
Composition and Interoperability for
External Domain-Specific Language Engineering

Thomas Degueule

PhD Defense

December 12, 2016

Pr. Mark van den Brand, Eindhoven University of Technology

Pr. Richard Paige, University of York

Pr. Sandrine Blazy, University of Rennes

Pr. Ralf Lämmel, University of Koblenz-Landau

Pr. Bernhard Rumpe, RWTH Aachen University

Pr. Olivier Barais, University of Rennes

Dr. Arnaud Blouin, INSA Rennes

Dr. Benoit Combemale, University of Rennes

Reviewer

Reviewer

Examiner

Examiner

Examiner

Advisor

Advisor

Advisor

Composition and Interoperability for External DSL Engineering 1 / 40

Complex Software-Intensive Systems

Software

intensive

systems

▪ Multiple concerns & stakeholders

▪ Multi-engineering approach

▪ Software as an integration layer

Composition and Interoperability for External DSL Engineering 2 / 40

Multiple

Modeling

Languages

« Perhaps surprisingly, the

majority of MDE examples in our

study followed domain-specific

modeling paradigms »

The State of Practice in Model-Driven Engineering

J. Whittle, J. Hutchinson, and M. Rouncefield

In IEEE Software, 2014

Composition and Interoperability for External DSL Engineering 3 / 40

▪ Abstractions, notations, and tools specifically tailored to the domain

▪ Easier to understand, reason about, and maintain

▪ External DSLs

• Carry their own syntax, representation, semantics, environment

Domain-Specific Languages

vs

Composition and Interoperability for External DSL Engineering 4 / 40

Composition and Interoperability for External DSL Engineering 5 / 40

UML vs. Classical vs. Rhapsody Statecharts: Not All Models are Created Equal

Michelle L. Crane, Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007

Composition and Interoperability for External DSL Engineering 6 / 40

Composition and Interoperability for External DSL Engineering 7 / 40

▪ Reduce development costs

▪ Avoid engineering DSLs from scratch

▪ Reuse & customize existing DSLs

SLE Challenges

▪ Foster model sharing and collaboration

▪ Manipulate models in different environments

▪ Reuse tools and services

Language Composition Language Interoperability

Composition and Interoperability for External DSL Engineering 8 / 40

State of the Art

a non-intrusive and tool-supported approach to composition

and interoperability for SLE applicable to legacy DSLs

DeLara’s

concepts

LISA

MetaMod

Spoofax

MontiCore

Composition and Interoperability for External DSL Engineering 9 / 40

Outline of the Contributions

On Language Interfaces

Composition and Interoperability for External DSL Engineering

On Language Interfaces
Thomas Degueule, Benoit Combemale and Jean-Marc Jézéquel

In PAUSE: Present And Ulterior Software Engineering, 2017
Ed. Bertrand Meyer and Manuel Mazzara

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Variants or subsequent

versions cannot

leverage previous

engineering efforts

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

How to ensure

interoperability between

subsequent versions?
v2.4

v2.1

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

How to foster model

sharing between similar

environments?

Composition and Interoperability for External DSL Engineering 10 / 40

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 11 / 40

▪ Abstract over the intrinsic complexity of language implementations

▪ Expose meaningful information

• Concerning an aspect of a language (e.g. abstract syntax)

• For a given purpose (e.g. composition, coordination, analysis)

• In an appropriate formalism (e.g. a metamodel, a control-flow graph)

▪ Provide a reasoning layer atop language implementations

Software Language Interfaces

Language interfaces in the wild: micro-grammars (Brown et al.), concepts (De Lara et al.), Microsoft LSP, etc.

«implements»

Language
Interfaces

Language
Implementations

Tools &
Transfos

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 12 / 40

1. Ease the definition and reuse of services

2. Enable language coordination

3. Enable language composition

▪ A concrete application: language families

Software Language Interfaces

Leveraging Software Product Lines Engineering in the Development of External DSLs: A Systematic Literature Review

David Méndez-Acuña, José A. Galindo, Thomas Degueule, Benoit Combemale and Benoit Baudry

In Computer Languages, Systems and Structures (COMLAN), 2016

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Safe Model Polymorphism
for Flexible Modeling

Composition and Interoperability for External DSL Engineering

Safe Model Polymorphism for Flexible Modeling
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais and Jean-Marc Jézéquel

In Computer Languages, Systems and Structures (COMLAN), 2016

Composition and Interoperability for External DSL Engineering 13 / 40

▪ In MDE, a metamodel is the cornerstone artifact defining a DSL

▪ The conformance relation states

• Which models are valid instances of a given DSL

• How these models must be manipulated wrt. this DSL

Limits of the Conformance Relation

▪ Theoretical limitations (literature review)

1. Conformance is based on instantiation

2. Conformance is nominal

3. A model conforms to one and only one metamodel

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 13 / 40

▪ In MDE, a metamodel is the cornerstone artifact defining a DSL

▪ The conformance relation states

• Which models are valid instances of a given DSL

• How these models must be manipulated wrt. this DSL

Limits of the Conformance Relation

▪ Analyze UML models publicly available on Github

▪ Conforming to the UML implementation of Eclipse

▪ 1651 models – UML2.2 to UML2.5

▪ Force to bypass the conformance check

▪ Key findings

• 7% of the models are valid wrt. only one version of UML

• 83% of the models are valid wrt. every version of UML

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 14 / 40

▪ Conformance relation ensures safe manipulation regardless of context

▪ But it hinders flexibility

Flexible Modeling beyond the Conformance Relation

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 14 / 40

▪ Conformance relation ensures safe manipulation regardless of context

▪ But it hinders flexibility

Flexible Modeling beyond the Conformance Relation

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Model

Polymorphism

Composition and Interoperability for External DSL Engineering 15 / 40

▪ Model types as structural interfaces atop language implementations

Flexible Modeling beyond the Conformance Relation

@Aspect(className = FSM)
class ExecutableFSM {
State current

def void execute() {
_self.states.forEach

}
}

…

implements

▪ Manually written

▪ Inferred from a language

▪ Inferred from a footprint

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 16 / 40

Model Subtyping

▪ States whether models typed by a given MT

can be substituted to models typed by another

MT

▪ Different subtyping relations [1]

• Total isomorphic

• Partial isomorphic

• Total non-isomorphic

• Partial non-isomorphic

▪ Up to behavioral substitutability [2]

▪ The choice of a subtyping relation vary with

particular needs

[1] On model subyping, Guy et al., ECMFA, 2012

[2] Using model types to support contract-aware model substitutability, Sun et al., ECMFA, 2012

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 17 / 40

▪ Model types defined explicitly or inferred from

implementations

▪ Implementations relations defined explicitly or

automatically inferred

• Based on structural typing

• Using the total isomorphic subtyping relation

▪ Simple renaming operator to align structurally

dissimilar languages

Languages and Model Types in Melange

// Explicit model type definition
// e.g. a footprint that captures
// the contract of a transformation
modeltype FsmMT {
syntax FsmMT.ecore

}

// Language definition
language GuardFsm {
syntax GuardFsm.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
exactType GuardFsmMT

}

// Explicit implementation
language OtherFsm implements FsmMT {

renaming otherfsm to fsm
}

transformation p-print(FsmMT m) {
val root = m.contents.head
m.states.forEach[s | print(s)]

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 18 / 40

Seamless Model Polymorphism

“How to fit type groups semantics, structural typing, and family polymorphism

in a language (Java) and framework (EMF) that do not support any of them”

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

// Flat state machine complying to the
// run-to-completion policy, e.g. UML/Rhapsody
language FlatFsmRtc {
syntax metamodels/FlatFsm.ecore
with rtc.ExecutableStateMachine
with rtc.ExecutableState
exactType FlatFsmRtcMT

}

// Hierarchical state machine complying
// to the simultaneous events processing
// policy, e.g. Classical statecharts
language HierarchicalFsmSimultaneous {
syntax metamodels/HierarchicalFsm.ecore
with simultaneous.ExecutableStateMachine
with simultaneous.ExecutableState
with simultaneous.ExecutableTransition
exactType HierarchicalFsmSimultaneousMT

}

[6 more omitted]

19 / 40

▪ 4 syntactic variations

• Simple

• Hierarchical

• Timed

• Timed-Hierarchical

▪ 2 semantic variations

• Run-to-completion

• Simultaneous processing

▪ 8 FSM language variants

Experiment: a Family of FSM Languages

UML vs Classical vs Rhapsody Statecharts: Not all Models are Created Equal

Michelle L. Crane and Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

19 / 40

▪ 4 syntactic variations

• Simple

• Hierarchical

• Timed

• Timed-Hierarchical

▪ 2 semantic variations

• Run-to-completion

• Simultaneous processing

▪ 8 FSM language variants

Experiment: a Family of FSM Languages

UML vs Classical vs Rhapsody Statecharts: Not all Models are Created Equal

Michelle L. Crane and Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007

Subtyping relations amongst variants

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 20 / 40

Experiment: a Family of FSM Languages

c

module FlattenFsm;
create OUT : FlatFsm from

IN : CompositeFsmMT;
-- Creates a new FlatFsm
rule SM2SM {
from sm1 : CompositeFsmMT!StateMachine
to sm2 : FlatFsm!StateMachine

}
-- Initial states of composite
-- states become regular states
rule Initial2State {
from is1 : CompositeFsmMT!InitialState

(not is1.parentState.oclIsUndefined())
to is2 : FlatFsm!State(
stateMachine <- is1.stateMachine,
name <- is1.name)

}
-- Resolves a transition originating from
-- a composite state
rule T2TB {
from t1: CompositeFsmMT!Transition,

src : CompositeFsmMT!CompositeState,
trg : CompositeFsmMT!State,
c : CompositeFsmMT!State (
t1.source = src and
t1.target = trg and
c.parentState = src and
not trg.oclIsTypeOf(
CompositeFsmMT!CompositeState))

to t2 : FlatFsm!Transition (
name <- t1.name,
stateMachine <- t1.stateMachine,
source <- c,
target <- trg)

}

c

modeltype FsmMT uses ://fsmmt ;
modeltype Fsm uses ://fsm ;

transformation dummyInvert(
in inFsm : FsmMT, out outFsm : Fsm);

main() {
inFsm.rootObjects()[FsmMT::FSM] ->
map mapFSM();

}
mapping FsmMT::FSM::mapFSM():Fsm::FSM {
ownedState := self.ownedState -> map

mapState();
initialState := self.finalState ->

first().map mapState();
finalState := self.initialState.map

mapState();
}
mapping FsmMT::State::mapState() :
Fsm::State {
name := self.name;
outgoingTransition :=
self.incomingTransition -> map
mapTransition();

}
mapping FsmMT::Transition::mapTransition() :
Fsm::Transition {
input := self.input;
output := self.output;
target := self.source.map mapState();

}

TransfoFsm.qvto

c

// Delegate the execution of the state
// machine "fsm" to the "execute" method
// of its operational semantics.
public void execute(
StateMachine fsm, String input) {
// Dynamically dispatched on the actual
// language implementation of execute()
root.execute(input);

}

List<String> models = new ArrayList<>();
models.add(
"melange:/m1.flat?mt=FlatFsmRtcMT");

models.add(
"melange:/m2.timed?mt=FlatFsmRtcMT");

models.add(
"melange:/m3.hier?mt=FlatFsmRtcMT");

models.add(
"melange:/m4.timedhier?mt=FlatFsmRtcMT");

ResourceSet rs = new ResourceSetImpl();

// Load the model pointed by the given
// URI, retrieve its root StateMachine,
// and execute it
for (String uri : models) {
Resource res = rs.getResource(uri,true);
StateMachine root = (StateMachine)
res.getContents().get(0);

execute(res, "{x;y;z;o;p;q}");
}

ExecuteFsm.java

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Modular & Reusable
Development of DSLs

Composition and Interoperability for External DSL Engineering

Melange: A Meta-language for Modular and Reusable Development of DSLs
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais and Jean-Marc Jézéquel

In Proceedings of the 8th International Conference on Software Language Engineering (SLE’15), 2015

Composition and Interoperability for External DSL Engineering 21 / 40

▪ Existing DSLs can be reused when developing new ones

• Reuse syntax, semantics, tools & services

• Reuse is not enough, context matters!

▪ Finely tune the resulting DSLs

• To comply with new requirements

• Or the specificities of a new domain of application

• e.g. restricting or extending expressiveness, specializing semantics...

Overview

An algebra of operators for assembling legacy DSLs

and customizing them at a fine-grained level, while

ensuring type groups consistency and tool reuse

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 22 / 40

▪ A metamodel defines the AS

Hypothesis on Language Definition

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 22 / 40

Hypothesis on Language Definition

▪ A metamodel defines the AS

▪ Sem consists of computation

steps and runtime data

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 22 / 40

Hypothesis on Language Definition

▪ Aspect-oriented modeling:

Sem is woven directly in the AS

▪ Interpreter/visitor pattern

Mashup of Meta-languages and its Implementation in the Kermeta Language Workbench

Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monperrus and François Fouquet

In Software & Systems Modeling (SoSyM), 2015

@Aspect(className = B)
class AspectB {

int current

def int exec() {
_self.myCs.forEach

}
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 23 / 40

Approach Overview

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 23 / 40

Approach Overview

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 23 / 40

Approach Overview

merge, slice, and inherits inspired from language composition taxonomies, e.g.

Language Composition Untangled

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel

In LDTA, 2012

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 23 / 40

Approach Overview

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 24 / 40

Language Definition

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 25 / 40

Language Definition

language Fsm {
syntax FSM.ecore

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 25 / 40

Language Definition

language Fsm {
syntax FSM.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 25 / 40

Model Types

language Fsm {
syntax FSM.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
exactType FsmMT

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 26 / 40

Syntax Merging

language GuardedFsm {
syntax FSM.ecore

with ExecutableFsm
with ExecutableState
with ExecutableTransition

exactType GuardedFsmMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 26 / 40

Syntax Merging

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition

exactType GuardedFsmMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 27 / 40

Semantics Weaving

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
with EvaluateGuard

exactType GuardedFsmMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 27 / 40

Semantics Weaving

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
with EvaluateGuard
with OverrideTransition
exactType GuardedFsmMT

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 28 / 40

Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...

exactType BuildingMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 28 / 40

Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...
merge Fsm

exactType BuildingMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 28 / 40

Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...
merge Fsm
with GlueDeviceToFsm
exactType BuildingMT

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 29 / 40

Language Inheritance

language TimedFsm inherits Fsm {

exactType TimedFsmMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 29 / 40

Language Inheritance

language TimedFsm inherits Fsm {
syntax Clocks.ecore

exactType TimedFsmMT
}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 29 / 40

Language Inheritance

language TimedFsm inherits Fsm {
syntax Clocks.ecore
with ClockTick
with OverrideFsm
with OverrideTransition
exactType TimedFsmMT

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 30 / 40

Language Slicing

language Expressions {
syntax Expressions.ecore
with EvaluateBoolean
with EvaluateInteger
exactType ExpressionsMT

}

Kompren: Modeling and Generating Model Slicers

Arnaud Blouin, Benoit Combemale, Benoit Baudry and Olivier Beaudoux

In Software & Systems Modeling (SoSyM), 2015

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 30 / 40

Language Slicing

language Expressions {
syntax Expressions.ecore
with EvaluateBoolean
with EvaluateInteger
exactType ExpressionsMT

}

language BooleanExpressions {
slice Expressions on [BoolExpr]
exactType BooleanExpressionsMT

}

Kompren: Modeling and Generating Model Slicers

Arnaud Blouin, Benoit Combemale, Benoit Baudry and Olivier Beaudoux

In Software & Systems Modeling (SoSyM), 2015

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 31 / 40

Wrap-up

Language Composition Untangled

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel

In LDTA, 2012

▪ Language extension with language inheritance

▪ Language unification with language merging

▪ Language restriction with language slicing

▪ Syntax merging and aspect weaving as

fine-grained customization mechanisms

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 32 / 40

Experiment: A Modeling Language for IoT

▪ Enable modeling the behavior of communicating sensors built on top of

resource-constrained devices (e.g. Arduino, Raspberry Pi)

▪ Provide appropriate simulators to experiment different scenarios

▪ Objective: reuse existing DSLs whenever possible

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 33 / 40

1. Model sensors’ interface

• OMG Interface Description Language

2. Model sensors’ control flow (sketch)

• UML’s Activity Diagram

3. Express sensors’ actions

• Lua programming language

Requirements for the IoT Language

From

Github

From

TTC’15

From

Github

Companion webpage: http://melange-lang.org/sle15/

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 34 / 40

language IoT {
syntax IoT.ecore
slice Idl on [OperationDef , PrimitiveDef]
renaming { idlmm to iot }

merge Lua
renaming { lua to iot }

merge ActivityDiagram
renaming { activitydiagram to iot }

with iot.glue.OpaqueActionGlue
with iot.glue.OperationDefGlue

}

language ActivityDiagram {
syntax ActivityDiagram.ecore
syntax RuntimeModel.ecore
with ad.semantics.*

}

language IDL {
syntax IDL.ecore

}

language Lua {
syntax Lua.ecore
with lua.semantics.*

}

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Composition and Interoperability for External DSL Engineering 35 / 40

▪ Full EMF compliance (e.g. integrated for free within the GEMOC studio)

▪ Reuse of tools & services between the base languages and the IoT lang

▪ Glue: ~30 LoC (mainly Lua – ActivityDiagram context translation)

The IoT Language in Melange

Reusing Legacy DSLs with Melange

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais

In Proceedings of the 15th workshop on Domain-Specific Modeling (DSM’15), 2015

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

The Melange
Language Workbench

Composition and Interoperability for External DSL Engineering

Composition and Interoperability for External DSL Engineering 36 / 40

Syntax & Semantics

Overview

Inheritance, implementation,

and subtyping relations

Interfaces description

Currently registered

languages & interfaces

▪ Built atop Eclipse, EPL-1.0 license

▪ Seamlessly integrated with the EMF ecosystem

▪ ~30k Xtend LoC / 500k Java LoC

▪ 10 contributors, ~2000 commits

http://melange-lang.org

http://melange-lang.org/

Composition and Interoperability for External DSL Engineering 37 / 40

▪ ANR INS GEMOC [GEMOC Studio]

• Assemble xDSMLs syntaxes and semantics

• Provide a unified structural interface for tools

• Examples: TFSM, RobotML, ArduinoML, SigPML, etc.

▪ LEOC Clarity [Capella Studio]

• Viewpoints engineering on Capella

• Current solution: KitAlpha

• Melange as a lightweight metamodel extension

mechanism ensuring type groups consistency and

tool reuse

Melange in Collaborative Projects

On Language Interfaces – Flexible Modeling – Modular Development of DSLs – Melange

Conclusion & Perspectives

Composition and Interoperability for External DSL Engineering

Composition and Interoperability for External DSL Engineering 38 / 40

Wrap-up

Composition and Interoperability for External DSL Engineering 39 / 40

▪ Component-based software language engineering

Future Work

Towards Software Language Engineering for the masses

choose produce

DSL1

DSL2

DSL3

Language Components

Composition and Interoperability for External DSL Engineering 40 / 40

On Language Interfaces
Thomas Degueule, Benoit Combemale and Jean-Marc Jézéquel
In PAUSE: Present And Ulterior Software Engineering, 2017

Leveraging Software Product Lines Engineering in the Development of
External DSLs: A Systematic Literature Review
David Méndez-Acuña, José A. Galindo, Thomas Degueule,
Benoit Combemale and Benoit Baudry
In Computer Languages, Systems and Structures (COMLAN), 2016

Safe Model Polymorphism for Flexible Modeling
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais and
Jean-Marc Jézéquel
In Computer Languages, Systems and Structures (COMLAN), 2016

Execution Framework of the GEMOC Studio (Tool Demo)
Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni and Benoit Combemale
In Proceedings of SLE, 2016

Interoperability and Composition of DSLs with Melange
Thomas Degueule
ACM Student Research Competition Grand Finals, 2016

Towards an Automation of the Mutation Analysis Dedicated to Model
Transformation
Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule,
Benoit Baudry and Jean-Luc Dekeyser
In Software Testing, Verification and Reliability (STVR), 2015

Reusing Legacy DSLs with Melange
Thomas Degueule, Benoit Combemale, Arnaud Blouin and Olivier Barais
In Proceedings of DSM, 2015

A Solution to the TTC'15 Model Execution Case Using the GEMOC Studio
Benoit Combemale, Julien DeAntoni, Olivier Barais, Cédric Brun,
Arnaud Blouin, Thomas Degueule, Erwan Bousse and Didier Vojtisek
In Proceedings of TTC@STAF, 2015

Melange: A Meta-language for Modular and Reusable Development of
DSLs
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais
and Jean-Marc Jézéquel
In Proceedings of SLE, 2015

Tooling Support for Variability and Architectural Patterns in Systems
Engineering (Tool demo)
Thomas Degueule, João Bosco Ferreira Filho, Olivier Barais et al.
In Proceedings of SPLC, 2015

Motivating Use Cases for the Globalization of DSLs
Betty H. C. Cheng, Thomas Degueule, Colin Atkinson, Siobhán Clarke,
Ulrich Frank, Pieter J. Mosterman and Janos Sztipanovits
In Globalizing Domain-Specific Languages, 2014

When Systems Engineering Meets Software Language Engineering
Jean-Marc Jézéquel, David Mendez-Acuna, Thomas Degueule,
Benoit Combemale and Olivier Barais
In Proceedings of CSDM, 2014

Variability and Patterns in Safety/Security Systems Engineering: An
Overview
Thomas Degueule, João Bosco Ferreira Filho, Jérôme Le Noir, Olivier Barais,
Mathieu Acher, Grégory Gailliard, Godefroy Burlot, Olivier Constant et al.
In Journées Lignes de Produits (JLDP), 2014

Using Meta-model Coverage to Qualify Test Oracles
Olivier Finot, Jean-Marie Mottu, Gerson Sunyé and Thomas Degueule
In Proceedings of AMT, 2013

https://melange-lang.org

EOF

Composition and Interoperability for External DSL Engineering

