x \in \operatorname{Var}$ and $y \in U n c:$ first, we show that y is not an upper variable. We assume the contrary and derive a contradiction. Hence, $y=U_{i}$ for some $U_{c}<i \leqslant U$. Then, x must be an upper variable U_{j} for some $1 \leqslant j \leqslant U$. Since $\mathcal{S} \notin \mathcal{T} \mathcal{C}$, by Lemma $6, G \not \vDash \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{j}$, which is a contradiction. Thus, $y=\mathrm{L}_{i} \in U n c$ for some $1 \leqslant i<L_{c}$. Since $\nu_{0} \in \operatorname{Sat}\left(G_{V a r}\right)$, it holds that $\nu_{0}(x) \geqslant \nu_{0}\left(L_{1}\right)$. Hence, by Property 5 of the claim above, we obtain $\nu_{0}(x)-v^{\prime \prime}(y) \geqslant$ $\nu_{0}\left(\mathrm{~L}_{1}\right)-v^{\prime \prime}(y)>\Delta \geqslant k$, and the result follows.
 a contradiction. Hence, $y=L_{j}$ for some $1 \leqslant j<L_{c}$. Then, x must be a lower variable L_{i} for some $1 \leqslant i \leqslant L$. Since $\mathcal{S} \notin \mathcal{T C}$, by Lemma $6, G \not \vDash \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$, which is a contradiction. Thus, $y=\mathrm{U}_{i} \in$ Unc for some $U_{c}<i \leqslant U$. Since $\nu_{0} \in \operatorname{Sat}\left(G_{V a r}\right)$, it holds that $\nu_{0}(x) \leqslant \nu_{0}\left(U_{U}\right)$. Hence, by Property 4 of the claim above, we obtain $\nu^{\prime \prime}(y)-\nu_{0}(x) \geqslant$ $v^{\prime \prime}(y)-v_{0}\left(U_{U}\right)>\Delta \geqslant k$, and the result follows.

This concludes the proof of the pumping lemma.
By Lemmata 4, 7 and 8, we obtain the following characterization of the set of states in $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ (under the assumption that $\mathcal{S} \notin \mathcal{T C})$.

Lemma 9 (Characterization lemma for non-termination). Let $\mathcal{S} \notin \mathcal{T C}$ and s be a state of \mathcal{S}. Then, $s \in \operatorname{Inf} \mathcal{\mathcal { S }}$ iff there are a state (q, v) reachable from $\sin \llbracket \mathcal{S} \rrbracket$ and a non-null run of \mathcal{S} from (q, v) to a state $\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree in Var \backslash Unc.

Proof. Let $\mathcal{S} \notin \mathcal{T C}$ and s be a state of \mathcal{S}. For the right implication \Rightarrow, assume that $s \in \operatorname{Inf} \mathcal{S}_{\mathcal{S}}$. Hence, there is an infinite run from s in \mathcal{S}. Then, by Lemma 4, the result follows.

For the left implication \Leftarrow, assume that there is a state (q, v) reachable from s in $\llbracket \mathcal{S} \rrbracket$ and a non-null run π of \mathcal{S} from (q, v) to a state $\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree in Var $\backslash U n c$. By applying the pumping lemma (Lemma 8) to the non-null run π, it follows that there is a non-null finite run π^{\prime} in \mathcal{S} from state (q, v) to a state $\left(q, v^{\prime \prime}\right)$ such that $v^{\prime \prime} \succeq_{G} v$. Thus, by applying repeatedly Lemma 7 , we deduce that there is an infinite run of \mathcal{S} from (q, v). Since (q, v) is reachable from s in $\llbracket \mathcal{S} \rrbracket$, we obtain that $s \in \operatorname{In} f_{\mathcal{S}}$, which concludes.

Construction of an MG representation of $\operatorname{Inf}_{\mathcal{S}}$. By using the characterization lemma for non-termination (Lemma 9), we can prove the main result of this subsection.

Theorem 3. The set $\operatorname{Inf}_{\mathcal{S}}$ is MG representable and one can construct an MG representation of $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$, written $\sigma(\mathcal{S})$, satisfying the following:

1. $\lfloor\sigma(\mathcal{S})\rfloor_{K}$ can be computed in polynomial time;
2. $\lfloor\sigma(\mathcal{S})\rfloor_{K}=\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}\left(\lfloor\mathcal{S}\rfloor_{K}\right.$ is a simple GCS $)$.

Proof. First, assume that $\mathcal{S} \in \mathcal{T C}$. Then, by Proposition 11, $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}=\operatorname{Inf}\left\lfloor\mathcal{S}_{\rfloor_{K}}=\emptyset\right.$, hence the result trivially holds. Now, assume that $\mathcal{S} \notin \mathcal{T} \mathcal{C}$. By Theorem 2, one can compute a finite set $\mathcal{P}_{\mathcal{S}}$ of non-null finite paths of \mathcal{S} from q to q such that for each non-null finite path \wp^{\prime} of \mathcal{S} from q to q, there is a path $\wp \in \mathcal{P}$ so that $\rightsquigarrow_{\wp^{\prime}}$ implies \rightsquigarrow_{\wp}. Let $G_{=, \mathcal{S}}$ be the transitional MG (depending on \mathcal{S}) corresponding to the GC given by $\bigwedge_{x \in \operatorname{Var} \backslash U n c} x^{\prime}=x$ and $\mathcal{G}_{\mathcal{S}}$ be the set of transitional MG given by

$$
\mathcal{G}_{\mathcal{S}}=\left\{G_{\wp} \bullet\left(G_{\wp}, \sqcap G_{=, \mathcal{S}}\right) \mid \wp, \wp^{\prime} \in \mathcal{P} \mathcal{S}\right\} \cup\left\{G_{\wp} \sqcap G_{=, \mathcal{S}} \mid \wp \in \mathcal{P}_{\mathcal{S}}\right\}
$$

where for each $\wp \in \mathcal{P}_{\mathcal{S}}, G_{\wp}$ is the transitional MG associated with the path \wp, which characterizes the reachability relation \rightsquigarrow_{\wp}. Then, $\sigma(\mathcal{S})=\left\{\sigma(\mathcal{S})_{q_{0}}, \sigma(\mathcal{S})_{q}\right\}$ where
$\sigma(\mathcal{S})_{q}=\left\{G^{\prime} \mid G^{\prime}\right.$ is the projection of $G^{\prime \prime}$ over Var for some $\left.G^{\prime \prime} \in \mathcal{G}_{\mathcal{S}}\right\}$,
$\sigma(\mathcal{S})_{q_{0}}=\left\{G^{\prime} \mid G^{\prime}\right.$ is the projection of $G_{0} \bullet G^{\prime \prime}$ over Var for some $\left.G^{\prime \prime} \in \mathcal{G}_{\mathcal{S}}\right\}$.
Correctness of the construction easily follows from Lemma 9 and Theorem 2. It remains to prove Properties 1 and 2.
Proof of Property 1. By Definition 6, for all transitional MG G^{\prime} and $G^{\prime \prime}, G^{\prime} \bullet G^{\prime \prime}=\overline{G^{\prime} \bullet G^{\prime \prime}}$. Thus, $\sigma(\mathcal{S})_{q}$ and $\sigma(\mathcal{S})_{q_{0}}$ can be rewritten as:

$$
\sigma(\mathcal{S})_{q}=\left\{\left(\overline{G^{\prime}}\right)_{V a r} \mid G^{\prime} \in \mathcal{G S}_{\mathcal{S}}\right\} \quad \text { and } \quad \sigma(\mathcal{S})_{q_{0}}=\left\{\left(G_{0} \bullet G^{\prime}\right)_{V a r} \mid G^{\prime} \in \mathcal{G}_{\mathcal{S}}\right\}
$$

Thus, by Propositions 6 and 7, we obtain

$$
\begin{align*}
\left\lfloor\sigma(\mathcal{S})_{q}\right\rfloor_{K} & =\left\{\left(\left\lfloor\overline{G^{\prime}}\right\rfloor_{K}\right)_{V a r} \mid G^{\prime} \in\left\lfloor\mathcal{G}_{\mathcal{S}}\right\rfloor_{K}\right\}, \tag{1}\\
\left\lfloor\sigma(\mathcal{S})_{q}\right\rfloor_{K} & \left.=\left\{\left(\left\lfloor G_{0}\right\rfloor_{K} \bullet G^{\prime}\right\rfloor_{K}\right)_{V a r} \mid G^{\prime} \in\left\lfloor\mathcal{G}_{\mathcal{S}}\right\rfloor_{K}\right\} . \tag{2}
\end{align*}
$$

Now, let us consider the set $\left\lfloor\mathcal{G}_{\mathcal{S}}\right\rfloor_{K}$. Note that for each non-null finite path \wp from q, G_{\wp} is given by G^{k} for some $k \geqslant 1$. Since G is idempotent, by Proposition 7, we obtain that for each $\wp \in \mathcal{P}_{\mathcal{S}},\left\lfloor G_{\wp}\right\rfloor_{K}=\lfloor G\rfloor_{K}$. Since $G_{=, \mathcal{S}}$ is K-bounded, applying again Proposition 7, we obtain

$$
\begin{equation*}
\left\lfloor\mathcal{G}_{\mathcal{S}}\right\rfloor_{K}=\left\{\left\lfloor\lfloor G\rfloor_{K} \bullet\left(\lfloor G\rfloor_{K} \sqcap G_{=, \mathcal{S}}\right)\right\rfloor_{K},\lfloor G\rfloor_{K} \sqcap G_{=, \mathcal{S}}\right\} \tag{3}
\end{equation*}
$$

By equalities (1)-(3), Property 1 follows.
Proof of Property 2. By Proposition 11, $\lfloor\mathcal{S}\rfloor_{K}$ is a simple GCS such that $\lfloor\mathcal{S}\rfloor_{K} \notin \mathcal{T} \mathcal{C}$. Moreover, the sets of unconstrained variables of \mathcal{S} and $\lfloor\mathcal{S}\rfloor_{K}$ coincide. Hence, $G_{=,\left\lfloor\mathcal{S}_{K}\right.}=G_{=, \mathcal{S}}$. By equality (3), it follows that $\left\lfloor\mathcal{G}_{\left\lfloor\mathcal{S}_{K}\right.}\right\rfloor_{K}=\left\lfloor\mathcal{G}_{\mathcal{S}}\right\rfloor_{K}$. Thus, by equalities (1)-(2), $\lfloor\sigma(\mathcal{S})\rfloor_{K}=\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}$, and we are done. This concludes the proof of Theorem 3.

Additional results on the termination condition. By using the characterization lemma for non-termination (Lemma 9) and Lemma 3 in Section 4.1, we show that the termination condition is also a necessary condition for emptiness of $\operatorname{Inf} \mathcal{S}_{\mathcal{S}}$.

Theorem 4. If $\mathcal{S} \notin \mathcal{T C}$, then the set of states s with control point q_{0} (resp., q) such that $s \in \operatorname{Inf} \mathcal{S}_{\mathcal{S}}$ is non-empty.
Proof. Let $\mathcal{S} \notin \mathcal{T C}$. Evidently, it suffices to prove that the set of states s with control point q_{0} such that $s \in \operatorname{Inf} \mathcal{S}$ is nonempty. Then, by the characterization lemma (Lemma 9), it suffices to show that there are $k \geqslant 1, n \geqslant 1$, and valuations ν_{0}, ν, and ν^{\prime} over Var such that $\left(v_{0} \oplus v\right) \in \operatorname{Sat}\left(G_{0} \bullet G^{k}\right),\left(\nu \oplus v^{\prime}\right) \in \operatorname{Sat}\left(G^{n}\right)$, and v and ν^{\prime} agree on Var \backslash Unc. Recall that for all $k \geqslant 1$ and $n \geqslant 1, G_{0} \bullet G^{k}$ and G^{n} are satisfiable (Proposition 10). Thus, by definition of the composition operator and Proposition $4(2), G_{0} \bullet G^{k}$ and G^{n} are normalized if $n>1$. Therefore, by Proposition 4(1), the result directly follows from the following claim, whose proof is given below.

Claim. There are $k \geqslant 1, n>1$, and a valuation v over Var satisfying the following:

1. $(\nu \oplus v)_{\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)}$ is a solution of the restriction of G^{n} to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$;
2. $\nu\left[\mathrm{Var}^{\prime} \leftarrow \mathrm{Var}\right]$ is a solution of the restriction of $G_{0} \bullet G^{k}$ to Var'.

Proof of the claim. Recall that for each bounded variable $\mathrm{B}_{i} \in \mathcal{B}, G \models M I N \leqslant \mathrm{~B}_{i} \leqslant M A X$. Thus, since $G_{0} \bullet G^{h}$ is satisfiable for all $h \geqslant 1$, it follows that there are $k \geqslant 1, n>1$, and a valuation ν_{0} over Var such that

- $\left(v_{0} \oplus v_{0}\right)_{\mathcal{B} \cup \mathcal{B}^{\prime}}$ is a solution of the restriction of G^{n} to $\mathcal{B} \cup \mathcal{B}^{\prime}$;
- $\nu_{0}\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]$ is a solution of the restriction of $G_{0} \bullet G^{k}$ to Var' $^{\prime}$.

Thus, if $\operatorname{Var}=\mathcal{B}$, then the result follows. Now, assume that $\operatorname{Var} \backslash \mathcal{B} \neq \emptyset$. For a valuation v over Var, let $N(\nu)$ be the natural number defined as

$$
N(v) \stackrel{\text { def }}{=} \min (\{|v(u)-v(v)| \mid u \in \operatorname{Var} \cup \text { Const, } v \in \operatorname{Var} \backslash \mathcal{B} \text { and } G \notin v=u\}) .
$$

Since G is idempotent and for each variable $x \in \operatorname{Var} \backslash \mathcal{B}$, either $G \models x<M I N$ or $G \models M A X<x$, it follows that for all $H \geqslant 1$, there is a valuation v over Var such that $N(\nu) \geqslant H, v$ is a solution of the restriction of G^{n} to Var, and v and ν_{0} agree on \mathcal{B}. We choose v in such a way that $N(\nu) \geqslant \max \left(\left\{\Delta_{n}, \Delta_{0, k}\right\}\right)$, where Δ_{n} (resp., $\Delta_{0, k}$) is the maximum over the edge weights of G^{k} (resp., $G_{0} \bullet G^{k}$). Now, we show that v satisfies Properties 1 and 2 of the claim.

- Property 1. Since G is idempotent and balanced, by construction and definition of $N(\nu)$, we easily deduce the following: $-\nu\left[\operatorname{Var}^{\prime} \leftarrow \operatorname{Var}\right]$ is a solution of the restriction of G^{n} to Var';
- $(\nu \oplus v)_{V_{\text {ar }} \cup \mathcal{B}^{\prime}}$ is a solution of the restriction of G^{n} to $\operatorname{Var} \cup \mathcal{B}^{\prime}$.

Thus, since $\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right) \backslash \mathcal{B}^{\prime}=\left\{\mathrm{L}_{L_{c}}^{\prime}, \ldots, \mathrm{L}_{L}^{\prime}, \mathrm{U}_{1}^{\prime}, \ldots, \mathrm{U}_{U_{c}}^{\prime}\right\}$, it remains to show that for all $x \in \operatorname{Var}$ and $y \in\left\{\mathrm{~L}_{L_{c}}, \ldots, \mathrm{~L}_{L}, \mathrm{U}_{1}\right.$, $\ldots, \mathrm{U}_{U_{c}}$ \}, whenever $x \xrightarrow{k} y^{\prime}$ (resp., $y^{\prime} \xrightarrow{k} x$) is an edge of G^{n}, then $v(x)-v(y) \geqslant k$ (resp., $v(y)-v(x) \geqslant k$). We consider the edges of the form $x \xrightarrow{k} y^{\prime}$ (for the other edges, the proof is similar). Thus, let $x \xrightarrow{k} y^{\prime}$ be an edge of G^{n} such that $x \in \operatorname{Var}$ and $y \in\left\{\mathrm{~L}_{L_{c}}, \ldots, \mathrm{~L}_{L}, \mathrm{U}_{1}, \ldots, \mathrm{U}_{U_{c}}\right\}$. We need to show that $v(x)-v(y) \geqslant k$. Since G is idempotent and complete, either $G \models y^{\prime}<x$, or $G \models y^{\prime}=x$ and $k=0$. Since $\mathcal{S} \notin \mathcal{T C}$, by Lemma 4, the pair (L_{c}, U_{c}) is well-formed w.r.t. G. Hence, we can apply Lemma 3, obtaining that either $G \models y<x$ and $G^{n} \models y<x$, or $G \models y=x, G^{n} \models y=x$, and $k=0$. Since ν is a solution of the restriction of G^{n} to Var, by definition of $N(\nu)$, we obtain that either $\nu(x)-\nu(y) \geqslant N(\nu)$, or $\nu(x)-v(y)=0$ and $k=0$. Thus, since $N(v) \geqslant \Delta_{n} \geqslant k$, the result follows.

- Property 2. Since G is complete, by the definition of the composition operator, G and $G_{0} \bullet G^{k}$ induce the same total ordering on $\operatorname{Var}^{\prime} \cup$ Const. Thus, since G is balanced, $N(\nu) \geqslant \Delta_{0, k}, \nu$ and ν_{0} agree on \mathcal{B}, and $\nu_{0}\left[V a r^{\prime} \leftarrow \operatorname{Var}\right]$ is a solution of the restriction of $G_{0} \bullet G^{k}$ to $V a r^{\prime}$, it follows that v satisfies Property 2 in the claim, which concludes.

By Proposition 11 and Theorem 4, it follows that the termination condition represents a criterion for checking termination and termination w.r.t. a designated control point of simple GCS. Hence, we obtain the following result.

Corollary 1. The termination problem and the termination problem w.r.t. a designated control point of simple GCS can be solved in polynomial time.

Note that Corollary 1 can also be directly deduced from Property 1 of Theorem 3. We conclude this subsection by making the following observation, which will be used in Section 4.3.

Corollary 2. For each state s of \mathcal{S} with control point $q, s \in \operatorname{Unb}_{\mathcal{S}}$ iff $s \in \operatorname{Inf}_{\mathcal{S}}$.
Proof. The result easily follows from Proposition 11, Lemma 4, and Lemma 9.

4.3. Strong termination for simple GCS

First, we outline the proposed approach to solve strong termination for simple GCS. We define a polynomial-time checkable condition on simple GCS, called unboundedness condition, such that the K-bounded approximation scheme is sound and complete w.r.t. this condition. We show that this condition characterizes the simple GCS whose set of unbounded states with initial control point is non-empty. By Proposition 11, Theorem 4, and Corollary 2, the termination condition characterizes the simple GCS such that the set of unbounded states whose control point is the one associated with the self-loop is empty. Thus, we obtain polynomial-time algorithms to solve strong termination and strong termination w.r.t. a designated control point of simple GCS. Moreover, we show that $U n b_{\mathcal{S}}$ is effectively MG representable and one can compute separately and in polynomial time the K-bounded approximation of the computable MG representation $\sigma(\mathcal{S})$ of $U^{\prime} b_{\mathcal{S}}$ (we are not able to give an upper bound on the size of $\sigma(\mathcal{S})$).

The rest of this subsection is organized as follows. After having formally defined the unboundedness condition (Definition 18), we show by Proposition 12 that it represents a necessary condition for the existence of unbounded states with initial control point, and, additionally, the K-bounded approximation scheme is sound and complete w.r.t. the unboundedness condition. Next, we provide by Lemma 15, a characterization of the set of unbounded states of \mathcal{S} with initial control point under the assumption that \mathcal{S} satisfies the unbounded condition. Similarly to the characterization lemma for nontermination, the unboundedness characterization is given in terms of a subset of the lower and upper variables of G, called the set of unconstrained variables for unboundedness (Definition 19) (however, here, the proof of the characterization lemma is more involved). The characterization lemma is then used in the main result of this subsection (Theorem 5) to show that one can construct an MG representation of $U n b_{\mathcal{S}}$ whose K-bounded approximation can be computed in polynomial time. Finally, by using Lemma 15 and Lemma 3 in Section 4.1, we show (Theorem 6) that the unboundedness condition is also a sufficient condition for the existence of unbounded states with initial control point.

Unboundedness condition. In order to define the unboundedness condition, we need the following preliminary definition.

Definition 17. The transitional MG G_{0} (associated with the edge from the initial control point of the fixed simple GCS \mathcal{S}) is bounded if the following hold:

- for all $1 \leqslant i \leqslant L, G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}$ for some lower variable L of G_{0} in Var;
- for all $1 \leqslant i \leqslant U, G_{0} \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}$ for some upper variable u of G_{0} in Var.

Thus, G_{0} is bounded if each lower (resp., upper) variable of G in $V a r^{\prime}$ is lower (resp., upper) bounded in G_{0} by a lower (resp., upper) variable of G_{0} in Var. Recall that

$$
G \models \mathrm{~L}_{1} \triangleleft_{2} \cdots \triangleleft_{L} \mathrm{~L}_{L}<M I N \leqslant \mathrm{~B}_{1} \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime} \mathrm{B}_{B} \leqslant M A X<\mathrm{U}_{1} \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \mathrm{U}_{U}
$$

where $\triangleleft_{2} \cdots \triangleleft_{L}, \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime}, \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \in\{<,=\}$. Since $G_{0} \bullet G$ is satisfiable and G and G_{0} are complete, it follows that

$$
G_{0} \models \mathrm{~L}_{1}^{\prime} \triangleleft_{2} \cdots \triangleleft_{L} \mathrm{~L}_{L}^{\prime}<M I N \leqslant \mathrm{~B}_{1}^{\prime} \triangleleft_{2}^{\prime} \cdots \triangleleft_{B}^{\prime} \mathrm{B}_{B}^{\prime} \leqslant M A X<\mathrm{U}_{1}^{\prime} \triangleleft_{2}^{\prime \prime} \cdots \triangleleft_{U}^{\prime \prime} \mathrm{U}_{U}^{\prime}
$$

Hence, the total ordering induced by the complete MG G_{0} over Var' \cup Const corresponds to the total ordering induced by G on Var \cup Const. As a consequence, boundedness of G_{0} ensures that for each state s_{0} with control point q_{0}, the set of states reachable in $\llbracket \mathcal{S} \rrbracket$ from s_{0} in a single step is finite.

Definition 18 (Unboundedness condition). We say that the fixed simple GCS \mathcal{S} satisfies the unboundedness condition if one of the following holds:

- either G_{0} is bounded and $\mathcal{S} \notin \mathcal{T C}$,
- or G_{0} is not bounded and none of the following properties holds:
lower variables: there is a lower variable L of G_{0} in Var such that
- either $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}$ and $G \models \mathrm{~L}_{i}<\mathrm{L}_{i}^{\prime}$ for some $1 \leqslant i \leqslant L$,
- or $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}, G \models \mathrm{~L}_{i}=\mathrm{L}_{i}^{\prime}$, and $G \models \mathrm{~L}_{j}^{\prime}<\mathrm{L}_{j}$ for some $1 \leqslant i<j \leqslant L$.
upper variables: there is an upper variable U of G_{0} in Var such that
- either $G_{0} \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}$ and $G \models \mathrm{U}_{i}^{\prime}<\mathrm{U}_{i}$ for some $1 \leqslant i \leqslant U$,
- or $G_{0} \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}, G \models \mathrm{U}_{i}=\mathrm{U}_{i}^{\prime}$, and $G \models \mathrm{U}_{j}^{\prime}>\mathrm{U}_{j}$ for some $1 \leqslant j<i \leqslant U$.

Intuitively, the unboundedness condition requires that \mathcal{S} does not satisfy the termination condition if G_{0} is bounded, and the following hold otherwise: (i) there is no lower (resp., upper) variable of G in $V a r^{\prime}$ - or equivalently of G in Var whose value strictly increases (resp., decreases) along each run of \mathcal{S} and at the same time is lower (resp., upper) bounded in G_{0} by a lower (resp., upper) variable of G_{0} in Var, and (ii) there is no pair of lower (resp., upper) variables of G in $V a r^{\prime}$ whose distance strictly decreases along each run of \mathcal{S}, and at the same time is lower (resp., upper) bounded in G_{0} by a lower (resp., upper) variable of G_{0} in Var. Let $\mathcal{U C}$ be the class of simple GCS satisfying the unboundedness condition. We make the following observation.

Proposition 12. $\mathcal{S} \in \mathcal{U C}$ if and only if $\lfloor\mathcal{S}\rfloor_{K} \in \mathcal{U C}$. Moreover, if $\mathcal{S} \notin \mathcal{U C}$, then all the states with initial control point q_{0} are strongly terminating.

Proof. The first part of the proposition easily follows from Definitions 15, 17, and 18. For the second part of the proposition, assume that $\mathcal{S} \notin \mathcal{U C}$, and let s_{0} be a state with control point q_{0}. We need to show that s_{0} is strongly terminating. We distinguish two cases:

- G_{0} is bounded: hence, the set of states reachable from s_{0} in a single step is finite (note that these states have control point q). Thus, it suffices to show that each state from control point q is strongly terminating. Since $\mathcal{S} \notin \mathcal{U C}$, by Definition 18, $\mathcal{S} \in \mathcal{T C}$. Thus, by Proposition 11, the result follows in this case.
- G_{0} is not bounded: since $\mathcal{S} \notin \mathcal{U C}$, by Definition 18 , either the condition for the lower variables or the condition for the upper variable in Definition 18 is satisfied. Hence, the result easily follows.

Characterization of the set of unbounded states with initial control point. It remains to consider the case when $\mathcal{S} \in \mathcal{U C}$. We first provide (under the assumption that $\mathcal{S} \in \mathcal{U C}$), a characterization of the set of unbounded states of \mathcal{S} with control point q_{0}. This characterization is similar to the characterization lemma for non-termination given in Section 4.2 (Lemma 9), but the set Unc of unconstrained variables is defined differently.

Definition 19 (Unconstrained variables for unboundedness). We define four integers L_{0}, U_{0}, L_{c}, and U_{c} as follows: L_{0} is the smallest $1 \leqslant i \leqslant L$ such that $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}$ for some lower variable L of G_{0} in Var (if such an i does not exist, we set $L_{0}=L+1$), while U_{0} is the greatest $1 \leqslant i \leqslant U$ such that $G_{0} \models \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}$ for some upper variable U of G_{0} in Var (if such an i does not exist, we set $U_{0}=0$). Moreover, L_{c} and U_{c} are defined as in Definition 16 if G_{0} is bounded, and as follows otherwise: L_{c} is the smallest $L_{0} \leqslant i \leqslant L+1$ such that $G \models \mathrm{~L}_{i}=\mathrm{L}_{i}^{\prime}$, while U_{c} is the greatest $0 \leqslant i \leqslant U_{0}$ such that $G \models \mathrm{u}_{i}^{\prime}=\mathrm{U}_{i}$. Note that if G_{0} is not bounded, $1 \leqslant L_{0} \leqslant L_{c} \leqslant L+1$ and $0 \leqslant U_{c} \leqslant U_{0} \leqslant U$. The set of unconstrained variables w.r.t. G_{0} in Var, written Unc c_{0}, consists of the lower variables $L_{1} \ldots L_{L_{0}-1}$ and the upper variables $U_{U_{0}+1}, \ldots, U_{U}$. We denote by $U n c_{0}{ }^{\prime}$ the corresponding set in $\operatorname{Var}^{\prime}$. Moreover, the set of unconstrained variables for unboundedness in Var, written Unc, consists of the lower variables $L_{1} \ldots L_{L_{c}-1}$ and the upper variables $U_{U_{c}+1}, \ldots, U_{U}$. We denote by $U n c^{\prime}$ the corresponding set in Var'. Note that if G_{0} is not bounded, then $U n c_{0} \subseteq U n c$. (See Fig. 7.)

Here, the term "unconstrained" used to denote the variables in $U n c \cup U n c^{\prime}$ has a weaker meaning than the one in Section 4.2. Indeed, here the distances (gaps) between the primed unconstrained variables x^{\prime} and y^{\prime} in Unc such that $G \models x^{\prime} \neq y^{\prime}$ are not in general unbounded, since they may be constrained by the values of the variables in Unco (see Lemma 11). However, if G_{0} is not bounded and $\mathcal{S} \in \mathcal{U C}$, then we will show that $U n c_{0}$ is non-empty and for a given initial state $\left(q_{0}, v_{0}\right)$, the set of the values assumed by the variables in $U n c_{0}$ in the states (q, v) reachable from $\left(q_{0}, v_{0}\right)$ is unbounded. This will allow us to provide (under the assumption that $\mathcal{S} \in \mathcal{U C}$) a characterization of the set of unbounded states of \mathcal{S} with control point q_{0} similar to the characterization lemma for non-termination given in Section 4.2. Now, we proceed with the technical details.

We make the following observations (in particular, if G_{0} is not bounded, then the sets of unconstrained variables $U n c_{0}$ and Unc are non-empty). Recall that $\mathrm{L}_{L+1}, \mathrm{~L}_{L+1}^{\prime} \stackrel{\text { def }}{=} M I N$ and $\mathrm{U}_{0}, \mathrm{U}_{0}^{\prime} \stackrel{\text { def }}{=} M A X$.

Fig. 7. Unconstrained variables for unboundedness in the transitional MG G.

Lemma 10. The following hold:

1. An upper (resp., lower) variable x^{\prime} of G in Var' is upper (resp., lower) bounded in G_{0} by some upper (resp., lower) variable of G_{0} in Var iff $x^{\prime} \notin U n c_{0}{ }^{\prime}$.
2. For all lower variables $\mathrm{L}_{i} \in U n c_{0}, G_{0} \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{L_{0}}^{\prime}$ and $G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{0}}$.
3. For all upper variables $\mathrm{U}_{i} \in U n c_{0}, G_{0} \models \mathrm{U}_{U_{0}}^{\prime}<\mathrm{U}_{i}^{\prime}$ and $G \models \mathrm{U}_{U_{0}}<\mathrm{U}_{i}$.
4. For all lower variables $\mathrm{L}_{i} \in$ Unc, $G_{0} \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{L_{c}}^{\prime}$ and $G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{c}}$.
5. For all upper variables $\mathrm{U}_{i} \in U n c, G_{0} \models \mathrm{U}_{U_{c}}^{\prime}<\mathrm{U}_{i}^{\prime}$ and $G \models \mathrm{U}_{U_{c}}<\mathrm{U}_{i}$.
6. For each valuation ν_{0} over Var, the set of valuations $\left\{v_{(V a r \backslash U n c)} \mid(q, v)\right.$ is reachable from $\left(q_{0}, v_{0}\right)$ in $\left.\llbracket \mathcal{S} \rrbracket\right\}$ is finite.
7. If G_{0} is not bounded, then $U n c_{0}$ and Unc are non-empty.

Proof. Properties 1-5 easily follow from Definitions 17 and 19, and the observation that the total ordering on $\operatorname{Var}^{\prime} \cup$ Const induced by the complete transitional MG G_{0} corresponds to the total ordering induced by G on Var \cup Const. For Property 6 , fix a valuation ν_{0} over Var. Let L be a lower variable of G_{0} in Var such that $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{L_{c}}^{\prime}$ if $L_{c} \neq L+1$, and $\mathrm{L}=$ MIN otherwise. Moreover, let u be an upper variable of G_{0} in Var such that $G_{0} \models \mathrm{U}_{U_{c}}^{\prime} \leqslant \mathrm{U}$ if $U_{c} \neq 0$, and $\mathrm{U}=M A X$ otherwise. Note that by Definitions 17 and 19, L and U are well-defined. Moreover, for each state (q, v) reachable from $\left(q_{0}, \nu_{0}\right)$ in $\llbracket \mathcal{S} \rrbracket$, it holds that $\nu_{0}(\mathrm{~L}) \leqslant \nu(x) \leqslant \nu_{0}(\mathrm{U})$ for all $x \in \operatorname{Var} \backslash U n c$. Hence, Property 6 follows. It remains to prove Property 7. Let G_{0} be non-bounded. By Definition 17, either there is a lower variable L_{i} such that L_{i}^{\prime} is not lower bounded in G_{0} by any lower variable of G_{0} in Var, or there is an upper variable U_{i} such that U_{i}^{\prime} is not upper bounded in G_{0} by any upper variable of G_{0} in Var. Thus, by Property 1, it follows that $U n c_{0} \neq \emptyset$. Thus, since $U n c_{0} \subseteq U n c$, the result follows.

Now, we show that if \mathcal{S} satisfies the unboundedness condition and G_{0} is not bounded, then no primed lower (resp., upper) unconstrained variable is lower (resp., upper) bounded in G by a lower (resp., upper) variable in $U n c \backslash U n c_{0}$.

Lemma 11. Assume that $\mathcal{S} \in \mathcal{U C}$ and G_{0} is not bounded. Then, the following hold:
Lower variables: for all $\mathrm{L}_{i} \in U n c \backslash$ Unc c_{0} and $\mathrm{L}_{j} \in U n c, G \not \vDash \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$.
Upper variables: for all $\mathrm{U}_{i} \in U n c$ and $\mathrm{U}_{j} \in U n c \backslash U n c_{0}, G \not \vDash \mathrm{U}_{i}^{\prime} \leqslant \mathrm{U}_{j}$.

Proof. Lower variables. We assume that the result does not hold and derive a contradiction. Hence, there are $\mathrm{L}_{i} \in U n c \backslash U n c_{0}$ and $\mathrm{L}_{j} \in U n c$ such that $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$. Since $\mathrm{L}_{i} \notin U n c_{0}$, by Lemma $10(1)$, there is a lower variable L of G_{0} in Var such that $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}$. Moreover, since G_{0} is not bounded, by Definition $19, L_{0} \leqslant i<L_{c}$ and $1 \leqslant j<L_{c}$. We distinguish two cases:

- $j \leqslant i$: hence, $G \models \mathrm{~L}_{j}^{\prime} \leqslant \mathrm{L}_{i}^{\prime}$. Since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$, it follows that $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{i}^{\prime}$.
- $j>i$: since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{j}^{\prime}$, by applying repeatedly Lemma 1 (1) in Section 4.1, it follows that there is $i \leqslant h \leqslant j$ so that $G \models \mathrm{~L}_{h} \leqslant \mathrm{~L}_{h}^{\prime}$. Note that $L_{0} \leqslant h<L_{c}$. Moreover, since $G \models \mathrm{~L}_{i} \leqslant \mathrm{~L}_{h}$, it hold that $G_{0} \models \mathrm{~L}_{i}^{\prime} \leqslant \mathrm{L}_{h}^{\prime} .{ }^{6}$ Thus, since $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{i}^{\prime}$, it follows that $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{h}^{\prime}$.

[^6]Thus, in both cases we obtain that $G \models \mathrm{~L}_{k} \leqslant \mathrm{~L}_{k}^{\prime}$ and $G_{0} \models \mathrm{~L} \leqslant \mathrm{~L}_{k}^{\prime}$ for some $L_{0} \leqslant k<L_{c}$ and lower variable L of G_{0} in Var. Since G is complete, $G \models \mathrm{~L}_{k} \triangleleft \mathrm{~L}_{k}^{\prime}$ for some $\triangleleft \in\{<,=\}$, which is a contradiction by definition of L_{c} (Definition 19) and the fact that $\mathcal{S} \in \mathcal{U C}$ and G_{0} is not bounded. Hence, the result follows.

Upper variables. This case is analogous to the previous case with the unique difference that now we use Lemma $2(1)$ in Section 4.1. Thus, we omit the details here.

For a valuation v over Var, let $N_{0}(\nu)$ and $N_{C}(\nu)$ be the natural numbers defined as follows:

$$
\begin{aligned}
& N_{0}(v) \stackrel{\text { def }}{=} \min \left\{|v(x)-v(y)| \mid x, y \in U n c_{0} \cup\left\{\mathrm{~L}_{L_{0}}, U_{U_{0}}\right\}, \text { and either } G \models x<y \text { or } G \models y<x\right\}, \\
& N_{c}(v) \stackrel{\text { def }}{=} \min \left\{|\nu(x)-v(y)| \mid x, y \in U n c \cup\left\{\mathrm{~L}_{L_{c}}, \mathrm{U}_{U_{c}}\right\}, \text { and either } G \models x<y \text { or } G \models y<x\right\}
\end{aligned}
$$

where the minimum of the empty set is 0 . Thus, for a valuation v over Var, $N_{0}(v)$ (resp., $N_{c}(v)$) represents the minimum over the distances between the values of variables x and y in $U n c_{0} \cup\left\{\mathrm{~L}_{L_{0}}, \mathrm{U}_{U_{0}}\right\}$ (resp., $x, y \in U n c \cup\left\{\mathrm{~L}_{L}, \mathrm{U}_{U}\right\}$) such that $G \not \vDash x=y$. Note that if G_{0} is not bounded, then, since $U n c_{0} \subseteq U n c$, it holds that $N_{c}(v) \leqslant N_{0}(v)$.

Now, in order to provide a characterization of the set of unbounded states of \mathcal{S} with initial control point, we give three technical lemmata (Lemmata 12-14 below). The first lemma holds under the assumption that G_{0} is not bounded, and ensures the following property. Let s_{0} be a state of \mathcal{S} with initial control point q_{0} and (q, v) be a state satisfying the following requirement: (q, v) is reachable from s_{0} in $\llbracket \mathcal{S} \rrbracket$ in a single step and v is a solution of $G_{\text {Var }}$ (the restriction of G to Var). Then, the set of states $\left(q, v^{\prime}\right)$ satisfying the same requirement as (q, v) and such that v and v^{\prime} agree on $\operatorname{Var} \backslash U n c_{0}$ is infinite, and the associated set of natural numbers $N_{0}\left(v^{\prime}\right)$ is infinite as well.

Lemma 12. Assume that G_{0} is not bounded. Let $\nu_{0} \oplus v \in \operatorname{Sat}\left(G_{0}\right)$ and $v \in \operatorname{Sat}\left(G_{V a r}\right)$. Then, the following set of natural numbers is infinite

$$
\left\{N_{0}\left(v^{\prime}\right) \mid v_{0} \oplus v^{\prime} \in \operatorname{Sat}\left(G_{0}\right), v^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right), \text { and } v \text { and } v^{\prime} \text { agree on } \operatorname{Var} \backslash \operatorname{Unc} c_{0}\right\} .
$$

Proof. By Lemma $10(1)$, no upper (resp., lower) variable in $U n c_{0}{ }^{\prime}$ can be upper (resp., lower) bounded in G_{0} by a variable in $\left(\operatorname{Var} \cup V a r^{\prime}\right) \backslash U n c_{0}{ }^{\prime}$. Moreover, by Lemma 10(7), if G_{0} is not bounded, then $U n c_{0}{ }^{\prime}$ is non-empty. Thus, since the total ordering on $V^{\prime} r^{\prime} \cup$ Const induced by G_{0} corresponds to the total ordering induced by G on Var \cup Const, by Lemma 10(2-3) and definition of $N_{0}(v)$, the result easily follows.

Let $\Delta \in \mathbb{N}$ be the maximum over the edge weights of G. The second technical lemma ensures the following crucial property. Let $\pi=\left(q, v_{0}\right) \ldots\left(q, v_{n}\right)$ be a non-null run of \mathcal{S} such that v_{0} and v_{n} agree on Var \backslash Unc. Then, for all $k \geqslant 1$ and valuations $v \in \operatorname{Sat}\left(G_{V a r}\right)$ such that v and v_{0} agree on $\operatorname{Var} \backslash U n c$, if $N_{c}(v)$ is sufficiently large, then there is also a run of length greater than k from (q, v) (intuitively, obtained by pumping the pseudo-cycle π).

Lemma 13 (Pumping lemma for unboundedness). Let $\nu_{0} \oplus \nu_{0}^{\prime} \in \operatorname{Sat}(G)$ and $v \in \operatorname{Sat}\left(G_{V a r}\right)$ such that ν_{0} and v agree on Var \backslash Unc, $\left(v_{0}^{\prime}\right)_{V a r \backslash U n c} \in \operatorname{Sat}\left(G_{V a r \backslash U n c}\right)$, and $\left\lceil\frac{N_{c}(v)}{|\operatorname{Var}|+1}\right\rceil>\Delta$. Then, there exists a valuation $v^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right)$ such that $v \oplus \nu^{\prime} \in \operatorname{Sat}(G)$, v_{0}^{\prime} and v^{\prime} agree on Var $\backslash U n c$, and $N_{c}\left(\nu^{\prime}\right) \geqslant\left\lceil\frac{N_{c}(\nu)}{|\operatorname{Var}|+1}\right\rceil$.

Proof. Let ν_{0}, v_{0}^{\prime}, and v as in the statement of the lemma. First, we observe the following.
Claim. The restriction of $v \oplus v_{0}^{\prime}$ to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$ is a solution of the restriction of G to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$.
Proof of the claim. By hypothesis, $v \in \operatorname{Sat}\left(G_{V a r}\right), N_{c}(\nu)>\Delta$, and the restriction of $v \oplus v_{0}^{\prime}$ to (Var $\left.\backslash U n c\right) \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$ is a solution of the restriction of G to (Var $\backslash U n c) \cup\left(V a r^{\prime} \backslash U n c^{\prime}\right)$. Moreover, by Lemma 10(4-5), the following hold: (i) for all $\mathrm{L}_{i} \in U n c, G \vDash \mathrm{~L}_{i}<\mathrm{L}_{L_{c}}=\mathrm{L}_{L_{c}}^{\prime}$, (ii) for all $\mathrm{U}_{i} \in U n c, G \models \mathrm{U}_{U_{c}}^{\prime}=\mathrm{U}_{U_{c}}<\mathrm{U}_{i}$, and (iii) for all $x^{\prime} \in \operatorname{Var}^{\prime} \backslash U n c^{\prime}, G \vDash \mathrm{~L}_{L_{c}}^{\prime} \leqslant x^{\prime} \leqslant \mathrm{U}_{U_{c}}^{\prime}$. Thus, by definition of $N_{c}(\nu)$, the result easily follows.

Now, we prove Lemma 13. Since G is satisfiable, there exists a linear ordering of the set of vertices $U n c \cup U n c^{\prime} \cup\left\{\mathrm{U}_{U_{c}}, \mathrm{~L}_{L_{c}}\right\}$ which is consistent with the constraints of G (in particular, for all $\mathrm{L}_{i} \in U n c, G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{c}}$ and $G \models \mathrm{~L}_{i}^{\prime}<\mathrm{L}_{L_{c}}$, and for all $\mathrm{U}_{i} \in$ Unc, $G \vDash \mathrm{U}_{U_{c}}<\mathrm{U}_{i}$ and $G \models \mathrm{U}_{U_{c}}<\mathrm{U}_{i}^{\prime}$). Moreover, for two consecutive vertices $u, v \in\left\{\mathrm{U}_{U_{c}}, \ldots, \mathrm{U}_{U}\right\}$ (resp., $u, v \in\left\{\mathrm{~L}_{1}, \ldots, \mathrm{~L}_{L_{c}}\right\}$), with $G \not \vDash u=v$, the maximum number of variables in Unc' which lie (according to the above linear ordering) between u and v is at most $|\operatorname{Var}|$, and $|\nu(u)-v(v)| \geqslant N_{c}(\nu)$. By hypothesis, $\left\lceil\frac{N_{c}(\nu)}{|\operatorname{Var}|+1}\right\rceil>\Delta$ and $\left(v_{0}^{\prime}\right)_{V a r \backslash U n c} \in \operatorname{Sat}\left(G_{\operatorname{Var} \backslash \operatorname{Unc})}\right)$. Thus, since G is balanced, by the claim above, it follows that we can assign to the variables in Unc' integers values in such a way that the corresponding extension ν^{\prime} of $\left(\nu_{0}^{\prime}\right)_{V a r \backslash U n c}$ satisfies the statement of the lemma.

The third technical lemma, which is a consequence of Lemma 11, is a variant of the pumping lemma above and holds under the assumption that $\mathcal{S} \in \mathcal{U C}$ and G_{0} is not bounded.

Lemma 14. Assume that $\mathcal{S} \in \mathcal{U C}$ and G_{0} is not bounded. Let $v_{0} \oplus v_{0}^{\prime} \in \operatorname{Sat}(G)$ and $v \in \operatorname{Sat}\left(G_{\text {Var }}\right)$ such that v_{0} and v agree on $\operatorname{Var} \backslash U n c_{0}, v_{0}^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right)$, and $\left\lceil\frac{N_{0}(\nu)}{|\operatorname{Var}|+1}\right\rceil>\Delta$. Then, there exists a valuation $\nu^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right)$ such that $v \oplus \nu^{\prime} \in \operatorname{Sat}(G), v_{0}^{\prime}$ and v^{\prime} agree on Var $\backslash U n c$, and $N_{c}\left(\nu^{\prime}\right) \geqslant\left\lceil\frac{N_{0}(\nu)}{|\operatorname{Var}|+1}\right\rceil$.

Proof. Let ν_{0}, v_{0}^{\prime}, and v be as in the statement of the lemma. First, we observe the following.
Claim. The restriction of $v \oplus v_{0}^{\prime}$ to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$ is a solution of the restriction of G to $\operatorname{Var} \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$.

Proof of the claim. By hypothesis, $v \in \operatorname{Sat}\left(G_{V a r}\right), N_{0}(v)>\Delta$, and the restriction of $v \oplus v_{0}^{\prime}$ to $\left(\operatorname{Var} \backslash \operatorname{Unc}_{0}\right) \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$ is a solution of the restriction of G to $\left(\operatorname{Var} \backslash U n c_{0}\right) \cup\left(\operatorname{Var}^{\prime} \backslash U n c^{\prime}\right)$. Moreover, by Lemma 10(2-3), the following hold: (i) for all $\mathrm{L}_{i} \in U n c_{0}, G \models \mathrm{~L}_{i}<\mathrm{L}_{L_{0}} \leqslant \mathrm{~L}_{L_{c}}=\mathrm{L}_{L_{c}}^{\prime}$, (ii) for all $\mathrm{U}_{i} \in U n c_{0}, G \models \mathrm{U}_{U_{c}}^{\prime}=\mathrm{U}_{U_{c}} \leqslant \mathrm{U}_{U_{0}}<\mathrm{U}_{i}$, and (iii) for all $x^{\prime} \in \operatorname{Var}^{\prime} \backslash U n c^{\prime}$, $G \models \mathrm{~L}_{L_{c}}^{\prime} \leqslant x^{\prime} \leqslant \mathrm{U}_{U_{c}}^{\prime}$. Thus, by definition of $N_{0}(v)$, the result easily follows.

Now, we prove Lemma 14. By Lemma 11, the upper variables in Unc' are not upper-bounded by the upper variables in $U n c \backslash U n c_{0}$, and the lower variables in $U n c^{\prime}$ are not lower-bounded by the lower variables in Unc $\backslash U n c_{0}$. Hence, since G is satisfiable, there exists a linear ordering of the set of vertices $U n c \cup U n c^{\prime} \cup\left\{\mathrm{U}_{U_{c}}, \mathrm{~L}_{L_{c}}\right\}$ which is consistent with the constraints

$$
\mathrm{U}_{U_{0}}<\mathrm{U}_{U_{c}+1}^{\prime} \leqslant \cdots \leqslant \mathrm{U}_{U}^{\prime} \wedge \mathrm{L}_{1}^{\prime} \leqslant \cdots \leqslant \mathrm{L}_{L_{c}-1}^{\prime}<\mathrm{L}_{L_{0}}
$$

and with the constraints of G (in particular, $G \models U_{U_{0}}<U_{U_{0}+1} \leqslant \cdots \leqslant U_{U}$ and $G \models L_{1} \leqslant \cdots \leqslant L_{L_{0}-1}<L_{L_{0}}$). Moreover, for two consecutive vertices $u, v \in\left\{\mathrm{U}_{U_{0}}, \mathrm{U}_{U_{0}+1}, \ldots, \mathrm{U}_{U}\right\}$ (resp., $u, v \in\left\{\mathrm{~L}_{1}, \ldots, \mathrm{~L}_{L_{0}-1}, \mathrm{~L}_{L_{0}}\right\}$), with $G \not \vDash u=v$, the maximum number of variables in $U n c^{\prime}$ which lie (according to the above linear ordering) between u and v is at most $|\operatorname{Var}|$, and $|v(u)-v(v)| \geqslant$ $N_{0}(\nu)$. By hypothesis, $\left\lceil\frac{N_{0}(v)}{|\operatorname{Var}|+1}\right\rceil>\Delta$ and $\nu_{0}^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right)$. Thus, since G is balanced, by the claim above, it follows that we can assign to the variables in $U n c^{\prime}$ integers values in such a way that the corresponding extension ν^{\prime} of $\left(v_{0}^{\prime}\right)_{\operatorname{Var} \backslash U n c}$ satisfies the statement of the lemma.

By Lemmata 12-14, we obtain the following characterization of the set of states in $U^{2 n} b_{\mathcal{S}}$ with control point q_{0} (under the assumption that $\mathcal{S} \in \mathcal{U C}$).

Lemma 15 (Characterization lemma for unboundedness). Let $\mathcal{S} \in \mathcal{U C}$ and s_{0} be a state of \mathcal{S} with control point q_{0}. Then, $s_{0} \in U n b_{\mathcal{S}}$ iff there is a state (q, v) reachable from s_{0} in $\llbracket \mathcal{S} \rrbracket$ by a run of length at least 2 , and there is a non-null run of \mathcal{S} from (q, v) to a state $\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree in Var \backslash Unc.

Proof. Let $\mathcal{S} \in \mathcal{U C}$ and $s_{0}=\left(q_{0}, v_{0}\right)$ be a state of \mathcal{S} with control point q_{0}. For the right implication \Rightarrow, assume that $\left(q_{0}, v_{0}\right) \in U n b_{\mathcal{S}}$. Hence, the set of lengths of the finite runs from (q_{0}, v_{0}) is infinite. Then, by Lemma 10(6), the result follows.

For the left implication \Leftarrow, assume that there are a run of \mathcal{S} of length at least 2 from $\left(q_{0}, v_{0}\right)$ to a state (q, v) and a non-null run of \mathcal{S} from (q, v) to a state $\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree in Var \backslash Unc. First, assume that G_{0} is bounded. Then, since $\mathcal{S} \in \mathcal{U C}$, by Definition $18, \mathcal{S} \notin \mathcal{T} \mathcal{C}$. Since G_{0} is bounded, the set Unc is defined as in Definition 16. Thus, by the characterization lemma for non-termination (Lemma 9), it follows that (q_{0}, ν_{0}) $\in \operatorname{Inf} \mathcal{S}_{\mathcal{S}} \subseteq U n b_{\mathcal{S}}$, and the result follows. Now, assume that G_{0} is not bounded. By hypothesis there is a run π from $\left(q_{0}, v_{0}\right)$ of the form $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q, v_{1}\right) \rightarrow\left(q, v_{2}\right) \rightarrow$ $\cdots \rightarrow(q, v) \rightarrow \cdots \rightarrow\left(q, v^{\prime}\right)$ such that v and v^{\prime} agree in $\operatorname{Var} \backslash \operatorname{Unc}$ and the subrun $(q, v) \rightarrow \cdots \rightarrow\left(q, v^{\prime}\right)$ has non-null length. Let us consider the prefix of π of length 2 given by $\left(q_{0}, \nu_{0}\right) \rightarrow\left(q, \nu_{1}\right) \rightarrow\left(q, \nu_{2}\right)$, and let $S\left(v_{2}\right)$ be the set of valuations over Var given by

$$
S\left(v_{2}\right) \stackrel{\text { def }}{=}\left\{v_{2}^{\prime} \mid v_{0} \oplus v_{2}^{\prime} \in \operatorname{Sat}\left(G_{0} \bullet G\right), v_{2}^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right) \text {, and } v_{2} \text { and } v_{2}^{\prime} \text { agree on } \operatorname{Var} \backslash \operatorname{Unc}\right\} .
$$

Since $\nu_{0} \oplus \nu_{1} \in \operatorname{Sat}\left(G_{0}\right), \nu_{1} \oplus \nu_{2} \in \operatorname{Sat}(G)$, and $\nu_{2} \in \operatorname{Sat}\left(G_{V a r}\right)$, by Lemmata 12 and 14 , it follows that the set $S\left(\nu_{2}\right)$ is infinite, and the set $\left\{N_{c}\left(\nu_{2}^{\prime}\right) \mid v_{2}^{\prime} \in S\left(\nu_{2}\right)\right\}$ is infinite as well. Let us consider the suffix π^{\prime} of $\pi,\left(q, \nu_{2}\right) \rightarrow \cdots \rightarrow(q, v) \rightarrow \cdots \rightarrow\left(q, v^{\prime}\right)$. Let $h \geqslant 1$. Since v and ν^{\prime} agree in $\operatorname{Var} \backslash U n c$ and for each $\nu_{2}^{\prime} \in S\left(\nu_{2}\right), v_{2}^{\prime} \in \operatorname{Sat}\left(G_{V a r}\right)$ and ν_{2} and v_{2}^{\prime} agree in Var $\backslash U n c$, Lemma 13 (applied repetitively to the single steps of the suffix π^{\prime}) ensures the following property: there is $n_{h} \in \mathbb{N}$ such that for all $\nu_{2}^{\prime} \in S\left(\nu_{2}\right)$ with $N_{c}\left(v_{2}^{\prime}\right) \geqslant n_{h}$, there is a finite run from $\left(q, v_{2}^{\prime}\right)$ of length at least h. Since the set $\left\{N_{c}\left(v_{2}^{\prime}\right) \mid v_{2}^{\prime} \in S\left(v_{2}\right)\right\}$ is infinite and there is a finite run from (q_{0}, v_{0}) to (q, v_{2}^{\prime}) for all $v_{2}^{\prime} \in S\left(v_{2}\right)$, we deduce that there is a finite run from (q_{0}, v_{0}) of length at least h. Since h is arbitrary, we obtain that $\left(q_{0}, v_{0}\right)$ is unbounded. Hence, the result follows. This concludes the proof of the lemma.

Construction of an MG representation of $U n b_{\mathcal{S}}$. By using the characterization lemma for unboundedness (Lemma 15), we can prove the main result of this subsection.

Theorem 5. The set $U n b_{\mathcal{S}}$ is MG representable and one can construct an MG representation of Unb $\mathcal{S}_{\mathcal{S}}$, written $\sigma(\mathcal{S})$, satisfying the following:

1. $\lfloor\sigma(\mathcal{S})\rfloor_{K}$ can be computed in polynomial time;
2. $\lfloor\sigma(\mathcal{S})\rfloor_{K}=\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}\left(\lfloor\mathcal{S}\rfloor_{K}\right.$ is a simple GCS $)$.

Proof. By Corollary 2, for each state s of \mathcal{S} with control point $q, s \in \operatorname{Inf}_{\mathcal{S}}$ iff $s \in U n b_{\mathcal{S}}$. Thus, by Theorem 3, it suffices to prove the version of the theorem obtained by replacing $U n b_{\mathcal{S}}$ with $U n b_{\mathcal{S}}^{q_{0}}$, where $U n b_{\mathcal{S}}^{q_{0}}$ denotes the set of states in $U n b_{\mathcal{S}}$ having control point q_{0}. We distinguish two cases:

- $\mathcal{S} \notin \mathcal{U C}$: by Proposition $12, U n b_{\mathcal{S}}^{q_{0}}=U n b_{[\mathcal{S}\rfloor_{K}}^{q_{0}}=\emptyset$, hence, in this case, the result trivially holds.
- $\mathcal{S} \in \mathcal{U C}$: for this case, the proof of the result is similar to the proof of Theorem 3 for the case $\mathcal{S} \notin \mathcal{T} \mathcal{C}$. The difference is that now we use the characterization lemma for unboundedness (Lemma 15) instead of the characterization lemma for non-termination (Lemma 9). Thus, we omit the details here.

Additional results on the unboundedness condition. By using the characterization lemma for unboundedness (Lemma 15) and Lemma 3 in Section 4.1, we show that the unboundedness condition is also a sufficient condition for the existence of unbounded states with initial control point q_{0}.

Theorem 6. If $\mathcal{S} \in \mathcal{U C}$, then the set of states s with control point q_{0} such that $s \in U n b_{\mathcal{S}}$ is non-empty.

Proof. Let $\mathcal{S} \in \mathcal{U C}$. First, we show that the pair of integers $\left(L_{c}, U_{c}\right)$ of Definition 19 is well-formed w.r.t. G. If G_{0} is bounded, then $\mathcal{S} \notin \mathcal{T} \mathcal{C}$ and L_{c} and U_{c} are as defined in Definition 16. Hence, by Lemma 4, the result follows. Now, let G_{0} be non-bounded. By Lemma $10(1)$, for all $L_{c} \leqslant i \leqslant L$ (resp., $1 \leqslant i \leqslant U_{c}$), L_{i} (resp., U_{i}) is lower (resp., upper) bounded in G_{0} by a lower (resp., upper) variable of G_{0} in Var. Thus, by Definitions 18 and 19, the result follows.

Now, we prove the theorem. By the characterization lemma for unboundedness (Lemma 15), it suffices to show that there are $k \geqslant 1, n \geqslant 1$, and valuations ν_{0}, ν, and v^{\prime} over Var such that $\left(\nu_{0} \oplus \nu\right) \in \operatorname{Sat}\left(G_{0} \bullet G^{k}\right),\left(\nu \oplus \nu^{\prime}\right) \in \operatorname{Sat}\left(G^{n}\right)$, and v and v^{\prime} agree on $\operatorname{Var} \backslash U n c$. Since the pair $\left(L_{c}, U_{c}\right)$ is well-formed w.r.t. G, this can be proved as in the second part of the proof of Theorem 4 (which is based on the application of Lemma 3 in Section 4.1), and we omit the details here.

By Proposition 12 and Theorem 6, it follows that the negation of the unboundedness condition represents a criterion for checking strong termination w.r.t. the initial control point of simple GCS. Moreover, by Proposition 11, Theorem 4, and Corollary 2, the termination condition represents a criterion for checking strong termination w.r.t. the control point associated with the self-loop of simple GCS. Hence, we obtain the following result.

Corollary 3. The strong termination problem and the strong termination problem w.r.t. a designated control point of simple GCS can be solved in polynomial time.

Note that Corollary 3 can also be directly deduced from Property 1 of Theorem 5 .

5. Fairness and (strong) termination for unrestricted GCS

In this section, we address fairness and (strong) termination for the whole class of GCS. The proposed approach consists of two main steps. For a GCS \mathcal{S} and a set $F \subseteq Q(\mathcal{S})$ of accepting control points, first we show (Theorem 7 and Lemmata 16 and 17) that it is possible to construct two finite families $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ of simple GCS such that the following hold:

- Inf \mathcal{S}, F corresponds to the set of non-terminating states with initial control point of the simple GCS in $\mathcal{F}(\mathcal{S}, F)$, and
- $U n b_{\mathcal{S}}$ corresponds to the set of unbounded states with initial control point of the simple GCS in $\mathcal{U}(\mathcal{S})$.

Then, we show (Theorems 8 and 9) that it is possible to compute separately and in exponential time the K-bounded abstractions of the simple GCS in $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ (we are not able to give upper bounds on the sizes of $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$), which are sound and complete w.r.t. the existence of non-terminating states and unbounded states, respectively. Now, we proceed with the technical details.

Let \mathcal{S} be a GCS. For a non-null finite path \wp of \mathcal{S} such that $s(\wp)=t(\wp)$ (i.e., \wp is cyclic), $(\wp)^{\omega}$ denotes the infinite path $\wp \wp \ldots$. An infinite path \wp of \mathcal{S} of the form $\wp=\wp^{\prime}\left(\wp^{\prime \prime}\right)^{\omega}$ is said to be ultimately periodic. A state s of \mathcal{S} is neatly unbounded w.r.t. an infinite path \wp of \mathcal{S}, if there is a sequence of finite runs $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{S} starting from such that $\left\{\left|\pi_{n}\right| \mid n \in \mathbb{N}\right\}$ is infinite and for each $n \in \mathbb{N}$, π_{n} is an instance of the prefix of \wp of length $\left|\pi_{n}\right|$. We make the following observation.

Proposition 13. Let \mathcal{S} be a GCS, s_{0} be an \mathcal{S}-state such that $s_{0} \in U n b_{\mathcal{S}}$. Then, s_{0} is neatly unbounded w.r.t. some infinite path of \mathcal{S}.

Proof. By hypothesis, there is a sequence of finite runs $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{S} starting from s_{0} such that $\left|\pi_{n}\right|=n$ for each $n \in \mathbb{N}$. Since the set of \mathcal{S}-edges is finite, it easily follows that for all $h \in \mathbb{N}$, there is a subsequence $\left(\pi_{n}^{h}\right)_{n \in \mathbb{N}}$ of $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ and a finite path \wp_{h} of \mathcal{S} of length h such that the following hold:

- for each $n \in \mathbb{N},\left|\pi_{n}^{h}\right| \geqslant h$ and the prefix of π_{n}^{h} of length h is an instance of \wp_{h};
- $\left(\pi_{n}^{h+1}\right)_{n \in \mathbb{N}}$ is a subsequence of $\left(\pi_{n}^{h}\right)_{n \in \mathbb{N}}$;
- \wp_{h} is a prefix of \wp_{h+1}.

Hence, the sequence $\left(\wp_{h}\right)_{h \geqslant 1}$ corresponds to an infinite path \wp of \mathcal{S}, where \wp_{h} is its prefix of length h. Moreover, it follows that there is a subsequence $\left(\pi_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ such that for each $n \geqslant 1,\left|\pi_{n}^{\prime}\right| \geqslant n$ and the prefix of π_{n}^{\prime} of length n is an instance of \wp_{n}. Hence, state s_{0} is neatly unbounded w.r.t. the infinite path \wp, and the result follows.

The key result which allows us to reduce fairness and strong termination for unrestricted GCS to non-termination and strong termination for simple GCS, respectively, is represented by the following theorem which is proved by using Ramsey's theorem in its infinite version [31].

Theorem 7 (Characterization theorem). Let \mathcal{S} be a GCS, so be an \mathcal{S} state, $F \subseteq Q(\mathcal{S})$ and $\mathcal{P}_{\mathcal{S}}$ be the finite set of sample paths of \mathcal{S} satisfying Theorem 2 . Then, the following hold:

1. $s_{0} \in \operatorname{Inf} \mathcal{S}_{\mathcal{F}}$ iff there is an infinite run of \mathcal{S} starting from s_{0} which is an instance of an ultimately periodic path $\wp_{0} \cdot(\wp)^{\omega}$ such that $\wp_{0}, \wp \in \mathcal{P}_{\mathcal{S}}, s(\wp) \in F, G_{\wp_{0}} \bullet G_{\wp}$ is satisfiable, and G_{\wp} is idempotent;
2. $s_{0} \in U n b_{\mathcal{S}}$ iff s_{0} is neatly unbounded w.r.t. an ultimately periodic path $\wp_{0} \cdot(\wp)^{\omega}$ such that $\wp_{0}, \wp \in \mathcal{P}_{\mathcal{S}}, G_{\wp_{0}} \bullet G_{\wp}$ is satisfiable, and G_{\wp} is idempotent.

Proof. Let \mathcal{S} be a GCS, s_{0} be an \mathcal{S} state, $F \subseteq Q(\mathcal{S})$ and $\mathcal{P}_{\mathcal{S}}$ be the finite set of sample paths of \mathcal{S} satisfying Theorem 2. We prove Property 2 (Property 1 is similar). The left implication \Leftarrow of Property 2 is obvious. For the right implication \Rightarrow, assume that $s_{0} \in U n b_{\mathcal{S}}$. Then, by Proposition 13, there is an infinite path \wp_{∞} of \mathcal{S} such that s_{0} is neatly unbounded w.r.t. \wp_{∞}.

For each $\wp \in \mathcal{P}_{\mathcal{S}}$, we denote by [\wp] the set of non-null finite paths \wp^{\prime} of \mathcal{S} such that $s\left(\wp^{\prime}\right)=s(\wp), t\left(\wp^{\prime}\right)=t(\wp)$, $\rightsquigarrow_{\wp^{\prime}}$ implies \rightsquigarrow_{\wp}, and $\left\lfloor G_{\wp^{\prime}}\right\rfloor_{K}=\left\lfloor G_{\wp}\right\rfloor_{K}$. Let H be the finite set given by $H=\left\{[\wp] \mid \wp \in \mathcal{P}_{\mathcal{S}}\right\}$. For each non-null finite path \wp^{\prime} of \mathcal{S}, we associate to \wp^{\prime} a color given by some element $[\wp] \in H$ such that $\wp^{\prime} \in[\wp]$ (note that by Theorem 2 such an element of H must exist). Let us consider the infinite path \wp_{∞}. Then, there is a control point q such that \wp_{∞} is of the form $\wp_{\infty}=\wp_{0} \wp_{1} \wp_{2} \ldots$, where for each $i \geqslant 1, \wp_{i}$ is a non-null (cyclic) path from q to q. Let us consider the set of positive natural numbers, and label each pair (i, j) of its elements with $i<j$ with the color of the subpath $\wp_{i} \ldots \wp_{j}$ of \wp_{∞}. By Ramsey's theorem (in its infinite version) [31], there is an infinite set I of positive natural numbers such that all the pairs (i, j) with $i, j \in I$ (and $i<j$) carry the same label in H, say [\wp]. It follows that \wp_{∞} can be written in the form $\wp_{\infty}=\wp_{0}^{\prime} \wp_{1}^{\prime} \wp_{2}^{\prime} \ldots$ such that $\left|\wp_{0}^{\prime}\right|>0$ and for all $i \geqslant 1, \wp_{i}^{\prime} \in[\wp]$ and $\wp_{i}^{\prime} \wp_{i+1}^{\prime} \in[\wp]$. Hence, in particular, $\left\lfloor G_{\wp_{i}^{\prime}}\right\rfloor_{K}=\left\lfloor G_{\wp}\right\rfloor_{K}$ and $\left\lfloor G_{\wp_{i}^{\prime} \wp_{i+1}^{\prime}}\right\rfloor_{K}=\left\lfloor G_{\wp}\right\rfloor_{K}$. By Proposition 7 and associativity of •, we obtain that $\left\lfloor G_{\wp}\right\rfloor_{K}=\left\lfloor G_{\wp} \bullet G_{\wp}\right\rfloor_{K}$. Hence, for the cyclic path $\wp \in \mathcal{P}_{\mathcal{S}}$, G_{\wp} is idempotent.

Since s_{0} is neatly unbounded w.r.t. \wp_{∞}, there is a sequence of finite runs $\left(\pi_{n}\right)_{n \geqslant 0}$ from s_{0} such that π_{n} is an instance of the prefix $\wp_{0}^{\prime} \wp_{1}^{\prime} \ldots \wp_{n}^{\prime}$ of \wp_{∞}. Let $\wp_{0}^{\prime \prime} \in \mathcal{P}_{\mathcal{S}}$ such that $\wp_{0}^{\prime} \in\left[\wp_{0}^{\prime \prime}\right]$. Since $\wp_{i}^{\prime} \in[\wp]$ for each $i \geqslant 1$ (hence, $\rightsquigarrow_{\wp_{i}^{\prime}}$ implies \rightsquigarrow_{\wp}), it follows that for each $n \in \mathbb{N}$, there is a finite run π_{n}^{\prime} starting from s_{0} which is an instance of the finite path $\wp_{0}^{\prime \prime} \underbrace{\wp-\cdots \wp}_{n \text { times }}$. Hence, s_{0} is neatly unbounded w.r.t. the ultimately periodic path $\wp_{0}^{\prime \prime}(\wp)^{\omega}$. Moreover, $\wp_{0}^{\prime \prime}, \wp \in \mathcal{P}_{\mathcal{S}}, G_{\wp>0}^{\prime \prime} \bullet G_{\wp}$ is satisfiable, and G_{\wp} is idempotent. Hence, the result follows.

Let \mathcal{S} be a GCS, $F \subseteq Q(\mathcal{S})$, and $\mathcal{P}_{\mathcal{S}}$ be the computable finite set of sample paths of \mathcal{S} satisfying Theorem 2 . According to Theorem 7, we define two computable finite families $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ of GCS as follows:

- for a GCS $\mathcal{S}_{0}, \mathcal{S}_{0} \in \mathcal{F}(\mathcal{S}, F)$ iff \mathcal{S}_{0} consists of the edges

$$
\left(দ, s\left(\wp_{0}\right)\right) \xrightarrow{G_{\wp_{0}}} t\left(\wp_{0}\right) \text { and } s(\wp) \xrightarrow{G_{\wp}} t(\wp)
$$

for some sample paths $\wp_{0}, \wp \in \mathcal{P}_{\mathcal{S}}$ such that $t\left(\wp_{0}\right)=s(\wp)=t(\wp), s(\wp) \in F, G_{\wp_{0} \bullet} \bullet \wp$ is satisfiable, and G_{\wp} is idempotent;

- for a GCS $\mathcal{S}_{0}, \mathcal{S}_{0} \in \mathcal{U}(\mathcal{S})$ iff \mathcal{S}_{0} consists of the edges

$$
\left(দ, s\left(\wp_{0}\right)\right) \xrightarrow{G_{\wp 0}} t\left(\wp_{0}\right) \text { and } s(\wp) \xrightarrow{G_{\wp}} t(\wp)
$$

for some sample paths $\wp_{0}, \wp \in \mathcal{P}_{\mathcal{S}}$ such that $t\left(\wp_{0}\right)=s(\wp)=t(\wp), G_{\wp_{0}} \bullet G_{\wp}$ is satisfiable, and G_{\wp} is idempotent.

Note that the special symbol \square is used just to ensure that the control points $\left(\square, s\left(\wp_{0}\right)\right)$ and $t\left(\wp_{0}\right)$ of the GCS \mathcal{S}_{0} are distinct. Moreover, if \mathcal{S} is complete, then since the composition operator \bullet preserves completeness of transitional MG, by construction, it follows that the families $\mathcal{F}(\mathcal{S}, F)$ and $\mathcal{U}(\mathcal{S})$ consist of simple GCS. In particular, by Theorem 7, we easily obtain the following results (recall that for a family \mathcal{F} of GCS, $\lfloor\mathcal{F}\rfloor_{K}$ denotes the set of K-bounded approximations of the GCS in \mathcal{F}).

Lemma 16 (Reduction lemma for fairness). Let \mathcal{S} be a complete GCS and $F \subseteq Q(\mathcal{S})$. Then:

1. $\mathcal{F}(\mathcal{S}, F)$ and $\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}$ consist of simple GCS;
2. for a state $\left(q_{0}, \nu_{0}\right)$ of \mathcal{S}, $\left(q_{0}, \nu_{0}\right) \in \operatorname{Inf}_{\mathcal{S}, F}$ iff there is $\mathcal{S}_{0} \in \mathcal{F}(\mathcal{S}, F)$ such that \mathcal{S}_{0} has initial control point $\left(\square, q_{0}\right)$ and $\left(\left(\square, q_{0}\right), v_{0}\right) \in$ Inf \mathcal{S}_{0};
3. for a GCS $\mathcal{S}_{0}, \mathcal{S}_{0} \in\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}$ iff \mathcal{S}_{0} consists of the edges

$$
\left(\square, s\left(\wp_{0}\right)\right) \xrightarrow{\left\lfloor G_{\wp_{0}}\right\rfloor_{K}} t\left(\wp_{0}\right) \quad \text { and } \quad s(\wp) \xrightarrow{\left\lfloor G_{\wp}\right\rfloor_{K}} t(\wp)
$$

for some non-null finite and satisfiable paths $\wp 0$ and \wp of \mathcal{S} such that $t\left(\wp_{0}\right)=s(\wp)=t(\wp), s(\wp) \in F,\left\lfloor G_{\wp_{0}}\right\rfloor_{K} \bullet\left\lfloor G_{\wp}\right\rfloor_{K}$ is satisfiable, and $\left\lfloor G_{\wp}\right\rfloor_{K}$ is idempotent;
4. $\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}$ can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$;
5. $\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}=\left\lfloor\mathcal{F}\left(\lfloor\mathcal{S}\rfloor_{K}, F\right)\right\rfloor_{K}$.

Proof. Since the K-bounded approximation of a simple GCS is a simple GCS too (Proposition 9), Property 1 holds. Property 2 directly follows from Theorem 7 and definition of $\mathcal{F}(\mathcal{S}, F)$. Property 3 easily follows from definition of $\mathcal{F}(\mathcal{S}, F)$, Theorem 2, Propositions 6 and 7, and the fact that for a transitional MG G, G is idempotent iff $\lfloor G\rfloor_{K}$ is idempotent. Property 4 directly follows from Property 3 and Theorem 1. It remains to prove Property 5. By Proposition 7, the following holds: for each non-null finite path \wp of \mathcal{S} (resp., $\lfloor\mathcal{S}\rfloor_{K}$), there is a non-null finite path \wp^{\prime} of $\lfloor\mathcal{S}\rfloor_{K}$ (resp., \mathcal{S}) such that $s(\wp)=s\left(\wp^{\prime}\right), t(\wp)=t\left(\wp^{\prime}\right)$, and $\left\lfloor G_{\wp}\right\rfloor_{K}=\left\lfloor G_{\wp}\right\rfloor_{K}$. Thus, by Property 3, Property 5 follows, which concludes the proof of the lemma.

Lemma 17 (Reduction lemma for unboundedness). Let \mathcal{S} be a complete GCS. Then:

1. $\mathcal{U}(\mathcal{S})$ and $\lfloor\mathcal{U}(\mathcal{S})\rfloor_{K}$ consist of simple GCS;
2. for a state $\left(q_{0}, v_{0}\right)$ of $\mathcal{S},\left(q_{0}, \nu_{0}\right) \in U n b_{\mathcal{S}}$ iff there is $\mathcal{S}_{0} \in \mathcal{U}(\mathcal{S})$ such that \mathcal{S}_{0} has initial control point $\left(\square, q_{0}\right)$ and $\left(\left(\square, q_{0}\right), \nu_{0}\right) \in$ $U^{U n} b_{\mathcal{S}_{0}}$;
3. for $a \operatorname{GCS} \mathcal{S}_{0}, \mathcal{S}_{0} \in\lfloor\mathcal{U}(\mathcal{S})\rfloor_{K}$ iff \mathcal{S}_{0} consists of the edges

$$
\left(\square, s\left(\wp_{0}\right)\right) \xrightarrow{\left\lfloor G_{\wp_{0}}\right\rfloor_{K}} t\left(\wp_{0}\right) \quad \text { and } \quad s(\wp) \xrightarrow{\left\lfloor G_{\wp}\right\rfloor_{K}} t(\wp)
$$

for some non-null finite and satisfiable paths \wp_{0} and \wp of \mathcal{S} such that $t\left(\wp_{0}\right)=s(\wp)=t(\wp),\left\lfloor G_{\wp_{0}}\right\rfloor_{K} \bullet\left\lfloor G_{\wp}\right\rfloor_{K}$ is satisfiable, and $\left\lfloor G_{\wp}\right\rfloor_{K}$ is idempotent;
4. $\lfloor\mathcal{U}(\mathcal{S})\rfloor_{K}$ can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$;
5. $\lfloor\mathcal{U}(\mathcal{S})\rfloor_{K}=\left\lfloor\mathcal{U}\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}$.

Proof. The proof is similar to the proof of Lemma 16. Thus, we omit the details here.
For unrestricted GCS, we observe the following.
Proposition 14. Let \mathcal{S} be a GCS. Then, one can compute a complete GCS, written $\mathcal{C}(\mathcal{S})$, such that $\llbracket \mathcal{C}(\mathcal{S}) \rrbracket=\llbracket \mathcal{S} \rrbracket$ and the following hold:

1. $Q(\mathcal{C}(\mathcal{S}))=Q(\mathcal{S})$ and $|E(\mathcal{C}(\mathcal{S}))|=O\left(|E(\mathcal{S})| \cdot 2^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$; moreover, $\mathcal{C}(\mathcal{S})$ has the same sets of variables and constants as \mathcal{S};
2. $\left\lfloor\mathcal{C}\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}=\lfloor\mathcal{C}(\mathcal{S})\rfloor_{K}$.

Proof. We need an additional definition. A basic complete transitional MG G is a transitional MG such that

- the weight of each edge is in $\{0,1\}$;
- for all vertices u and v, either $G \models u \triangleleft v$ or $G \models v \triangleleft u$ for some $\triangleleft \in\{<,=\}$.

Let \mathcal{G}_{b} be the set of basic complete transitional MG. Evidently, \mathcal{G}_{b} is finite and its cardinality is bounded by $O\left(2^{(2|V a r|+\mid \text { Const| })^{2}}\right)$. Moreover, note that for each transitional $M G G$ and $G^{\prime} \in \mathcal{G}_{b}, G \sqcap G^{\prime}$ is complete. Furthermore,
$\operatorname{Sat}(G)=\bigcup_{G^{\prime} \in \mathcal{G}_{b}} \operatorname{Sat}\left(G \sqcap G^{\prime}\right)$. Then, $\mathcal{C}(\mathcal{S})$ is obtained from \mathcal{S} by replacing each edge $q \xrightarrow{G} q^{\prime}$ with the edges $q \xrightarrow{G \sqcap G^{\prime}} q^{\prime}$, where $G^{\prime} \in \mathcal{G}_{b}$. Evidently, $\llbracket \mathcal{C}(\mathcal{S}) \rrbracket=\llbracket \mathcal{S} \rrbracket$ and Property 1 holds. Note that each $G^{\prime} \in \mathcal{G}_{b}$ is K-bounded. Thus, by Proposition 7, we obtain that for all transitional MG G and $G^{\prime} \in \mathcal{G}_{b},\left\lfloor G \sqcap G^{\prime}\right\rfloor_{K}=\lfloor G\rfloor_{K} \sqcap G^{\prime}$. Hence, Property 2 holds as well, which concludes.

Now, we can prove the main results of this section.
Theorem 8 (Fairness for unrestricted GCS). Let \mathcal{S} be a GCS and $F \subseteq Q(\mathcal{S})$. Then, Inf $\mathcal{S}_{, F}$ is MG representable and one can build an MG representation $\sigma(\mathcal{S}, F)$ of $\operatorname{Inf}_{\mathcal{S}, F}$ such that:

1. $\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}$ can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$;
2. $\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}=\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}, F\right)\right\rfloor_{K}$;
3. given $q_{0} \in Q(\mathcal{S})$ and a K-bounded MG G over Var, checking whether G is in the q_{0}-component of $\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}$ can be done in polynomial space.

Proof. We distinguish two cases:

- \mathcal{S} is complete: hence, the computable family $\mathcal{F}(\mathcal{S}, F)$ of GCS consists of simple GCS. By Theorem 3, given a simple GCS \mathcal{S}_{0} with initial control point q_{0}, one can compute a finite set $\mathcal{G}\left(\mathcal{S}_{0}\right)$ of MG over Var such for each valuation v over Var, $\left(q_{0}, v\right) \in \operatorname{Inf} \mathcal{S}_{0}$ iff $v \in \operatorname{Sat}(G)$ for some $G \in \mathcal{G}\left(\mathcal{S}_{0}\right)$. Moreover, $\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}$ can be computed in time polynomial in the size of \mathcal{S}_{0} and $\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}=\left\lfloor\mathcal{G}\left(\left\lfloor\mathcal{S}_{0}\right\rfloor_{K}\right)\right\rfloor_{K}$. Then, $\sigma(\mathcal{S}, F)$ is defined as

$$
\begin{equation*}
\sigma(\mathcal{S}, F) \stackrel{\text { def }}{=}\left\{\bigcup_{\left\{\mathcal{S}_{0} \in \mathcal{F}(\mathcal{S}, F) \mid \mathcal{S}_{0} \text { has initial control point }(\downarrow, q)\right\}} \mathcal{G}\left(\mathcal{S}_{0}\right)\right\}_{q \in \mathrm{Q}(\mathcal{S})} . \tag{1}
\end{equation*}
$$

Note that $\sigma(\mathcal{S}, F)$ is effectively computable. Moreover, by Lemma $16(2)$, it follows that $\sigma(\mathcal{S}, F)$ is an MG representation of $\operatorname{Inf} \mathcal{S}_{\mathcal{F}}$. Thus, the first part of the theorem holds. Now, let us consider Properties 1-3.

Proof of Property 1. Since for all simple GCS $\mathcal{S}_{0},\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}=\left\lfloor\mathcal{G}\left(\left\lfloor\mathcal{S}_{0}\right\rfloor_{K}\right)\right\rfloor_{K}$, we obtain

$$
\begin{equation*}
\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}=\left\{\bigcup_{\left\{\mathcal{S}_{0} \in\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K} \mid \mathcal{S}_{0} \text { has initial control point }(\downarrow, q)\right\}}\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}\right\}_{q \in Q(\mathcal{S})} \tag{2}
\end{equation*}
$$

By Lemma $16(4)$, the family $\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}$ of simple GCS can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+\right.$ 2) ${ }^{(2|\operatorname{Var}|+|\operatorname{Const}|)^{2}}$. Thus, since for all simple GCS $\mathcal{S}_{0},\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}$ can be computed in time polynomial in the size of \mathcal{S}_{0}, by Eq. (2), Property 1 follows.

Proof of Property 2. By Lemma $16(5),\lfloor\mathcal{F}(\mathcal{S}, F)\rfloor_{K}=\left\lfloor\mathcal{F}\left(\lfloor\mathcal{S}\rfloor_{K}, F\right)\right\rfloor_{K}$. Thus, by Eq. (2), Property 2 follows.
Proof of Property 3. We outline an NPsPace algorithm to check whether for a given $q_{0} \in Q(\mathcal{S})$ and a K-bounded MG G over Var, G is in the q_{0}-component of $\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}$. Since NPSPACE $=$ PsPACE (by Savitch's theorem), the result follows. Initially, a control point $q \in F$ is guessed. Then, at each step, the nondeterministic algorithm guesses two non-null finite paths \wp_{0} and \wp of \mathcal{S} such that $s\left(\wp_{0}\right)=q_{0}$ and $s(\wp)=q$, and it computes the GCS \mathcal{S}_{0} having the edges $\left(\boxminus, s\left(\wp_{0}\right)\right) \xrightarrow{\left\lfloor G_{\wp_{0}}\right\rfloor_{K}} t\left(\wp_{0}\right)$ and $s(\wp) \xrightarrow{\left\lfloor G_{\wp}\right\rfloor_{K}} t(\wp)$. The algorithm keeps in memory only the MG $\left\lfloor G_{\wp_{0}}\right\rfloor_{K}$ and $\left\lfloor G_{\wp}\right\rfloor_{K}$ associated with the paths \wp_{0} and \wp generated so far, together with their source and target control points. If the current GCS \mathcal{S}_{0} corresponds to a simple GCS such that $t\left(\wp_{0}\right)=s(\wp)=t(\wp)=q$ and $G \in\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}$ (since $\left\lfloor\mathcal{G}\left(\mathcal{S}_{0}\right)\right\rfloor_{K}$ can be computed in polynomial time in the size of \mathcal{S}_{0}, this check can be done in polynomial time in the size of \mathcal{S}_{0}), then the algorithm terminates with success. Otherwise, the algorithm chooses two edges of \mathcal{S} from control points $t\left(\wp_{0}\right)$ and $t(\wp)$, say $t\left(\wp_{0}\right) \xrightarrow{G_{0}} q^{\prime}$ and $t(\wp) \xrightarrow{G^{\prime}} q^{\prime \prime}$, computes the MG $\left\lfloor\left\lfloor G_{\wp_{0}}\right\rfloor_{K} \bullet\left\lfloor G_{0}\right\rfloor_{K}\right\rfloor_{K}$ and $\left\lfloor\left\lfloor G_{\wp}\right\rfloor_{K} \bullet\left\lfloor G^{\prime}\right\rfloor_{K}\right\rfloor_{K}$ associated with the currently guessed paths, and re-writes the memory by replacing $\left\lfloor G_{\wp_{0}}\right\rfloor_{K}$ and $\left\lfloor G_{\wp}\right\rfloor_{K}$ with $\left\lfloor\left\lfloor G_{\wp_{0}}\right\rfloor_{K} \bullet\left\lfloor G_{0}\right\rfloor_{K}\right\rfloor_{K}$ and $\left\lfloor\left\lfloor G_{\wp}\right\rfloor_{K} \bullet\left\lfloor G^{\prime}\right\rfloor_{K}\right\rfloor_{K}$, and $t\left(\wp_{0}\right)$ and $t(\wp)$ with q^{\prime} and $q^{\prime \prime}$, respectively, and the procedure is repeated. Correctness of the procedure easily follows from Lemma 16(3), Eq. (2), and Proposition 7.

- \mathcal{S} is not complete: we can assume that the theorem holds for complete GCS. By Proposition 14, one can compute a complete $\operatorname{GCS} \mathcal{C}(\mathcal{S})$ such that $\llbracket \mathcal{C}(\mathcal{S}) \rrbracket=\llbracket \mathcal{S} \rrbracket$. Thus, we set $\sigma(\mathcal{S}, F) \stackrel{\text { def }}{=} \sigma(\mathcal{C}(\mathcal{S}), F)$, and the first part of the theorem holds.

Proof of Property 1. Since Property 1 holds for complete GCS, $\lfloor\sigma(\mathcal{C}(\mathcal{S}), F)\rfloor_{K}$ can be computed in time $O(|E(\mathcal{C}(\mathcal{S}))|$. $\left.|Q(\mathcal{C}(\mathcal{S}))|^{2} \cdot(K+2)^{(2|V a r|+\mid \text { Const } \mid)^{2}}\right)$. Thus, by Proposition 14 , we obtain that $\lfloor\sigma(\mathcal{S}, F)\rfloor_{K}$ can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|V a r|+\mid \text { Const } \mid)^{2}}\right)$, and Property 1 follows.

Proof of Property 2. Note that $\lfloor\mathcal{S}\rfloor_{K}$ is not complete. Then,

$$
\begin{array}{rlr}
\lfloor\sigma(\mathcal{S}, F)\rfloor_{K} & =\lfloor\sigma(\mathcal{C}(\mathcal{S}), F)\rfloor_{K} & \\
& =\left\lfloor\sigma\left(\lfloor\mathcal{C}(\mathcal{S})\rfloor_{K}, F\right)\right\rfloor_{K} & \text { Property } 2 \text { holds for complete GCS } \\
& =\left\lfloor\sigma\left(\left\lfloor\mathcal{C}\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}, F\right)\right\rfloor_{K} & \text { by Proposition } 14 \\
& =\left\lfloor\sigma\left(\mathcal{C}\left(\lfloor\mathcal{S}\rfloor_{K}\right), F\right)\right\rfloor_{K} & \text { Property } 2 \text { holds for complete GCS } \\
& =\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}, F\right)\right\rfloor_{K} . &
\end{array}
$$

Thus, Property 2 holds.
Proof of Property 3. Note that by the proof of Proposition 14, an edge of $\mathcal{C}(\mathcal{S})$ is of the form $q \xrightarrow{G \sqcap G^{\prime}} q^{\prime}$, where $q \xrightarrow{G} q^{\prime}$ is an edge of \mathcal{S}, and G^{\prime} is an arbitrary basic complete transitional MG. Thus, by the proof of Property 3 when \mathcal{S} is complete, the result easily follows.

This concludes the proof of the theorem.
A similar result holds for unboundedness.

Theorem 9 (Unboundedness for unrestricted GCS). Let \mathcal{S} be a GCS. Then, Unb $\mathcal{S}_{\mathcal{S}}$ is MG representable and one can construct an MG representation $\sigma(\mathcal{S})$ of $\operatorname{Unb}_{\mathcal{S}}$ such that:

1. $\lfloor\sigma(\mathcal{S})\rfloor_{K}$ can be computed in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot(K+2)^{(2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}}\right)$;
2. $\lfloor\sigma(\mathcal{S})\rfloor_{K}=\left\lfloor\sigma\left(\lfloor\mathcal{S}\rfloor_{K}\right)\right\rfloor_{K}$;
3. given $q_{0} \in Q(\mathcal{S})$ and a K-bounded MG G over Var, checking whether G is in the q_{0}-component of $\lfloor\sigma(\mathcal{S})\rfloor_{K}$ can be done in polynomial space.

Proof. The proof is similar to the proof of Theorem 8. The difference is that we use Lemma 17 instead of Lemma 16, and Theorem 5 instead of Theorem 3. Thus, we omit the details here.

By Theorem 8(3), Theorem 9(3), and Propositions 1 and 2, we obtain the following result.
Corollary 4. The termination problem, the strong termination problem, and the fairness problem of GCS, and their versions w.r.t. a designated state and w.r.t. a control point are all PsPACE-complete.

6. The constrained branching-time temporal logic GCCTL*

In this section, we introduce the constrained branching-time temporal logic GCCTL* and investigate the related satisfiability and model checking problems.

6.1. Syntax and semantics of GCCTL*

The logic GCCTL* is an extension of standard logic CTL* [22], where atomic propositions are replaced with transitional GC. As for standard CTL*, there are two types of formulas in GCCTL*: state formulas φ, whose satisfaction is related to a specific state, and path formulas ψ, whose satisfaction is related to a specific path. Formally, for the fixed set of variables Var and the fixed set of integer constants Const, the state formulas φ and path formulas ψ of GCCTL* are inductively defined as follows:

$$
\begin{aligned}
& \varphi:=\top|\varphi \vee \varphi| \varphi \wedge \varphi|\mathrm{A} \psi| \mathrm{E} \psi \\
& \psi:=\varphi|\xi| \psi \vee \psi|\psi \wedge \psi| \bigcirc \psi|\square \psi| \psi \cup \psi
\end{aligned}
$$

where \top denotes "true", E ("for some path") and A ("for all paths") are path quantifiers, ξ is a transitional GC, and \bigcirc ("next"), U ("until"), and \square ("always") are the usual linear temporal operators. We also use the following classical shortcut: $\diamond \psi \stackrel{\text { def }}{=} T \cup \psi$ ("eventually"). Since GC constraints are not closed under negation, the logic is not closed under negation as well. ${ }^{7}$ The set of state formulas φ forms the language GCCTL*. We also consider the existential and universal fragments E-GCCTL* and A-GCCTL* of GCCTL*, obtained by disallowing the universal and existential path quantifiers, respectively. For a path GCCTL* formula ψ, a maximal subformula of ψ is a subformula ϑ of ψ such that there is an occurrence of ϑ in ψ which is not in the scope of a path quantifier.

[^7]GCCTL* formulas are interpreted over (possibly infinite) directed graphs $\mathcal{G}=\langle S, \rightarrow, \mu\rangle$ augmented with a mapping μ assigning to each vertex (or state) a valuation over Var. For an infinite path $\pi=s_{0} \rightarrow s_{1} \rightarrow \ldots$ of \mathcal{G}, we denote the suffix $s_{i} \rightarrow s_{i+1} \rightarrow \ldots$ of π by π^{i}, and the i-th state of π by $\pi(i)$. Let $s \in S$ and π be an infinite path of \mathcal{G}. For a state formula φ and a path formula ψ, the satisfaction relations $(\mathcal{G}, s) \models \varphi$ and $(\mathcal{G}, \pi) \models \psi$, meaning that φ holds at state s and ψ holds along π in \mathcal{G}, are inductively defined as follows (we omit the clauses for conjunction and disjunction which are standard):

$$
\begin{array}{lll}
(\mathcal{G}, s) \models \mathrm{A} \psi & \stackrel{\text { def }}{\Leftrightarrow} & \text { for each infinite path } \pi \text { of } \mathcal{G} \text { from } s,(\mathcal{G}, \pi) \models \psi, \\
(\mathcal{G}, s) \models \mathrm{E} \psi & \stackrel{\text { def }}{\Leftrightarrow} & \text { there is an infinite path } \pi \text { of } \mathcal{G} \text { from } s \text { such that }(\mathcal{G}, \pi) \models \psi, \\
(\mathcal{G}, \pi) \models \varphi & \stackrel{\text { def }}{\Leftrightarrow}(\mathcal{G}, \pi(0)) \models \varphi, \\
(\mathcal{G}, \pi) \models \xi & \stackrel{\text { def }}{\Leftrightarrow} \mu(\pi(0)) \oplus \mu(\pi(1)) \models \xi, \\
(\mathcal{G}, \pi) \models \bigcirc \psi & \stackrel{\text { def }}{\Leftrightarrow}\left(\mathcal{G}, \pi^{1}\right) \models \psi, \\
(\mathcal{G}, \pi) \models \square \psi & \stackrel{\text { def }}{\Leftrightarrow} \text { for all } i \geqslant 0,\left(\mathcal{G}, \pi^{i}\right) \models \psi, \\
(\mathcal{G}, \pi) \models \psi_{1} \cup \psi_{2} & \stackrel{\text { def }}{\Leftrightarrow} \text { there is } i \geqslant 0 \text { such that }\left(\mathcal{G}, \pi^{i}\right) \models \psi_{2} \text { and for all } j<i,\left(\mathcal{G}, \pi^{j}\right) \models \psi_{1} .
\end{array}
$$

Note that the dual until operator \tilde{U} can be expressed in the logic since: $\psi_{1} \widetilde{U} \psi_{2} \equiv \square \psi_{2} \vee\left(\psi_{2} \cup\left(\psi_{1} \wedge \psi_{2}\right)\right)$. A GCCTL* formula φ is satisfiable iff $(\mathcal{G}, s) \models \varphi$ for some labeled graph \mathcal{G} and state s of \mathcal{G}. The model checking problem of GCS against GCCTL* is checking for a given GCS \mathcal{S}, state s of \mathcal{S}, and GCCTL* formula φ, whether $(\mathcal{G}(\mathcal{S}), s) \models \varphi$, where $\mathcal{G}(\mathcal{S})$ is obtained from $\llbracket \mathcal{S} \rrbracket$ by adding the mapping which assigns to each state of \mathcal{S} the associated valuation over Var. We denote by $\llbracket \varphi \rrbracket \mathcal{S}$ the set of states s of \mathcal{S} such that $(\mathcal{G}(\mathcal{S}), s) \models \varphi$.

Example 3. Let us consider the requirement: "there is an infinite run from the given state such that variables x and y behave like clocks with rates at least k and k^{\prime}, respectively". This can be expressed by the E-GCCTL* formula

$$
\mathrm{E} \square\left[\left(\left(x^{\prime}=0\right) \vee\left(x^{\prime}-x\right) \geqslant k\right) \wedge\left(\left(y^{\prime}=0\right) \vee\left(y^{\prime}-y\right) \geqslant k^{\prime}\right)\right]
$$

We can also use our framework to solve verification of non-local constraints (between variables at states arbitrarily far away from each other), which are not directly expressible in GCCTL*. As a relevant example, we consider unboundedness requirements on the values of a given variable along an infinite run. ${ }^{8}$ For each $x \in V a r$, let us denote by ξ_{x} a special atomic formula (unboundedness constraint) that holds along an infinite run π iff the set of x-values along π is unbounded. Formally,

$$
(\mathcal{G}, \pi) \models \xi_{x} \quad \stackrel{\text { def }}{\Leftrightarrow} \quad\{[\mu(\pi(i))](x) \mid i \geqslant 0\} \text { is infinite }
$$

where $\mathcal{G}=\langle S, \rightarrow, \mu\rangle$. Let $\mathrm{E}-\mathrm{GCCTL}_{u b}^{*}$ be the extension of $\mathrm{E}-\mathrm{GCCTL}$ * with these constraints. We show the following result.
Theorem 10. Model checking GCS against ${\mathrm{E}-\mathrm{GCCTL}_{u b}^{*}}_{*}^{\text {can }}$ be reduced in polynomial time to model checking GCS against E-GCCTL*.

6.1.1. Proof of Theorem 10

Fix a GCS \mathcal{S} over Var and an E-GCCTL ${ }_{u b}^{*}$ formula φ over Var. We construct in polynomial-time an extension $V^{\text {Var }}{ }_{\text {ext }}$ of Var, a GCS $\mathcal{S}_{\text {ext }}$ over $\operatorname{Var}_{\text {ext }}$, and an E-GCCTL* formula $f(\varphi)$ over $\operatorname{Var}_{\text {ext }}$ as follows. For each $x \in \operatorname{Var}$, let x_{r} and $x_{\text {prop }}$ be fresh copies of x. Intuitively, x_{r} is used as register to keep track of the current value of variable x, and $x_{\text {prop }}$ is used as atomic proposition. Then, $\operatorname{Var}_{\text {ext }}$ is the extension of Var with these new variables. Moreover, $\mathcal{S}_{\text {ext }}$ is defined as follows:

- for each $y \in \operatorname{Var}$ and $q \in Q(\mathcal{S})$, let q_{y} be a fresh copy of q. Then,

$$
Q\left(\mathcal{S}_{e x t}\right) \stackrel{\text { def }}{=} Q(\mathcal{S}) \cup \bigcup_{q \in Q(\mathcal{S})} \bigcup_{y \in \operatorname{Var}}\left\{q_{y}\right\}
$$

- $E\left(\mathcal{S}_{\text {ext }}\right)$ is obtained from $E(\mathcal{S})$ by replacing each edge $q \xrightarrow{\xi} p$ in $E(\mathcal{S})$ with the following edges, where y and z range over Var:
- the edges $q \xrightarrow{\xi \wedge \xi^{\prime}} p$ and $q \xrightarrow{\xi \wedge \xi^{\prime}} p_{y}$, where

$$
\xi^{\prime}=\bigwedge_{x \in \text { Var }}\left(x_{r}^{\prime}=x_{r}\right) \wedge\left(x_{\text {prop }}>0\right)
$$

[^8]- the edges $q_{z} \xrightarrow{\xi \wedge \xi^{\prime \prime}} p$ and $q_{z} \xrightarrow{\xi \wedge \xi^{\prime \prime}} p_{y}$, where

$$
\xi^{\prime \prime}=\left(z_{r}^{\prime}=z\right) \wedge\left(z_{\text {prop }}=0\right) \wedge \bigwedge_{x \in \operatorname{Var} \backslash\{z\}}\left(x_{r}^{\prime}=x_{r}\right) \wedge\left(x_{\text {prop }}>0\right)
$$

Intuitively, the proposition " $x_{\text {prop }}=0$ " is used to mark states in which the current value of variable x is stored in the corresponding register x_{r}. Moreover, whenever " $x_{\text {prop }}>0$ " holds, then the value of register x_{r} is not modified. Finally, the E-GCCTL* formula $f(\varphi)$ is obtained from φ by replacing each occurrence of an unboundedness constraint ξ_{x} with the E-GCCTL* path formula $f\left(\xi_{x}\right)=f_{<}\left(\xi_{x}\right) \vee f_{>}\left(\xi_{x}\right)$, where for each $\sim \in\{<,>\}, f_{\sim}\left(\xi_{x}\right)$ is defined as follows:

$$
\left(\square \diamond\left(x_{\text {prop }}=0\right)\right) \wedge \bigcirc \square\left(\left(x_{\text {prop }}=0\right) \rightarrow \bigcirc\left[\left(x_{\text {prop }}>0\right) \cup\left(\left(x_{\text {prop }}=0\right) \wedge\left(x \sim x_{r}\right)\right)\right]\right)
$$

Intuitively, by requiring that the proposition " $x_{\text {prop }}=0$ " holds infinitely often, we require that the value of register x_{r} of x is changed infinitely often. Furthermore, every time the register x_{r} is modified, the old value must be $>$ than the current value (or symmetrically <). Thus, along an infinite run we have an infinite number of updates of x with larger and larger values (symmetrically, with smaller and smaller values). Theorem 10 directly follows from the following result.

Theorem 11. For each state s of \mathcal{S}, one can compute in linear-time a state $s_{\text {ext }}$ of $\mathcal{S}_{\text {ext }}$ so that $(\mathcal{G}(\mathcal{S}), s) \models \varphi$ iff $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), s_{\text {ext }}\right) \models f(\varphi)$.
In order to prove Theorem 11, we need additional definitions and preliminary results. A well-formed mapping is a function $\Upsilon: N \rightarrow \operatorname{Var}$ such that: $N \subseteq \mathbb{N}$ and for each $x \in \operatorname{Var}, \Upsilon^{-1}(x)$ is infinite. Evidently, the following holds.

Lemma 18. Let $\xi_{x_{1}}, \ldots, \xi_{x_{n}}$ be unboundedness constraints over Var and π be an infinite run of \mathcal{S} of the form $\pi=\left(q_{0}, v_{0}\right) \rightarrow$ $\left(q_{1}, v_{1}\right) \ldots$ Then, $\xi_{x_{1}} \wedge \cdots \wedge \xi_{x_{n}}$ holds along π iff there is a well-formed mapping $\Upsilon: N \rightarrow$ Var such that for each $1 \leqslant i \leqslant n$,

1. there is $\sim_{i} \in\{<,>\}$ so that for each $h \in \Upsilon^{-1}\left(x_{i}\right), v_{\text {next }(h)}\left(x_{i}\right) \sim_{i} \nu_{h}\left(x_{i}\right)$, where next (h) is the smaller $k>h$ such that $\Upsilon(k)=x_{i}$ (note that such a next(h) exists).

For a state (q, v) of \mathcal{S}, an extension of (q, v) is a state of $\mathcal{S}_{\text {ext }}$ of the form $\left(q^{\prime}, \nu^{\prime}\right)$ such that ν^{\prime} is an extension of ν, and the following hold: either $q^{\prime}=q$ and $\nu^{\prime}\left(x_{\text {prop }}\right)>0$ for each $x \in \operatorname{Var}$, or for some $y \in \operatorname{Var}, q^{\prime}=q_{y}, v^{\prime}\left(y_{\text {prop }}\right)=0$ and $v^{\prime}\left(x_{\text {prop }}\right)>0$ for each $x \in \operatorname{Var} \backslash\{y\}$. An extension of an infinite run π of \mathcal{S} is an infinite run π^{\prime} of $\mathcal{S}_{\text {ext }}$ such that for each $i \geqslant 0$, state $\pi^{\prime}(i)$ is an extension of $\pi(i)$. Now, we prove the following result.

Lemma 19. Let $\xi_{x_{1}}, \ldots, \xi_{x_{n}}$ be unboundedness constraints over Var, π be an infinite run of \mathcal{S} starting from (q, v), and (q^{\prime}, ν^{\prime}) be an extension of (q, ν). Then, $\xi_{x_{1}} \wedge \cdots \wedge \xi_{x_{n}}$ holds along π iff there is an extension π^{\prime} of π starting from (q^{\prime}, ν^{\prime}) such that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \models$ $f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$.

Proof. (\Rightarrow) Assume that $\xi_{x_{1}} \wedge \cdots \wedge \xi_{x_{n}}$ holds along $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \ldots$, where $\left(q_{0}, v_{0}\right)=(q, v)$. By Lemma 18 , there is a well-formed mapping $\Upsilon: N \rightarrow \operatorname{Var}$ such that for each $1 \leqslant i \leqslant n$, Property 1 in Lemma 18 holds. Let $\pi^{\prime}=$ $\left(q_{0}^{\prime}, v_{0}^{\prime}\right),\left(q_{1}^{\prime}, v_{1}^{\prime}\right), \ldots$ be the infinite sequence of states of $\mathcal{S}_{\text {ext }}$ defined as follows: $\left(q_{0}^{\prime}, v_{0}^{\prime}\right)=\left(q^{\prime}, v^{\prime}\right)$ and for all $i>0$,

- $q_{i}^{\prime}=q_{i}$ if $i \notin N$, and $q_{i}^{\prime}=\left(q_{i}\right) \Upsilon_{(i)}$ otherwise;
- $\left(v_{i}^{\prime}\right)_{V a r}=v_{i}$ and for each $x \in \operatorname{Var}, v_{i}^{\prime}\left(x_{r}\right)=v_{i-1}^{\prime}(x)$ if $i-1 \in \Upsilon^{-1}(x)$, and $v_{i}^{\prime}\left(x_{r}\right)=v_{i-1}^{\prime}\left(x_{r}\right)$ otherwise;
- for each $x \in \operatorname{Var}, v_{i}^{\prime}\left(x_{\text {prop }}\right)=0$ if $i \in \Upsilon^{-1}(x)$, and $v_{i}^{\prime}\left(x_{\text {prop }}\right)=1$ otherwise.

By definition of $\mathcal{S}_{\text {ext }}$, it follows that π^{\prime} is an infinite run of $\mathcal{S}_{\text {ext }}$ starting from $\left(q^{\prime}, v^{\prime}\right)$ which is an extension of π. Moreover, since Υ satisfies Property 1 in Lemma 18, by construction it easily follows that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \vDash f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$.
(\Leftarrow) Assume that π^{\prime} is an extension of $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \ldots$ starting from $\left(q^{\prime}, v^{\prime}\right)$ such that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \models f\left(\xi_{x_{1}}\right) \wedge$ $\cdots \wedge f\left(\xi_{x_{n}}\right)$. Then, by construction, there is a well-formed mapping $\Upsilon: N \rightarrow \operatorname{Var}$ such that for each $1 \leqslant i \leqslant n$, Property 1 in Lemma 18 holds. Thus, by Lemma 18, the result follows.

Theorem 11 directly follows from the following result, which is proved by using Lemma 19 (since φ is an existential formula, we can assume that $\varphi=\mathrm{E} \psi$ for some path formula ψ).

Lemma 20. Let $\mathrm{E} \psi$ be a subformula of φ. Then, for each state s of \mathcal{S} and extension $s_{\text {ext }}$ of $s,(\mathcal{G}(\mathcal{S}), s) \models \mathrm{E} \psi$ iff $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), s_{\text {ext }}\right) \models$ $f(\mathrm{E} \psi)$.

Proof. The proof is by structural induction on $\mathrm{E} \psi$. By induction hypothesis, we can assume that the result holds for each state subformula of ψ of the form $\mathrm{E} \psi^{\prime}$.
(\Rightarrow) Assume that $(\mathcal{G}(\mathcal{S}), s) \models \mathrm{E} \psi$. Then, there is an infinite run π of \mathcal{S} starting from s such that $(\mathcal{G}(\mathcal{S}), \pi) \models \psi$. Let $\xi_{x_{1}}, \ldots, \xi_{x_{n}}$ be all and only the unboundedness constraints over Var that hold along π. By Lemma 19, there is an extension π^{\prime} of π starting from $s_{\text {ext }}$ such that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \models f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$. Since for each suffix $\left(\pi^{\prime}\right)^{i}$ of π^{\prime}, $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right),\left(\pi^{\prime}\right)^{i}\right) \models$ $f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$ holds as well, and ψ is in positive normal form (and negation is never used), by a nested structural induction, it easily follows that for each maximal subformula ψ^{\prime} of ψ and $i \geqslant 0$, $\left(\mathcal{G}(\mathcal{S}), \pi^{i}\right) \models \psi^{\prime}$ implies $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right),\left(\pi^{\prime}\right)^{i}\right) \models$ $f\left(\psi^{\prime}\right)$. Hence, the result follows.
(\Leftarrow) Assume that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), s_{\text {ext }}\right) \vDash f(\mathrm{E} \psi)$. Then, there is an infinite run π^{\prime} of $\mathcal{S}_{\text {ext }}$ starting from $s_{\text {ext }}$ such that ($\left.\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \models f(\psi)$. By definition of $\mathcal{S}_{\text {ext }}$, it easily follow that π^{\prime} is an extension of some infinite run π of \mathcal{S} starting from s. Let $\xi_{x_{1}}, \ldots, \xi_{x_{n}}$ be all and only the unboundedness constraints over Var such that $\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right), \pi^{\prime}\right) \models f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$. By Lemma 19, $\xi_{x_{1}}, \ldots, \xi_{x_{n}}$ hold along π. Since for each suffix $\left(\pi^{\prime}\right)^{i}$ of $\pi^{\prime},\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right),\left(\pi^{\prime}\right)^{i}\right) \vDash f\left(\xi_{x_{1}}\right) \wedge \cdots \wedge f\left(\xi_{x_{n}}\right)$ holds as well, and ψ is in positive normal form (and negation is never used), by a nested structural induction, it follows that for each maximal subformula ψ^{\prime} of ψ and $i \geqslant 0,\left(\mathcal{G}\left(\mathcal{S}_{\text {ext }}\right),\left(\pi^{\prime}\right)^{i}\right) \models f\left(\psi^{\prime}\right)$ implies $\left(\mathcal{G}(\mathcal{S}), \pi^{i}\right) \models \psi^{\prime}$. Hence, the result follows.

6.2. Decision procedures

In this subsection, we investigate decidability and complexity issues for satisfiability and model checking of GCCTL* and its fragments E-GCCTL* and A-GCCTL*. By [16], model checking GCS against GCCTL* is undecidable. It is straightforward to extend this negative result to model checking GCS against A-GCCTL*.

Theorem 12. Model checking GCS against A-GCCTL* is undecidable.

Proof. We say that a GCS \mathcal{S} is total if for each control point q, the disjunction of all transitional GC labeling the edges with source q is a valid formula, i.e. every valuation over $\operatorname{Var} \cup \operatorname{Var}^{\prime}$ satisfies the formula (note that we can effectively check this condition). Note that in a total GCS \mathcal{S}, each state has at least a successor. Let NE-GCCTL* be the logic defined exactly as E-GCCTL* with the unique difference that an atomic formula is the negation of a transitional GC. Now, we observe that positive boolean combinations of negations of transitional GC allow to express increment and decrement of a counter variable, and test for zero. For example, $x^{\prime}=x+1$ is equivalent to $\neg\left(x^{\prime}-x \geqslant 2\right) \wedge \neg\left(x-x^{\prime} \geqslant 0\right)$, and $x=0$ is equivalent to $\neg(x \geqslant 1) \wedge \neg(-x \geqslant 1)$. It follows that one can easily encode in NE-GCCTL* the evolution of a Minsky counter machine. Hence, undecidability of its satisfiability and model checking (w.r.t. the class of total GCS) problems easily follows. Now, we observe that over total GCS, NE-GCCTL* is the dual of A-GCCTL*. Hence, undecidability of model checking GCS against A-GCCTL* follows.

In the following we show that model checking GCS against E-GCCTL* and satisfiability for E-GCCTL* and A-GCCTL* are instead decidable and PsPACE-complete. The decidability status for satisfiability of full GCCTL* remains open.

First, we consider model checking GCS against E-GCCTL*. The proposed approach is a generalization of the standard automata-theoretic approach for model checking finite-state systems against standard linear temporal logic LTL [33]. Recall that for a finite alphabet Σ, a Büchi (nondeterministic finite-state word) automaton over Σ is a tuple $\mathcal{A}=\left\langle P, p_{0}, \Delta, F\right\rangle$, where P is the finite set of states, $p_{0} \in P$ is the initial state, Δ is the finite set of transitions of the form $p \xrightarrow{\sigma} p^{\prime}$, where $p, p^{\prime} \in P$ and $\sigma \in \Sigma$, and $F \subseteq P$ is the set of accepting states. An infinite run of \mathcal{A} is an infinite sequence π (from the initial state p_{0}) of the form $\pi=p_{0} \xrightarrow{\sigma_{0}} p_{1} \xrightarrow{\sigma_{1}} p_{2} \ldots$ such that $p_{i} \xrightarrow{\sigma_{i}} p_{i+1} \in \Delta$ for all $i \geqslant 0$. The run π is accepting if for infinitely many $i \geqslant 0, p_{i} \in F$. The ω-language $\mathcal{L}(\mathcal{A})$ of \mathcal{A} is the set of infinite words $w=w(0) w(1) \ldots$ over Σ such that there is an accepting infinite run of the form $\pi=p_{0} \xrightarrow{w(0)} p_{1} \xrightarrow{w(1)} p_{2} \ldots$. The following is a well-known result [33].

Proposition 15. (See [33].) Given an LTL formula ϕ over a finite set Prop of atomic propositions, one can construct in singly exponential time a Büchi automaton \mathcal{A}_{ϕ} over $2^{\text {Prop }}$ of size $2^{O(|\phi|)}$ such that $\mathcal{L}\left(\mathcal{A}_{\phi}\right)$ is the set of infinite words over $2^{\text {Prop }}$ satisfying ϕ.

Let ψ be a path E-GCCTL* formula. Let $\operatorname{At}(\psi)$ be the set of atomic formulas (i.e., transitional GC) which are maximal subformulas of ψ and $\operatorname{St}(\psi)$ be the set of existential state formulas $\mathrm{E} \psi^{\prime}$ which are maximal subformulas of ψ. A ψ-valuation is an infinite word over the finite alphabet $2^{\operatorname{At}(\psi) \cup S t(\psi)}$. Note that ψ can be seen as an LTL formula, written $\operatorname{LTL}(\psi)$, over the set of atomic propositions given by $\operatorname{At}(\psi) \cup S t(\psi)$. In accordance with this, we denote by \mathcal{A}_{ψ} the Büchi automaton over the alphabet $2^{\operatorname{At}(\psi) \cup S t(\psi)}$ associated with $\operatorname{LTL}(\psi)$ and satisfying Proposition 15 . By the semantics of E-GCCTL* and Proposition 15, we easily obtain the following result.

Lemma 21. Let \mathcal{S} be a GCS, s be an \mathcal{S}-state, and $\mathrm{E} \psi$ be $\mathrm{E}-\mathrm{GCCTL}$ formula. Then, $(\mathcal{G}(\mathcal{S}), s) \vDash \mathrm{E} \psi$ iff there are an infinite run $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \ldots$ of \mathcal{S} with $\left(q_{0}, \nu_{0}\right)=s$ and a ψ-valuation $X=X(0) X(1) \ldots$ such that $X \in \mathcal{L}\left(\mathcal{A}_{\psi}\right)$ and for all $i \geqslant 0$,

- for all $\xi \in X(i), v_{i} \oplus \nu_{i+1} \in \operatorname{Sat}(\xi)$;
- for all $\mathrm{E} \psi^{\prime} \in X(i),\left(\mathcal{G}(\mathcal{S}),\left(q_{i}, v_{i}\right)\right) \models \mathrm{E} \psi^{\prime}$.

Now, we can prove the main result of this subsection.

Theorem 13. Given a GCS \mathcal{S} and an E-GCCTL* formula $\varphi, \llbracket \varphi \rrbracket_{\mathcal{S}}$ is MG representable and one can construct an MG representation of $\llbracket \varphi \rrbracket_{\mathcal{S}}$, written $\pi(\mathcal{S}, \varphi)$, satisfying the following:

1. $\lfloor\pi(\mathcal{S}, \varphi)\rfloor_{K}$ can be built in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot 2^{O(|\varphi|)} \cdot(K+2)^{O\left((2|\operatorname{Var}|+\mid \text { Const } \mid)^{2}\right)}\right)$;
2. for a K-bounded MG G on Var and $q \in Q(\mathcal{S})$, checking whether G is in the q-component of $\lfloor\pi(\mathcal{S}, \varphi)\rfloor_{K}$ can be done in polynomial space.

Proof. Fix a GCS \mathcal{S}. For an E-GCCTL* formula φ, we construct $\pi(\mathcal{S}, \varphi)$ and prove Properties 1 and 2 by induction on the structure of φ. If φ is either T or a conjunction or a disjunction of $\mathrm{E}-\mathrm{GCCTL}$ * formulas, then the result easily follows from the induction hypothesis, Proposition 5, and Proposition 7. The remaining case is when $\varphi=\mathrm{E} \psi$ for some path E-GCCTL* formula ψ. We prove the result by a reduction to the fairness problem of GCS. By the induction hypothesis, we can assume that the theorem holds for each state formula θ such that $\theta \in \operatorname{St}(\psi)$. Let $\mathcal{A}_{\psi}=\left\langle P, p_{0}, \Delta, F\right\rangle$ be the Büchi finite state automaton over $2^{\operatorname{At}(\psi) \cup S t(\psi)}$ associated with $\operatorname{LTL}(\psi)$. We construct two $\operatorname{GCS} \mathcal{S}_{\varphi}$ and $\mathcal{S}_{\varphi}^{b d}$ as follows:

- $Q\left(\mathcal{S}_{\varphi}\right) \stackrel{\text { def }}{=} Q(\mathcal{S}) \times P$ and $Q\left(\mathcal{S}_{\varphi}^{b d}\right) \stackrel{\text { def }}{=} Q(\mathcal{S}) \times P$. Thus, $Q\left(\mathcal{S}_{\varphi}\right)=Q\left(\mathcal{S}_{\varphi}^{b d}\right)$ and a control point of $Q\left(\mathcal{S}_{\varphi}\right)$ consists of a pair (q, p), where q is a control point of \mathcal{S} and p is a state of \mathcal{A}_{ψ}.
- $(q, p) \xrightarrow{G}\left(q^{\prime}, p^{\prime}\right)$ is an edge of \mathcal{S}_{φ} iff there are an edge of \mathcal{S} of the form $q \xrightarrow{G_{0}} q^{\prime}$ and a transition $p \xrightarrow{X} p^{\prime}$ of \mathcal{A}_{ψ} with $X \cap \operatorname{St}(\psi)=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ and $X \cap \operatorname{At}(\psi)=\left\{\xi_{1}, \ldots, \xi_{h}\right\}$ such that

$$
G=G_{0} \sqcap G_{1} \sqcap \cdots \sqcap G_{k} \sqcap G\left(\xi_{1}\right) \sqcap \cdots \sqcap G\left(\xi_{h}\right)
$$

where for all $1 \leqslant j \leqslant k$, the MG G_{j} belongs to the q-component of the computable MG-representation $\pi\left(\mathcal{S}, \theta_{j}\right)$ of $\llbracket \theta_{j} \rrbracket_{\mathcal{S}}$.

- $(q, p) \xrightarrow{G}\left(q^{\prime}, p^{\prime}\right)$ is an edge of $\mathcal{S}_{\varphi}^{b d}$ iff there are an edge of \mathcal{S} of the form $q \xrightarrow{G_{0}} q^{\prime}$ and a transition $p \xrightarrow{X} p^{\prime}$ of \mathcal{A}_{ψ} with $X \cap \operatorname{St}(\psi)=\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ and $X \cap \operatorname{At}(\psi)=\left\{\xi_{1}, \ldots, \xi_{h}\right\}$ such that

$$
G=\left\lfloor G_{0}\right\rfloor_{K} \sqcap G_{1} \sqcap \cdots \sqcap G_{k} \sqcap\left\lfloor G\left(\xi_{1}\right)\right\rfloor_{K} \sqcap \cdots \sqcap\left\lfloor G\left(\xi_{h}\right)\right\rfloor_{K}
$$

where for all $1 \leqslant j \leqslant k$, the MG G_{j} belongs to the q-component of $\left\lfloor\pi\left(\mathcal{S}, \theta_{j}\right)\right\rfloor_{K}$.
Note that by construction $\left(\left(q, p_{0}\right), v\right) \in \operatorname{Inf}_{\mathcal{S}_{\varphi}, Q(\mathcal{S}) \times F}$ iff there are an infinite run $\pi=\left(q_{0}, v_{0}\right) \rightarrow\left(q_{1}, v_{1}\right) \ldots$ of \mathcal{S} with $\left(q_{0}, v_{0}\right)=(q, v)$ and a ψ-valuation $X=X(0) X(1) \ldots$ such that $X \in \mathcal{L}\left(\mathcal{A}_{\psi}\right)$ and for all $i \geqslant 0$, the following hold:

- for all $\xi \in X(i), v_{i} \oplus v_{i+1} \in \operatorname{Sat}(\xi)$;
- for all $\mathrm{E} \psi^{\prime} \in X(i), \nu_{i} \in \operatorname{Sat}(G)$ for some MG G belonging to the q_{i}-component of $\pi\left(\mathcal{S}, \mathrm{E} \psi^{\prime}\right)$. Hence, for all $\mathrm{E} \psi^{\prime} \in X(i)$, $\left(\mathcal{G}(\mathcal{S}),\left(q_{i}, v_{i}\right)\right) \models \mathrm{E} \psi^{\prime}$.

Thus, by Lemma 21, the following claim follows.
Claim 1. $(q, v) \in \llbracket \varphi \rrbracket \mathcal{S}$ if and only if there is an infinite run of \mathcal{S}_{φ} from $\left(\left(q, p_{0}\right), v\right)$ which is fair w.r.t. $Q(\mathcal{S}) \times F\left(\right.$ i.e., $\left(\left(q, p_{0}\right), v\right) \in$ $\left.\operatorname{Inf}_{\mathcal{S}_{\varphi}, Q(\mathcal{S}) \times F}\right)$.

Moreover, by construction, the induction hypothesis, and Propositions 7 and 15, we easily obtain the following.
Claim 2. $\mathcal{S}_{\varphi}^{\text {bd }}$ can be built in time $O\left(|E(\mathcal{S})| \cdot|Q(\mathcal{S})|^{2} \cdot 2^{O(|\varphi|)} \cdot(K+2)^{O\left((2|\operatorname{Var}|+|\operatorname{Const}|)^{2}\right)}\right)$ starting from \mathcal{S} and $\left\{\lfloor\pi(\mathcal{S}, \theta)\rfloor_{K} \mid \theta \in X\right\}$. Moreover, $\mathcal{S}_{\varphi}^{b d}=\left\lfloor\mathcal{S}_{\varphi}\right\rfloor_{K}$.

Now, by using Claims 1 and 2, we construct an MG representation $\pi(\mathcal{S}, \varphi)$ of $\llbracket \varphi \rrbracket_{\mathcal{S}}$ and show that it satisfies Properties 1 and 2 of the theorem. Let $\sigma_{F}\left(\mathcal{S}_{\varphi}\right)$ be the computable MG representation of $\operatorname{Inf} \mathcal{S}_{\varphi}, Q(\mathcal{S}) \times F$ satisfying the statement of Theorem 8. Then, for each $q \in Q(\mathcal{S})$, the q-component of $\pi(\mathcal{S}, \varphi)$ is the ($\left.q, p_{0}\right)$-component of $\sigma_{F}\left(\mathcal{S}_{\varphi}\right)$. By Claim 1 , it follows that $\pi(\mathcal{S}, \varphi)$ is a computable MG representation of $\llbracket \varphi \rrbracket_{\mathcal{S}}$. By Claim 2, $\mathcal{S}_{\varphi}^{b d}=\left\lfloor\mathcal{S}_{\varphi}\right\rfloor_{K}$, hence, by Property 2 of Theorem $8,\left\lfloor\sigma_{F}\left(\mathcal{S}_{\varphi}\right)\right\rfloor_{K}=\left\lfloor\sigma_{F}\left(\mathcal{S}_{\varphi}^{b d}\right)\right\rfloor_{K}$. Thus, since $Q\left(\mathcal{S}_{\varphi}^{b d}\right)$ has cardinality bounded by $|Q(\mathcal{S})| \cdot 2^{0(|\varphi|)}$ and $E\left(\mathcal{S}_{\varphi}^{b d}\right)$ has cardinality bounded by $|E(\mathcal{S})| \cdot 2^{O(|\varphi|)} \cdot(K+2)^{(2|\operatorname{Var}|+|C o n s t|)^{2}}$ (the MG of $\mathcal{S}_{\varphi}^{\text {bd }}$ are K-bounded), by Property 1 of Theorem 8 and Claim 2, Property 1 in the theorem follows. Now, let us consider Property 2. By the induction hypothesis, we can assume that Property 2 holds for each formula in $S t(\psi)$. Moreover, by the above considerations, it suffices to show that given a K-bounded MG G over Var and $(q, p) \in Q\left(\mathcal{S}_{\varphi}^{b d}\right)$, checking whether G is in the (q, p)-component of $\left\lfloor\sigma_{F}\left(\mathcal{S}_{\varphi}^{b d}\right)\right\rfloor_{K}$ can be done in space polynomial in the sizes of \mathcal{S} and φ. By Property 3 of Theorem 8, this check can be done in space polynomial in the size of $\mathcal{S}_{\varphi}^{b d}$. However, we can do better as follows. In fact, as illustrated in the proof of Theorem 8, the nondeterministic algorithm that checks whether G is in the (q, p)-component of $\left\lfloor\sigma_{F}\left(\mathcal{S}_{\varphi}^{b d}\right)\right\rfloor_{K}$ keeps in memory only the K-bounded $M G\left\lfloor G_{\wp_{0}}\right\rfloor_{K}$ and
$\left\lfloor G_{\wp}\right\rfloor_{K}$ associated with the guessed two non-null finite paths \wp_{0} and \wp generated so far, together with their source and target control points. If the successful termination condition is not satisfied, then:
(a) the algorithm chooses two edges e_{0} and e of $\mathcal{S}_{\varphi}^{b d}$ from control points $t\left(\wp_{0}\right)$ and $t(\wp)$, and
(b) computes the K-bounded transitional MG associated with the new guessed paths $\wp_{0} \cdot e_{0}$ and $\wp \cdot e$.

Now, by definition of $\mathcal{S}_{\varphi}^{b d}$, the K-bounded transitional MG labeling the edge e_{0} (resp., e) depend on the MG belonging to the components of $\lfloor\pi(\mathcal{S}, \theta)\rfloor_{K}$, where $\theta \in \operatorname{St}(\psi)$. Then, we modify part (a) of the algorithm as follows:
(a^{\prime}) the algorithm guesses two edges e_{0} and e from control points $t\left(\wp_{0}\right)$ and $t(\wp)$ whose labels are K-bounded transitional MG, and checks that e_{0} and e are indeed edges of $\mathcal{S}_{\varphi}^{b d}$. If the check is negative, then the algorithm terminates unsuccessfully. Otherwise, the algorithm performs part (b).

Recall that the finite-state automaton \mathcal{A}_{ψ} can be constructed on-the-fly [33]. Then, the crucial observation is that by the induction hypothesis, the check in (a^{\prime}) can be done in space polynomial in the sizes of \mathcal{S} and the state subformulas $\theta \in$ $S t(\psi)$. Hence, the nondeterministic algorithm runs in space polynomial in the sizes of \mathcal{S} and φ. Since NPspace $=$ Pspace, Property 2 in the theorem follows, which concludes.

Theorem 14. Model checking GCS against E-GCCTL* and satisfiability of E-GCCTL* and A-GCCTL* are PsPACE-complete.

Proof. The lower bounds directly follow from Pspace-hardness of model checking and satisfiability for the existential and universal fragments of standard CTL* (see, e.g., [27]). Now, let us consider the upper bounds.

Upper bound for model checking GCS against E-GCCTL*: the proof is by a linear-time reduction to the problem of checking for a given GCS \mathcal{S}, control point q, and E-GCCTL* formula φ, whether $(\mathcal{G}(\mathcal{S}),(q, \nu)) \models \varphi$ for some valuation v over Var (by Theorem 13, this last problem is in PsPACE). Fix a GCS \mathcal{S}, a state (q_{0}, ν_{0}) of \mathcal{S}, and an E-GCCTL* formula φ. W.l.o.g. we assume that φ does not contain occurrences of T. Moreover, we can assume that $\nu_{0}(x) \in$ Const for each $x \in \operatorname{Var}$ (otherwise, we extend Const by including the integers $v_{0}(x)$ with $\left.x \in \operatorname{Var}\right)$. Let $G_{=}$be the transitional MG corresponding to the GC given by $\bigwedge_{x \in \operatorname{Var}} x=\nu_{0}(x)$ and $q_{0}^{\prime} \notin Q(\mathcal{S})$ be a fresh control point. We construct a new GCS \mathcal{S}_{0} as follows: \mathcal{S}_{0} is obtained from \mathcal{S} by adding for each edge of \mathcal{S} of the form $q_{0} \xrightarrow{G} q$, the edge $q_{0}^{\prime} \xrightarrow{G \sqcap G=} q$. We claim that $\left(q_{0}, \nu_{0}\right) \in \llbracket \varphi \rrbracket_{\mathcal{S}}$ iff $\left(q_{0}^{\prime}, \nu\right) \in \llbracket \varphi \rrbracket_{\mathcal{S}_{0}}$ for some valuation v over Var, hence the result follows. The claim directly follows from the following facts, which can be easily proved:

- Let T and T_{0} be the unwindings of $\llbracket \mathcal{S} \rrbracket$ and $\llbracket \mathcal{S}_{0} \rrbracket$ starting from $\left(q_{0}, \nu_{0}\right)$ and (q_{0}^{\prime}, v_{0}), respectively. If we replace the label (q_{0}^{\prime}, v_{0}) of the root of T_{0} with the label $\left(q_{0}, \nu_{0}\right)$, then the resulting labeled tree is isomorphic to T.
- For a valuation v over Var such that $v \neq v_{0},\left(q_{0}^{\prime}, v\right)$ has no successors in $\llbracket \mathcal{S}_{0} \rrbracket$. Hence, $\left(q_{0}^{\prime}, v\right) \notin \llbracket \varphi \rrbracket \mathcal{S}_{0}$.

Upper bound for satisfiability of E-GCCTL*: the proof is by a linear-time reduction to the problem of checking for a given GCS \mathcal{S}, control point q, and E-GCCTL* formula φ, whether $(\mathcal{G}(\mathcal{S}),(q, v)) \models \varphi$ for some valuation v over Var. Let S_{0} be the GCS having a unique edge (which is a self-loop) of the form $q \xrightarrow{G} q$ such that G is equivalent to true. Evidently, given an E-GCCTL* formula φ, φ is satisfiable iff $\left(\mathcal{G}\left(\mathcal{S}_{0}\right),(q, v)\right) \models \varphi$ for some valuation v over Var.

Upper bound for satisfiability of A-GCCTL*: in fact, we consider satisfiability of A-GCCTL* restricted to the class of labeled graphs admitting at least an infinite path (without this restriction, by the semantics of the universal path quantifier, each A-GCCTL* formula would be satisfiable). Formally, an A-GCCTL* formula φ is strongly satisfiable iff ($\mathcal{G}, s) \models \varphi$ for some labeled graph \mathcal{G} and state s of \mathcal{G} such that there is some infinite path of \mathcal{G} from s. The upper bound for the considered problem is shown by a linear-time reduction to satisfiability of E -GCCTL* Let φ be an A-GCCTL* formula, and let $\mathrm{E} \widetilde{\varphi}$ be the E-GCCTL* formula, where $\widetilde{\varphi}$ is obtained from φ by removing each occurrence of the universal path quantifier. Evidently, φ is strongly satisfiable iff $\mathrm{E} \widetilde{\varphi}$ is satisfiable. Hence, the result follows.

7. Concluding remarks

We conclude by giving some future research directions.
A possible direction is connected to the termination analysis of GCS. In particular, in termination analysis of programs, a classical method is the ranking function argument. In this method, the goal is finding a witness for uniform termination, i.e. a mapping (global ranking function) that associates a rank to every state of the program over a well-founded ordered domain (such as the set of natural numbers) and such that every transition of the program decreases the rank. For applications, an explicit ranking expression may provide an easy-to-verify witness for termination, since verification only amounts to checking it against every transition. Moreover, since a ranking function provides a witness for a termination proof, it is interesting for program certification. For example, for the class of MCS, A. Ben-Amram in [8] provides a procedure to
construct explicit global ranking functions in singly exponential time. It would be interesting to generalize the approach proposed by Ben-Amram for the more expressive class of GCS.

Regarding the logic GCCTL*, an intriguing question left open is the decidability status for satisfiability of full GCCTL*. We think that this is an important issue that deserves future investigation. Notice that the argument used for undecidability of model-checking MCS or IRA against CTL extended with MC [16] relies on the observation that existential and universal quantification over counter variables can be simulated by the path quantifiers of the logic and by using the fact that the formalism is infinite-branching (in particular, one can ensure that a variable assumes all the possible values in the successors of a given state). The "infinitely-branching requirement" which is crucial in the undecidability argument for model-checking cannot be applied to the satisfiability problem, and in fact, one can show that the logic GCCTL* satisfies the bounded-tree model property. Hence, establishing the decidability status for satisfiability of GCCTL* seems challenging.

Moreover, it would be interesting to investigate extensions of GCCTL* with mechanisms allowing one to compare variables at states arbitrarily far away from each other. In logical languages, these mechanisms are usually expressed by the use of freeze quantifiers and register variables. The freeze mechanism allows one to store a value in a register and to test later the value in the register with a current value. This operator is useful to compare values at distinct states of Kripke-like structures and has found applications in many logical frameworks such as real-time logics, hybrid logics, and regular lineartime logic LTL extended with Presburger constraints. However, it is well-known that the freeze operator can easily lead to undecidability. Thus, a goal is to individuate weak and still interesting "freeze" mechanisms which may lead to decidable and possibly tractable logics. For the logic GCCTL*, a possibility would be to permit atomic formulas of the form $x-\diamond y \geqslant k$, or $\forall y-x \geqslant k$, or $x-\square y \geqslant k$, or $\square y-x \geqslant k(k \in \mathbb{N})$, where $\forall y$ means "for some future value of y " and $\square y$ means "for each future value of y ". Thus, for example, $x-\square y \geqslant 1$ asserts that the future values of y remain below the current value of x. We conjecture that for this extension, Theorem 14 still holds. Our intuition is that for the existential fragment of this extension, model checking GCS might be solved by using an approach similar to the one proposed in [5] for model checking timed automata against metric temporal logic without singular intervals.

Finally, there are other important questions left open in this paper. We have shown that it is possible to compute Presburger representations for the sets of terminating, strong terminating, and fair states of a GCS. The same holds for the set of states of a GCS satisfying a given E-GCCTL* formula. The possibility of computing these representations is crucially based on Theorem 2, or, equivalently, on the possibility of computing an MG representation of the binary reachability relation of a GCS. In particular, an elementary algorithm (for example, a singly exponential time algorithm) for constructing the finite set of sample paths of Theorem 2 would lead to elementary algorithms for computing the above Presburger representations. On the other hand, we are not able to give an upper bound on the time complexity of the proposed algorithm that computes the set of sample paths (the algorithm is based on a fixpoint iteration whose termination is guaranteed by a suitable decidable well-quasi-ordering defined over the set of transitional MG). This means that our method cannot be trivially extended in order to show that the above Presburger representations can be computed in elementary time/space. Moreover, we believe that answering these questions is not trivial, due to analogous questions for other classes of infinite-state formalisms. For example, the computation of the finite set of sample paths is similar to the computation of the coverability graph of a Petri net, and it is known that the size of the coverability graph can be non-primitive-recursive [15].

Appendix A

A.1. Proof of Theorem 2

In order to prove Theorem 2, we need additional preliminary results. Recall that for a set S, a pre-order \preceq over S is a reflexive and transitive (binary) relation on S. The pre-order \preceq is a well-quasi-ordering if, additionally, for every infinite sequence $y_{0}, y_{1}, y_{2}, \ldots$ of elements of S, there exist indices $i<j$ such that $y_{i} \preceq y_{j}$.

Definition 20 (Pre-order on transitional MG). We define a pre-order \preceq on transitional MG as follows: $G \preceq G^{\prime}$ if either G^{\prime} is unsatisfiable, or for each edge $u \xrightarrow{k} v$ of G, there is an edge in G^{\prime} of the form $u \xrightarrow{k^{\prime}} v$ such that $k^{\prime} \geqslant k$. Note that $G \preceq G^{\prime}$ implies $\operatorname{Sat}\left(G^{\prime}\right) \subseteq \operatorname{Sat}(G)$.

Definition 21 (Pre-order on finite paths of a GCS). Let \mathcal{S} be a GCS. We denote by $\preceq \mathcal{S}$ be the pre-order over the set of non-null finite paths of \mathcal{S} defined as follows: $\wp \preceq \wp^{\prime}$ if $s(\wp)=s\left(\wp^{\prime}\right), t(\wp)=t\left(\wp^{\prime}\right),\left\lfloor G_{\wp}\right\rfloor_{K}=\left\lfloor G_{\wp^{\prime}}\right\rfloor_{K}$, and $G_{\wp} \leq G_{\wp^{\prime}}$. Moreover, given two finite sets \mathcal{P} and \mathcal{P}^{\prime} of non-null finite paths of \mathcal{S}, we write $\mathcal{P} \sqsubseteq \mathcal{S} \mathcal{P}^{\prime}$ iff for each $\wp^{\prime} \in \mathcal{P}^{\prime}$ there is $\wp \in \mathcal{P}$ such that $\wp \preceq \mathcal{S} \wp^{\prime}$. Note that $\sqsubseteq \mathcal{S}$ is a pre-order.

Lemma 22. The pre-orders \preceq and $\preceq \mathcal{S}$ (for $a \operatorname{GCS} \mathcal{S})$ are well-quasi-orderings.
Proof. Since the set of K-bounded transitional MG is finite and the set of control points of a GCS \mathcal{S} is finite, the result easily follows from well-quasi-ordering of the relation \leqslant_{h} (for a fixed $h \in \mathbb{N}$) defined over the set of h-tuples of natural numbers as $\left(n_{1}, \ldots, n_{h}\right) \leqslant h\left(m_{1}, \ldots, m_{h}\right)$ if $n_{i} \leqslant m_{i}$ for each $1 \leqslant i \leqslant h$ [29].

Lemma 23. Let \mathcal{S} be a GCS and $\wp \preceq \mathcal{S} \wp^{\prime}$. Then, for each non-null finite path $\wp^{\prime \prime}$ of \mathcal{S} such that $s\left(\wp^{\prime \prime}\right)=t(\wp)=t\left(\wp^{\prime}\right)$, it holds that $\wp \wp^{\prime \prime} \preceq \mathcal{S} \wp^{\prime} \wp^{\prime \prime}$.

Proof. Let $\wp \preceq \mathcal{S} \wp^{\prime}$ and $\wp^{\prime \prime}$ as in the statement of the lemma. By the definition of the composition operator and definition of \preceq, for all transitional MG $G, G^{\prime}, G^{\prime \prime}, G \preceq G^{\prime}$ implies $G \bullet G^{\prime \prime} \preceq G^{\prime} \bullet G^{\prime \prime}$. Thus, since $G_{\wp} \preceq G_{\wp^{\prime}}$ (by hypothesis) and the composition operator is associative, we obtain that $G_{\wp \wp^{\prime \prime}}=G_{\wp} \bullet G_{\wp^{\prime \prime}} \preceq G_{\wp^{\prime}} \bullet G_{\wp^{\prime \prime}}=G_{\wp \wp^{\prime} \wp^{\prime \prime}}$. Moreover, since $\left\lfloor G_{\wp}\right\rfloor K=\left\lfloor G_{\wp^{\prime}}\right\rfloor_{K}$ (by hypothesis), by Proposition 7, it follows that $\left\lfloor G_{\wp \wp^{\prime \prime}}\right\rfloor_{K}=\left\lfloor G_{\wp^{\prime} \wp^{\prime \prime}}\right\rfloor_{K}$. Hence, the result follows.

Lemma 24. Let \mathcal{S} be a GCS and $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ be an infinite sequence of finite sets of non-null finite paths of \mathcal{S} such that $\mathcal{P}_{i+1} \sqsubseteq \mathcal{S} \mathcal{P}_{i}$ for each $i \geqslant 1$. Then, there is $k \geqslant 1$ such that $\mathcal{P}_{k} \sqsubseteq \mathcal{S} \mathcal{P}_{k+1}$.

Proof. We assume the contrary and derive a contradiction. Hence, $\mathcal{P}_{i+1} \sqsubseteq \mathcal{S} \mathcal{P}_{i}$ and $\mathcal{P}_{i} \nsubseteq \mathcal{S} \mathcal{P}_{i+1}$ for each $i \geqslant 1$. Then, we deduce the following:

Claim. For each $j>1$, there is $\wp_{j} \in \mathcal{P}_{j}$ such that for all $i<j$ and $\wp \in \mathcal{P} i, \wp \npreceq \mathcal{S} \wp_{j}$.
Proof of the claim. assume the contrary and derive a contradiction. Then, there is $j>1$ such that for each $\wp_{j} \in \mathcal{P}_{j}$, there is $i<j$ and $\wp_{i} \in \mathcal{P}_{i}$ so that $\wp_{i} \preceq \mathcal{S} \wp_{j}$. Since $\mathcal{P}_{j-1} \sqsubseteq \mathcal{S} \mathcal{P}_{i}$ for each $i<j$, it follows that for each $\wp_{j} \in \mathcal{P}_{j}$, there is $\wp \in \mathcal{P}_{j-1}$ so that $\wp \preceq \mathcal{S} \wp_{j}$. This means that $\mathcal{P}_{j-1} \sqsubseteq \mathcal{S} \mathcal{P}_{j}$, which is a contradiction.

By the claim above, we deduce the existence of an infinite sequence \wp_{1}, \wp_{2}, \ldots of non-null finite paths of \mathcal{S} such that $\wp_{i} \npreceq \mathcal{S} \wp_{j}$ for all $1 \leqslant i<j$. Since $\preceq \mathcal{S}$ is a well-quasi-ordering, we obtain a contradiction, and the result follows.

Now, we can prove Theorem 2.
Theorem 2. Given a GCS \mathcal{S}, one can compute a finite set $\mathcal{P}_{\mathcal{S}}$ of non-null finite paths of \mathcal{S} such that: for each non-null finite path \wp^{\prime} of \mathcal{S}, there is a path $\wp \in \mathcal{P}$ S so that $s(\wp)=s\left(\wp^{\prime}\right), t(\wp)=t\left(\wp^{\prime}\right),\left\lfloor G_{\wp}\right\rfloor_{K}=\left\lfloor G_{\wp^{\prime}}\right\rfloor_{K}$, and $\rightsquigarrow_{\wp^{\prime}}$ implies \rightsquigarrow_{\wp} (hence, $\operatorname{Sat}\left(G_{\wp^{\prime}}\right) \subseteq \operatorname{Sat}\left(G_{\wp}\right)$).

Proof. For each $k \geqslant 1$, let \mathcal{P}_{k} be the finite set of non-null finite paths of \mathcal{S} of length at most k. First, we prove the following.
Claim. Let $k \geqslant 1$. If $\mathcal{P}_{k} \sqsubseteq \mathcal{S} \mathcal{P}_{k+1}$, then $\mathcal{P}_{k} \sqsubseteq \mathcal{S} \mathcal{P}_{h}$ for each $h \geqslant k+1$.

Proof of the claim. let $\mathcal{P}_{k} \sqsubseteq \mathcal{S} \mathcal{P}_{k+1}$. It suffices to show that $\mathcal{P}_{k+1} \sqsubseteq \mathcal{S} \mathcal{P}_{k+2}$ (recall that $\sqsubseteq \mathcal{S}$ is a pre-order). Let $\wp \in \mathcal{P}_{k+2}$. We need to show that there is $\wp^{\prime} \in \mathcal{P}_{k+1}$ such that $\wp^{\prime} \preceq \mathcal{S} \wp$. If $\wp \in \mathcal{P}_{k+1}$, the result is obvious. Otherwise, $\wp ~ c a n ~ b e ~ w r i t t e n ~ i n ~$ the form $\wp=\wp_{k+1} \wp_{1}$ such that $\wp_{k+1} \in \mathcal{P}_{k+1}$ and $\left|\wp_{1}\right|=1$. Since $\mathcal{P}_{k} \sqsubseteq \mathcal{S} \mathcal{P}_{k+1}$, there is a path $\wp_{k} \in \mathcal{P}_{k}$ such that $\wp_{k} \preceq \mathcal{S} \wp_{k+1}$. Let $\wp^{\prime}=\wp_{k} \wp_{1}$. Note that \wp^{\prime} is well-defined and $\wp^{\prime} \in \mathcal{P}_{k+1}$. Moreover, by Lemma 23, $\wp^{\prime} \preceq \wp$. Hence, the result follows.

Now, we can prove the theorem. Since $\mathcal{P}_{k} \subseteq \mathcal{P}_{k+1}$ for all $k \geqslant 1$, it holds that $\mathcal{P}_{k+1} \sqsubseteq \mathcal{S} \mathcal{P}_{k}$ for all $k \geqslant 1$. Hence, by Lemma 24 , it is defined the smallest $k_{0} \geqslant 1$ such that $\mathcal{P}_{k_{0}} \sqsubseteq \mathcal{S} \mathcal{P}_{k_{0}+1}$. Note that k_{0} can be effectively computed. We set $\mathcal{P}_{\mathcal{S}}$ to the computable finite set $\mathcal{P}_{k_{0}}$. By the claim above, the definition of the pre-order $\sqsubseteq_{\mathcal{S}}$, and Proposition 8 , it follows that $\mathcal{P}_{\mathcal{S}}$ satisfies the statement of the theorem, which concludes.

References

[1] P.A. Abdulla, G. Delzanno, On the coverability problem for constrained multiset rewriting, in: Proc. 5th AVIS, 2006.
[2] P.A. Abdulla, G. Delzanno, A. Rezine, Approximated parameterized verification of infinite-state processes with global conditions, Form. Methods Syst. Des. 34 (2) (2009) 126-156.
[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, Automatic inference of upper bounds for recurrence relations in cost analysis, in: Proc. 15th SAS, in: Lect. Notes Comput. Sci., vol. 5079, Springer, 2008, pp. 221-237.
[4] R. Alur, D.L. Dill, Automata for modeling real-time systems, in: Proc. 17th ICALP, in: Lect. Notes Comput. Sci., vol. 443, Springer, 1990, pp. $322-335$.
[5] R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J. ACM 43 (1) (1996) 116-146.
[6] A.M. Ben-Amram, Size-change termination with difference constraints, ACM Trans. Program. Lang. Syst. 30 (3) (2008).
[7] A.M. Ben-Amram, Size-change termination, monotonicity constraints and ranking functions, Log. Methods Comput. Sci. 6 (3) (2010).
[8] A.M. Ben-Amram, Monotonicity constraints for termination in the integer domain, Log. Methods Comput. Sci. 7 (3) (2011).
[9] A.M. Ben-Amram, M. Vainer, Complexity analysis of size-change terminating programs, in: Second Workshop on Developments in Implicit Computational Complexity, 2011.
[10] B. Boigelot, Symbolic methods for exploring infinite state spaces, PhD thesis, Université de Liège, 1998.
[11] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, T. Vojnar, Programs with lists are counter automata, in: Proc. 18th CAV, in: Lect. Notes Comput. Sci., vol. 4144, Springer, 2006, pp. 517-531.
[12] A. Bouajjani, R. Echahed, P. Habermehl, On the verification problem of nonregular properties for nonregular processes, in: LICS'95, IEEE Computer Society Press, 1995, pp. 123-133.
[13] M. Bozga, C. Girlea, R. Iosif, Iterating octagons, in: Proc. 15th TACAS, in: Lect. Notes Comput. Sci., vol. 5505, Springer, 2009 , pp. $337-351$.
[14] L. Bozzelli, R. Gascon, Branching-time temporal logic extended with qualitative Presburger constraints, in: LPAR’06, in: Lect. Notes Comput. Sci., vol. 4246, Springer, 2006, pp. 197-211.
[15] E. Cardoza, Richard J. Lipton, Albert R. Meyer, Exponential space complete problems for Petri nets and commutative semigroups: Preliminary report, in: STOC, ACM, 1976, pp. 50-54.
[16] Karlis Cerans, Deciding properties of integral relational automata, in: Proc. 21st ICALP, in: Lect. Notes Comput. Sci., vol. 3921, Springer, 1994, pp. 35-46.
[17] H. Comon, V. Cortier, Flatness is not a weakness, in: Proc. 14th CSL, in: Lect. Notes Comput. Sci., vol. 1862, Springer, 2000, pp. 262-276.
[18] H. Comon, Y. Jurski, Multiple counters automata, safety analysis and Presburger arithmetic, in: Proc. 10th CAV, in: Lect. Notes Comput. Sci., vol. 1427, Springer, 1998, pp. 268-279.
[19] S. Demri, Deepak D’Souza, An automata-theoretic approach to constraint LTL, Inf. Comput. 205 (3) (2007) 380-415.
[20] S. Demri, A. Finkel, V. Goranko, G. van Drimmelen, Towards a model-checker for counter systems, in: ATVA’06, in: Lect. Notes Comput. Sci., vol. 4218, Springer, 2006, pp. 493-507.
[21] S. Demri, R. Gascon, Verification of qualitative Z constraints, Theor. Comput. Sci. 409 (1) (2008) $24-40$.
[22] E.A. Emerson, J.Y. Halpern, Sometimes and not never revisited: On branching versus linear time, J. ACM 33 (1) (1986) 151-178.
[23] A. Finkel, J. Leroux, How to compose Presburger-accelerations: applications to broadcast protocols, in: Proc. 22nd FSTTCS, in: Lect. Notes Comput. Sci., vol. 2556, Springer, 2002, pp. 145-156.
[24] L. Fribourg, J. Richardson, Symbolic verification with gap-order constraints, in: Proc. 6th LOPSTR, in: Lect. Notes Comput. Sci., vol. 1207, Springer, 1996, pp. 20-37.
[25] O. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1) (1978) 116-133.
[26] N.D. Jonson, Computability and Complexity from a Programming Perspective, Foundations of Computing Series, MIT Press, 1997.
[27] O. Kupferman, M.Y. Vardi, An automata-theoretic approach to modular model checking, ACM Trans. Program. Lang. Syst. 22 (1) (2000) $87-128$.
[28] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
[29] J.L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall, 1981.
[30] A. Pnueli, The temporal logic of programs, in: Proc. 18th FOCS, IEEE Computer Society, 1977, pp. 46-57.
[31] F. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. 30 (1930) 264-286.
[32] P.Z. Revesz, A closed-form evaluation for datalog queries with integer (gap)-order constraints, Theor. Comput. Sci. 116 (1-2) (1993) 117-149.
[33] M.Y. Vardi, P. Wolper, Reasoning about infinite computations, Inf. Comput. 115 (1) (1994) 1-37.

[^0]: . 4 This paper is an extended version of the results published in the proceedings of the following two conferences: (1) 13th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI'12), Lect. Notes Comput. Sci., vol. 7148, Springer, 2012, pp. 88-103; and (2) 6th International Conference on Language and Automata Theory and Applications (LATA'12), Lect. Notes Comput. Sci., vol. 7183, Springer, 2012 , pp. 155-168.

 * Corresponding author.

 E-mail addresses: laura.bozzelli@fi.upm.es (L. Bozzelli), Sophie.Pinchinat@irisa.fr (S. Pinchinat).

[^1]: ${ }^{1}$ Quantification over variables can be simulated by the path quantifiers of the logic.

[^2]: 2 A state is an instantaneous description of the system specifying both a control location and a valuation of the counter variables.

[^3]: ${ }^{3}$ MG are called Positive Graphose Inequality Systems in [16].

[^4]: ${ }^{4}$ The main difference with respect to the result in [32] is that we use a different graph representation of GC and a more general approximation scheme than the one exploited in [32].

[^5]: ${ }^{5}$ Where u^{\prime} denotes the corresponding variable in $\operatorname{Var}^{\prime}$ if $u \in \operatorname{Var}$, and u itself otherwise.

[^6]: ${ }^{6}$ Recall that the total ordering induced by G_{0} on $\operatorname{Var}^{\prime} \cup$ Const corresponds to the total ordering induced by G on Var \cup Const.

[^7]: ${ }^{7}$ If we allow negation, then the successor relation is definable and by [21], basic decision problems become undecidable.

[^8]: ${ }^{8}$ Such properties are very useful when checking e.g. the risk of having an unbounded number of duplications of a critical data in a security system which significantly impacts the control enforcement cost for this data.

