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Complex Software-Intensive Systems

Software 

intensive 

systems

▪ Multiple concerns & stakeholders

▪ Multi-engineering approach

▪ Software as an integration layer
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Multiple

Modeling

Languages

« Perhaps surprisingly, the 

majority of MDE examples in our

study followed domain-specific

modeling paradigms »

The State of Practice in Model-Driven Engineering

J. Whittle, J. Hutchinson, and M. Rouncefield

In IEEE Software, 2014
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▪ Abstractions, notations, and tools specifically tailored to the domain

▪ Easier to understand, reason about, and maintain

▪ External DSLs

• Carry their own syntax, representation, semantics, environment

Domain-Specific Languages

vs
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UML vs. Classical vs. Rhapsody Statecharts: Not All Models are Created Equal

Michelle L. Crane, Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007
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▪ Reduce development costs

▪ Avoid engineering DSLs from scratch

▪ Reuse & customize existing DSLs

SLE Challenges

▪ Foster model sharing and collaboration

▪ Manipulate models in different environments

▪ Reuse tools and services

Language Composition Language Interoperability
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State of the Art

a non-intrusive and tool-supported approach to composition 

and interoperability for SLE applicable to legacy DSLs

DeLara’s

concepts

LISA

MetaMod

Spoofax

MontiCore
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Outline of the Contributions



On Language Interfaces

Composition and Interoperability for External DSL Engineering

On Language Interfaces
Thomas Degueule, Benoit Combemale and Jean-Marc Jézéquel

In PAUSE: Present And Ulterior Software Engineering, 2017
Ed. Bertrand Meyer and Manuel Mazzara
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On Language Interfaces – Flexible Modeling           – Modular Development of DSLs           – Melange
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Variants or subsequent

versions cannot

leverage previous

engineering efforts
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On Language Interfaces – Flexible Modeling           – Modular Development of DSLs           – Melange



How to ensure

interoperability between

subsequent versions?
v2.4

v2.1
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How to foster model

sharing between similar 

environments?
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▪ Abstract over the intrinsic complexity of language implementations

▪ Expose meaningful information

• Concerning an aspect of a language (e.g. abstract syntax)

• For a given purpose (e.g. composition, coordination, analysis)

• In an appropriate formalism (e.g. a metamodel, a control-flow graph)

▪ Provide a reasoning layer atop language implementations

Software Language Interfaces

Language interfaces in the wild: micro-grammars (Brown et al.), concepts (De Lara et al.), Microsoft LSP, etc.

«implements»

Language
Interfaces

Language
Implementations

Tools &
Transfos

On Language Interfaces – Flexible Modeling           – Modular Development of DSLs           – Melange
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1. Ease the definition and reuse of services

2. Enable language coordination

3. Enable language composition

▪ A concrete application: language families

Software Language Interfaces

Leveraging Software Product Lines Engineering in the Development of External DSLs: A Systematic Literature Review

David Méndez-Acuña, José A. Galindo, Thomas Degueule, Benoit Combemale and Benoit Baudry

In Computer Languages, Systems and Structures (COMLAN), 2016

On Language Interfaces – Flexible Modeling           – Modular Development of DSLs           – Melange



Safe Model Polymorphism
for Flexible Modeling

Composition and Interoperability for External DSL Engineering

Safe Model Polymorphism for Flexible Modeling
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais and Jean-Marc Jézéquel

In Computer Languages, Systems and Structures (COMLAN), 2016
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▪ In MDE, a metamodel is the cornerstone artifact defining a DSL

▪ The conformance relation states

• Which models are valid instances of a given DSL

• How these models must be manipulated wrt. this DSL

Limits of the Conformance Relation

▪ Theoretical limitations (literature review)

1. Conformance is based on instantiation

2. Conformance is nominal

3. A model conforms to one and only one metamodel

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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▪ In MDE, a metamodel is the cornerstone artifact defining a DSL

▪ The conformance relation states

• Which models are valid instances of a given DSL

• How these models must be manipulated wrt. this DSL

Limits of the Conformance Relation

▪ Analyze UML models publicly available on Github

▪ Conforming to the UML implementation of Eclipse

▪ 1651 models – UML2.2 to UML2.5

▪ Force to bypass the conformance check

▪ Key findings

• 7% of the models are valid wrt. only one version of UML

• 83% of the models are valid wrt. every version of UML

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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▪ Conformance relation ensures safe manipulation regardless of context

▪ But it hinders flexibility

Flexible Modeling beyond the Conformance Relation

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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▪ Conformance relation ensures safe manipulation regardless of context

▪ But it hinders flexibility

Flexible Modeling beyond the Conformance Relation

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange

Model

Polymorphism
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▪ Model types as structural interfaces atop language implementations

Flexible Modeling beyond the Conformance Relation

@Aspect(className = FSM)
class ExecutableFSM {
State current

def void execute() {
_self.states.forEach

}
}

…

implements

▪ Manually written

▪ Inferred from a language

▪ Inferred from a footprint

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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Model Subtyping

▪ States whether models typed by a given MT 

can be substituted to models typed by another 

MT

▪ Different subtyping relations [1]

• Total isomorphic

• Partial isomorphic

• Total non-isomorphic

• Partial non-isomorphic

▪ Up to behavioral substitutability [2]

▪ The choice of a subtyping relation vary with 

particular needs

[1] On model subyping, Guy et al., ECMFA, 2012

[2] Using model types to support contract-aware model substitutability, Sun et al., ECMFA, 2012

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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▪ Model types defined explicitly or inferred from 

implementations

▪ Implementations relations defined explicitly or 

automatically inferred

• Based on structural typing

• Using the total isomorphic subtyping relation

▪ Simple renaming operator to align structurally 

dissimilar languages

Languages and Model Types in Melange

// Explicit model type definition
// e.g. a footprint that captures
// the contract of a transformation
modeltype FsmMT {
syntax FsmMT.ecore

}

// Language definition
language GuardFsm {
syntax    GuardFsm.ecore
with      ExecutableFsm
with      ExecutableState
with      ExecutableTransition
exactType GuardFsmMT

}

// Explicit implementation
language OtherFsm implements FsmMT {

renaming otherfsm to fsm
}

transformation p-print(FsmMT m) {
val root = m.contents.head
m.states.forEach[s | print(s)]

}

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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Seamless Model Polymorphism

“How to fit type groups semantics, structural typing, and family polymorphism 

in a language (Java) and framework (EMF) that do not support any of them”

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange



// Flat state machine complying to the
// run-to-completion policy, e.g. UML/Rhapsody
language FlatFsmRtc {
syntax    metamodels/FlatFsm.ecore
with      rtc.ExecutableStateMachine
with      rtc.ExecutableState
exactType FlatFsmRtcMT

}

// Hierarchical state machine complying
// to the simultaneous events processing
// policy, e.g. Classical statecharts
language HierarchicalFsmSimultaneous {
syntax    metamodels/HierarchicalFsm.ecore
with      simultaneous.ExecutableStateMachine
with      simultaneous.ExecutableState
with      simultaneous.ExecutableTransition
exactType HierarchicalFsmSimultaneousMT

}

[6 more omitted]

19 / 40

▪ 4 syntactic variations

• Simple

• Hierarchical

• Timed

• Timed-Hierarchical

▪ 2 semantic variations

• Run-to-completion

• Simultaneous processing

▪ 8 FSM language variants

Experiment: a Family of FSM Languages

UML vs Classical vs Rhapsody Statecharts: Not all Models are Created Equal

Michelle L. Crane and Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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▪ 4 syntactic variations

• Simple

• Hierarchical

• Timed

• Timed-Hierarchical

▪ 2 semantic variations

• Run-to-completion

• Simultaneous processing

▪ 8 FSM language variants

Experiment: a Family of FSM Languages

UML vs Classical vs Rhapsody Statecharts: Not all Models are Created Equal

Michelle L. Crane and Jürgen Dingel

In Software & Systems Modeling (SoSyM), 2007

Subtyping relations amongst variants

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange
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Experiment: a Family of FSM Languages

c

module FlattenFsm;
create OUT : FlatFsm from

IN  : CompositeFsmMT;
-- Creates a new FlatFsm
rule SM2SM { 
from sm1 : CompositeFsmMT!StateMachine
to sm2 : FlatFsm!StateMachine

}
-- Initial states of composite
-- states become regular states
rule Initial2State {
from is1 : CompositeFsmMT!InitialState

(not is1.parentState.oclIsUndefined())
to is2 : FlatFsm!State(
stateMachine <- is1.stateMachine,
name <- is1.name)

}
-- Resolves a transition originating from
-- a composite state 
rule T2TB {
from t1: CompositeFsmMT!Transition,

src : CompositeFsmMT!CompositeState, 
trg : CompositeFsmMT!State,
c   : CompositeFsmMT!State (
t1.source = src and
t1.target = trg and
c.parentState = src and
not trg.oclIsTypeOf(
CompositeFsmMT!CompositeState))

to t2 : FlatFsm!Transition (
name <- t1.name,
stateMachine <- t1.stateMachine,
source <- c,
target <- trg )

}

c

modeltype FsmMT uses ://fsmmt ;
modeltype Fsm uses ://fsm ;

transformation dummyInvert(
in inFsm : FsmMT, out outFsm : Fsm);

main() {
inFsm.rootObjects()[FsmMT::FSM] ->
map mapFSM(); 

}
mapping FsmMT::FSM::mapFSM():Fsm::FSM {
ownedState := self.ownedState -> map 

mapState();
initialState := self.finalState -> 

first().map mapState();
finalState := self.initialState.map

mapState();
}
mapping FsmMT::State::mapState() : 
Fsm::State {
name := self.name;
outgoingTransition :=
self.incomingTransition -> map 
mapTransition();

}
mapping FsmMT::Transition::mapTransition() : 
Fsm::Transition {
input  := self.input;
output := self.output;
target := self.source.map mapState();

}

TransfoFsm.qvto

c

// Delegate the execution of the state
// machine "fsm" to the "execute" method
// of its operational semantics.
public void execute(
StateMachine fsm, String input) {
// Dynamically dispatched on the actual
// language implementation of execute()
root.execute(input);

}

List<String> models = new ArrayList<>();
models.add(
"melange:/m1.flat?mt=FlatFsmRtcMT");

models.add(
"melange:/m2.timed?mt=FlatFsmRtcMT");

models.add(
"melange:/m3.hier?mt=FlatFsmRtcMT");

models.add(
"melange:/m4.timedhier?mt=FlatFsmRtcMT");

ResourceSet rs = new ResourceSetImpl();

// Load the model pointed by the given
// URI, retrieve its root StateMachine,
// and execute it
for (String uri : models) {
Resource res = rs.getResource(uri,true);
StateMachine root = (StateMachine)
res.getContents().get(0);

execute(res, "{x;y;z;o;p;q}");
}

ExecuteFsm.java

On Language Interfaces           – Flexible Modeling         – Modular Development of DSLs           – Melange



Modular & Reusable
Development of DSLs

Composition and Interoperability for External DSL Engineering

Melange: A Meta-language for Modular and Reusable Development of DSLs
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais and Jean-Marc Jézéquel

In Proceedings of the 8th International Conference on Software Language Engineering (SLE’15), 2015
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▪ Existing DSLs can be reused when developing new ones

• Reuse syntax, semantics, tools & services

• Reuse is not enough, context matters!

▪ Finely tune the resulting DSLs

• To comply with new requirements

• Or the specificities of a new domain of application

• e.g. restricting or extending expressiveness, specializing semantics...

Overview

An algebra of operators for assembling legacy DSLs 

and customizing them at a fine-grained level, while 

ensuring type groups consistency and tool reuse

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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▪ A metamodel defines the AS

Hypothesis on Language Definition

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Hypothesis on Language Definition

▪ A metamodel defines the AS

▪ Sem consists of computation 

steps and runtime data

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Hypothesis on Language Definition

▪ Aspect-oriented modeling:

Sem is woven directly in the AS

▪ Interpreter/visitor pattern

Mashup of Meta-languages and its Implementation in the Kermeta Language Workbench

Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monperrus and François Fouquet

In Software & Systems Modeling (SoSyM), 2015

@Aspect(className = B)
class AspectB {

int current

def int exec() {
_self.myCs.forEach

}
}

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Approach Overview

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Approach Overview

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Approach Overview

merge, slice, and inherits inspired from language composition taxonomies, e.g.

Language Composition Untangled

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel

In LDTA, 2012

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Approach Overview
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Language Definition

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Language Definition

language Fsm {
syntax FSM.ecore

}
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Language Definition

language Fsm {
syntax FSM.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition

}
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Model Types

language Fsm {
syntax FSM.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
exactType FsmMT

}


On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Syntax Merging

language GuardedFsm {
syntax FSM.ecore

with ExecutableFsm
with ExecutableState
with ExecutableTransition

exactType GuardedFsmMT
}

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Syntax Merging

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition

exactType GuardedFsmMT
}
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Semantics Weaving

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
with EvaluateGuard

exactType GuardedFsmMT
}
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Semantics Weaving

language GuardedFsm {
syntax FSM.ecore
syntax Guard.ecore
with ExecutableFsm
with ExecutableState
with ExecutableTransition
with EvaluateGuard
with OverrideTransition
exactType GuardedFsmMT

}
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Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...

exactType BuildingMT
}

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...
merge Fsm

exactType BuildingMT
}
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Language Merging

language Building {
syntax Building.ecore
with SimulatorAspect...
merge Fsm
with GlueDeviceToFsm
exactType BuildingMT

}
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Language Inheritance

language TimedFsm inherits Fsm {

exactType TimedFsmMT
}

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Language Inheritance

language TimedFsm inherits Fsm {
syntax Clocks.ecore

exactType TimedFsmMT
}
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Language Inheritance

language TimedFsm inherits Fsm {
syntax Clocks.ecore
with ClockTick
with OverrideFsm
with OverrideTransition
exactType TimedFsmMT

}
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Language Slicing

language Expressions {
syntax Expressions.ecore
with EvaluateBoolean
with EvaluateInteger
exactType ExpressionsMT

}

Kompren: Modeling and Generating Model Slicers

Arnaud Blouin, Benoit Combemale, Benoit Baudry and Olivier Beaudoux

In Software & Systems Modeling (SoSyM), 2015

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Language Slicing

language Expressions {
syntax Expressions.ecore
with EvaluateBoolean
with EvaluateInteger
exactType ExpressionsMT

}

language BooleanExpressions {
slice Expressions on [ BoolExpr ]
exactType BooleanExpressionsMT

}



Kompren: Modeling and Generating Model Slicers

Arnaud Blouin, Benoit Combemale, Benoit Baudry and Olivier Beaudoux

In Software & Systems Modeling (SoSyM), 2015

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Wrap-up

Language Composition Untangled

Sebastian Erdweg, Paolo G. Giarrusso, Tillmann Rendel

In LDTA, 2012

▪ Language extension with language inheritance

▪ Language unification with language merging

▪ Language restriction with language slicing

▪ Syntax merging and aspect weaving as

fine-grained customization mechanisms

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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Experiment: A Modeling Language for IoT

▪ Enable modeling the behavior of communicating sensors built on top of 

resource-constrained devices (e.g. Arduino, Raspberry Pi)

▪ Provide appropriate simulators to experiment different scenarios

▪ Objective: reuse existing DSLs whenever possible

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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1. Model sensors’ interface

• OMG Interface Description Language

2. Model sensors’ control flow (sketch)

• UML’s Activity Diagram

3. Express sensors’ actions

• Lua programming language

Requirements for the IoT Language

From

Github

From

TTC’15

From

Github

Companion webpage: http://melange-lang.org/sle15/

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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language IoT {
syntax IoT.ecore
slice Idl on [ OperationDef , PrimitiveDef ]
renaming { idlmm to iot }

merge Lua
renaming { lua to iot }

merge ActivityDiagram
renaming { activitydiagram to iot }

with iot.glue.OpaqueActionGlue
with iot.glue.OperationDefGlue

}

language ActivityDiagram {
syntax ActivityDiagram.ecore
syntax RuntimeModel.ecore
with ad.semantics.*

}

language IDL {
syntax IDL.ecore

}

language Lua {
syntax Lua.ecore
with lua.semantics.*

}

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange
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▪ Full EMF compliance (e.g. integrated for free within the GEMOC studio)

▪ Reuse of tools & services between the base languages and the IoT lang

▪ Glue: ~30 LoC (mainly Lua – ActivityDiagram context translation)

The IoT Language in Melange

Reusing Legacy DSLs with Melange

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais

In Proceedings of the 15th workshop on Domain-Specific Modeling (DSM’15), 2015

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs    – Melange



The Melange
Language Workbench

Composition and Interoperability for External DSL Engineering
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Syntax & Semantics

Overview

Inheritance, implementation,

and subtyping relations

Interfaces description

Currently registered

languages & interfaces

▪ Built atop Eclipse, EPL-1.0 license

▪ Seamlessly integrated with the EMF ecosystem

▪ ~30k Xtend LoC / 500k Java LoC

▪ 10 contributors, ~2000 commits

http://melange-lang.org

http://melange-lang.org/
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▪ ANR INS GEMOC [GEMOC Studio]

• Assemble xDSMLs syntaxes and semantics

• Provide a unified structural interface for tools

• Examples: TFSM, RobotML, ArduinoML, SigPML, etc.

▪ LEOC Clarity [Capella Studio]

• Viewpoints engineering on Capella

• Current solution: KitAlpha

• Melange as a lightweight metamodel extension

mechanism ensuring type groups consistency and

tool reuse 

Melange in Collaborative Projects

On Language Interfaces           – Flexible Modeling           – Modular Development of DSLs           – Melange



Conclusion & Perspectives

Composition and Interoperability for External DSL Engineering
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Wrap-up
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▪ Component-based software language engineering

Future Work

Towards Software Language Engineering for the masses

choose produce

DSL1

DSL2

DSL3

Language Components
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