
Automatic Test Model Generation for
Model Transformations Using Mutation Analysis

A Model-Driven Approach

Author :
Thomas Degueule1

Supervisors:
Jean-Marie Mottu1

Gerson Sunyé2

1 AeLoS – LINA
2 AtlanMod – EMN

July 4, 2013

1 / 22

Table of Contents

1 Introduction

2 Context

3 Automation of Mutation Analysis for Model Transformation

4 Development

5 Ongoing Work

6 Conclusion

2 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Introduction

• Model transformations are critical elements of MDE

• Traditional testing techniques need to be adapted to their
specificities

• Software testing is an expensive and mainly manual task

• How to help model transformations testers?
• Generate test models automatically

3 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Model-Driven Engineering

Principle
Produce software automatically from high-level models

• Each model represents an aspect of the system
• Each model is written in a domain-specific language
• Composition of models forms the whole system
• Models are refined into concrete artifacts

• Code
• Tests
• Documentation
• Configuration files

4 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Model Transformations

Model
Transformation

Program

Input

Metamodel

Output
Metamodel

conforms to conforms to

Input Models Output Models

P
R
E

P
O
S
T

satisfy satisfy

MOF

Meta-metamodel
conforms to conforms to

• Written using a model transformation language (ATL, Kermeta, . . .)
• Divided into several transformation rules
• Usage:

• Refine abstract models into concrete models
• Apply design patterns
• Refactoring. . .

5 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Model Transformations

Model
Transformation

Program

Input
Metamodel

Output
Metamodel

conforms to conforms to

Input Models Output Models

P
R
E

P
O
S
T

satisfy satisfy

MOF
Meta-metamodel

conforms to conforms to

• Incorrect model transformations lead to corrupted models
• They are used many times in a MDE process
• They are black-box for the end users
• => They need to be trustworthy and thoroughly tested

5 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Model Transformations

Model
Transformation

Program

Input

Metamodel

Output
Metamodel

conforms to conforms to

Input Models Output Models

P
R
E

P
O
S
T

satisfy satisfy

MOF

Meta-metamodel
conforms to conforms to

• Test data are models: complex and large graph of objects
• They must satisfy many constraints

• Metamodel conformance
• Metamodel invariants
• Transformation preconditions
• Test intent

5 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis (1)

Definition
Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

• Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

• These faults are injected using mutation operators
• They represent real faults a developer may commit

6 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis (1)

Definition
Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

• Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

• These faults are injected using mutation operators
• They represent real faults a developer may commit

PUT Mutants

a = b + c

Table : The Arithmetic Operator Replacement (AOR) operator

6 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis (1)

Definition
Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

• Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

• These faults are injected using mutation operators
• They represent real faults a developer may commit

PUT Mutants

a = b + c

a = b - c
a = b * c
a = b / c
a = b % c

Table : The Arithmetic Operator Replacement (AOR) operator

6 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis (2)

• Mutation analysis supposes the existence of a test set

• Is a test data able to detect the voluntary injected fault?
• Compare the outputs!

• Let P be the PUT, M one of its mutant and T its test set:
• If ∃t ∈ T : M(t) 6= P(t) then the mutant M is killed
• If ∀t ∈ T : M(t) = P(t) then the mutant M is alive

Mutation Score Computation

MScore(T) = 100 x Killed Mutants
Total Mutants−Equivalent Mutants

7 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Preliminary

Step

Program

Under Test

Mutation

Operators

Mutants

Test Set

Execution
Mutation Score

Computation

[ok]

Test Set

Improvement

[too weak]

8 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Preliminary

Step

Program

Under Test

Mutation

Operators

Mutants

Test Set

Execution
Mutation Score

Computation

[ok]

Test Set

Improvement

[too weak]

Preliminary Step

• Produce the set of mutants
• Based on the language-specific mutation operators of the PUT
• Initial test set provided by the tester or automatically generated

8 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Preliminary

Step

Program

Under Test

Mutation

Operators

Mutants

Test Set

Execution
Mutation Score

Computation

[ok]

Test Set

Improvement

[too weak]

Execution

• Compile all the mutants
• Execute all (test model ,mutant) pairs
• Collect the outputs and compare them
• Determine the status of mutants (killed or alive)

8 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Preliminary

Step

Program

Under Test

Mutation

Operators

Mutants

Test Set

Execution
Mutation Score

Computation

[ok]

Test Set

Improvement

[too weak]

Mutation Score Computation

• A human-made test set obtains around 60–75% mutation score
• It is often difficult to reach a 95% mutation score
• Tester must define a threshold beyond which the test set is
considered sufficiently efficient

8 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Preliminary

Step

Program

Under Test

Mutation

Operators

Mutants

Test Set

Execution
Mutation Score

Computation

[ok]

Test Set

Improvement

[too weak]

Test Set Improvement

• Fully manual task
• Tester needs to determine why a mutant has not been killed and
how to kill it

• Tester needs to analyze test models and create new ones

8 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Model-Driven Engineering
Mutation Analysis

Mutation Operators for Model Transformations

• Specific mutation operators need to be defined for model
transformations

• Mutation Analysis Testing for Model Transformations.
Mottu JM., Baudry B. and Le Traon Y. in Proceedings of the
European Conference on Model Driven Architecture (ECMDA 06)

Category Description #

Navigation Alter the operations of navigation in the models 4

Filtering Alter the operations of filtering of collection 3

Creation
Modification

Alter the creation or modification of elements 3

10

Table : Mutation Operators for Model Transformations

9 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Problematic

• Building test models from scratch is complex
• Can we reuse existing models to create new ones?
• We need to identify relevant test models, and develop heuristics to
create new ones

Test Model Improvement Process

1 Which models and which parts of these models are the most
relevant?

2 What should the output model look like in order to kill the mutant?
3 How to modify the input model in order to produce this difference?

10 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Using Traceability to Collect Information

Excerpt of Input Model Sample

: Class
name = Person
is_persistent = false : Class

name = Address
is_persistent = true

parent

src

dest
attrs

: Column
name =
type = String

Link1

: Class
name =
is_persistent = true

Student

Link2

: Table
name =

Student

:Association
name =

address

: Attribute
name =
is_primary = true

street address_street

cols

Excerpt of
Output Model Sample

Model transformation

transform

createColumns

Excerpt of Local Trace

Link3

Traceability for Mutation
Analysis in Model
Transformations. Aranega
V., Mottu JM., Etien A. and
Dekeyser JL. in Chapters of
Models in Software
Engineering, 2011

11 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Using Traceability to Collect Information

Excerpt of Input Model Sample

: Class
name = Person
is_persistent = false : Class

name = Address
is_persistent = true

parent

src

dest
attrs

: Column
name =
type = String

Link1

: Class
name =
is_persistent = true

Student

Link2

: Table
name =

Student

:Association
name =

address

: Attribute
name =
is_primary = true

street address_street

cols

Excerpt of
Output Model Sample

Model transformation

transform

createColumns

Excerpt of Local Trace

Link3

Traceability for Mutation
Analysis in Model
Transformations. Aranega
V., Mottu JM., Etien A. and
Dekeyser JL. in Chapters of
Models in Software
Engineering, 2011

11 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Mutation Matrix

• Results of the mutation process are gathered in a mutation matrix

c00 c01 ... c0n

c10 c11 ... c1n

cm0 cm1 ... cmn

...

T0 T1 Tn...
Mutants

M
od

el
s

m0

m1

mm

...

12 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Mutation Matrix

• Results of the mutation process are gathered in a mutation matrix
• Local trace models are associated to each (test model ,mutant) pair

c00 c01 ... c0n

c10 c11 ... c1n

cm0 cm1 ... cmn

...

T0 T1 Tn...
Mutants

M
od

el
s

m0

m1

mm

...

For each (test model , mutant), we collect:

• The local trace model
• The status of the mutant

12 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Modeling Mutation Operators

• To find out why a mutant remains alive, we need to exploit its
semantic difference with the original transformation

• Thus, we need a precise modeling of the mutation operators

• Implementation independent / metamodel independent approach

• Models describe effects upon manipulated data (models)

13 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

assoc.dest := cls

end

Figure : RSCC Operator Instanciation Example on a Transformation

14 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

//assoc.dest := cls
assoc.src := cls

end

Figure : RSCC Operator Instanciation Example on a Transformation

14 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Modeling Mutation Operators: RSCC Example (2)

Figure : RSCC Operator Instanciation Example on a Class Diagram Metamodel

15 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Modeling Mutation Operators: RSCC Example (2)

Figure : RSCC Operator Instanciation Example on a Class Diagram Metamodel

Navigat ion

Figure : RSCC Operator Metamodel
15 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Patterns and Recommendations

• Thanks to the collected informations (trace, mutation models):
• We can identify specific configurations in the input models that leave
the mutant alive

• We associate recommendations to these patterns that should kill the
mutant

c : ClassModel a1 : Association

name = 'foo'

association

cls1 : Class

name = 'bar'

is_persistent = true

src dest

16 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Patterns and Recommendations

• Thanks to the collected informations (trace, mutation models):
• We can identify specific configurations in the input models that leave
the mutant alive

• We associate recommendations to these patterns that should kill the
mutant

c : ClassModel a1 : Association

name = 'foo'

association

cls1 : Class

name = 'bar'

is_persistent = true

src dest

c : ClassModel a1 : Association

name = 'foo'

association

cls1 : Class

name = 'bar'

is_persistent = true

dest

cls2 : Class

name = 'baz'

is_persistent = false

src
new test model

16 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Problematic
Using Traceability to Collect Information
Modeling Mutation Operators
Patterns and Recommendations
Experiment : the fsm2ffsm Transformation

Experiment : the fsm2ffsm Transformation

• Finite state machine flattening
• Initial test set (9 models) generated with input metamodel coverage
techniques

• 148 mutation models → 126 mutants

Results & Analysis

• Mutation score from 45% to 100% in 8 iterations
• Gain in terms of elements to be covered: 87%
• 5 mutants killed by automatic application of recommendations
• For 2 mutants, trace models indicated that the mutated rule were
not executed

• Only 1 mutant required deeper analysis

17 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Development

• Generic experimentation platform for mutation analysis of model
transformations

• Traceability mechanism for Kermeta

• Generation of mutation models based on transformation’s
metamodels

• Ongoing: Mutant killing constraints to Alloy transformation

18 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Ongoing Work (1)

• Constraint-based generation of test models

Metamodel
Conformance

Metamodel
Invariants

Transformation
Preconditions

Test Intent
Test Objective

Test Model

Alloy
Specification

SAT
Solver

Figure : Constraint-Based Generation of Test Models using Alloy

19 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Ongoing Work (2)

• Collaboration with Olivier Finot, PhD student

• Reusing of the experimentation platform in order to study and
compare testing oracles

• Qualifying Oracles in Model Transformation Testing, in process of
writing for the 2nd Workshop on the Analysis of Model
Transformations, MODELS2013

20 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

Conclusion

• Ease the tester’s work:
• Trace mechanism drastically reduces the elements to be covered
• Test models are semi-automatically generated

• MDE approach:
• Modeling of the mutation operators
• Results of the process are gathered in a mutation matrix model

• Drawbacks:
• Trace mechanism must be adapted to each transformation language
• An initial test set is required for improvement

• Towards a constraint-based generation of test models

21 / 22

Introduction
Context

Automation of Mutation Analysis for Model Transformation
Development

Ongoing Work
Conclusion

The work so far

Bibliography

Constraint-Based Generation

STVR13 : Writing the Annex

Tools

Patterns

Operators Metamodels

AMT13

Experiment

01/02 01/03 01/04 01/05 01/06 01/07 01/08

Towards an Automation of the Mutation Analysis Dedicated to Model
Transformation. Aranega V., Mottu JM., Etien A., Degueule T., Baudry
B. and Dekeyser JL. submitted to Software Testing, Verification and
Reliability, 2013

22 / 22

	Introduction
	Context
	Model-Driven Engineering
	Mutation Analysis

	Automation of Mutation Analysis for Model Transformation
	Problematic
	Using Traceability to Collect Information
	Modeling Mutation Operators
	Patterns and Recommendations
	Experiment : the fsm2ffsm Transformation

	Development
	Ongoing Work
	Conclusion

