
1

AN INDUSTRIAL AND ACADEMIC JOINT EXPERIMENT ON

AUTOMATED VERIFICATION OF A SECURITY PROTOCOL

OLIVIER HEEN

IRISA, Lande Project, Rennes, France

THOMAS GENET

IRISA, Lande Project, Rennes, France

STEPHANE GELLER

ENS Cachan, Rennes, France

NICOLAS PRIGENT

Thomson R&D France, Security Lab, Rennes, France

This paper relates the collaboration between industrial and academic teams for

the design and the verification of a security protocol. The protocol is about trust

establishment in large communities of devices where infrastructure components

are not always reachable. The collaboration covers the writing of formal

specifications up to their verification, using both manual and automated

verification methods embedded in the AVISPA [1] and SPAN [7] tools. At each

stage, the use of the visualization and protocol animation facilities of SPAN is

key to the mutual understanding of working teams. As a result, we obtain much

more confidence in the security of the final protocol. We also demonstrate the

usefulness of some embedded countermeasures.

1. Introduction

As they expand, digital transmissions require increased security. Sometimes a

straightforward adaptation of widely known solutions (SSL, IPSEC, PGP…) is

adequate. Sometimes a new protocol must be specifically designed. In this case,

many sources of error exist:

• The protocol is an answer to a recent security problem: all the aspects of the

problem may already not be known.

• The protocol is an answer to a time critical situation: the design time may

be very short.

 2

• The protocol is designed for commercial use in a competitive domain:

some details may not be published too early, and thus no external review is

possible.

Because of such error factors there is an urge need for formal verification.

Moreover, if the formal verification can be automated, this gives a chance to

systematically verify the protocol after each update and to deal with the

complexity of some protocols that cannot be managed by hand in practice.

This paper relates the collaboration of industrial and academic teams about

specifying and verifying one protocol. For convenience in the rest of the paper,

we call our protocol LCDP for Large Community of Device Protocol. It is an

adaptation of a symmetric key authentication scheme [4] to the case of large

communities of devices. This collaboration illustrates the advantages of formal

verification from a practical point of view: at first, it leads to a more precise

specification of LCDP; then it gives more confidence on the final version, since

no tools found attacks. This is especially true for the parts of the protocol that

are completely new, and thus not heavily reviewed. At last, we check

downgraded versions of LCDP where some countermeasures are disabled: this

leads to the discovering of non-trivial attacks, and thus provides better

justifications for the chosen countermeasures.

At each stage (formal specification, modeling, verification), the

visualization and the interactive use of execution diagrams is key for the mutual

understanding of both teams: the industrial team developing the LCDP, and the

academic team leading the formal specification and verification effort.

Throughout the paper, we provide some of the message sequence charts

obtained with SPAN.

The section 2 gives the basics of automated protocol verification in the

Dolev-Yao model. The tools that we use are also described. The section 3 gives

motivations for LCDP and its description. The section 4 relates the whole

verification process.

2. About automated protocol verification

This section is a short introduction to the automated verification of protocols in

the Dolev-Yao model (that was introduced in [5]). The reader familiar with

automated protocol verification can skip this section.

2.1. Verification of Diffie-Hellman

We briefly introduce the verification on a well-known example: the Diffie-

Hellman key agreement protocol [6]. It is presented below, using the so-called

 3

``Alice & Bob'' notation. The agents are denoted by A and B and the

established key is denoted by K. This key is used in the final step to encrypt a

secret message msg sent by A to B.

1. A B: g
Na

2. B A: g
Nb

, A and B compute key K=(g
Na

)
Nb

=(g
Nb

)
Na

3. A B: {msg}K

At step 1, A generates the nonce (a random number) Na and computes g
Na

where g is a public number. Then A sends g
Na

 to the agent B. At step 2, the

agent B also generates a number Nb and computes g
Nb

 and K=(g
Na

)
Nb

. The

former is sent to A and the latter stands for the symmetric key shared between A

and B.

As soon as A receives g
Nb

 from B, it computes (g
Nb

)
Na

 and considers it as

the symmetric key shared with B. Indeed, according to the algebraic properties

of the exponentiation, K=(g
Na

)
Nb

=(g
Nb

)
Na

. Finally, the message {Msg}K is sent

by A to B in which Msg is a datum standing to be secret between A and B, and {

}K denotes the use of a symmetric encryption algorithm using the key K.

Security protocols can be attacked in several ways. If the keys or the

algorithms used for ciphering messages are not robust enough, the content of the

messages can be obtained or modified by an attacker. Such attacks are more

related to cryptanalysis and can generally be avoided with a careful choice of

keys and algorithms when implementing the protocol. The attacks we are

interested in are based on a malicious use of the protocol itself. The Dolev-Yao

model is particularly well suited for this kind of attacks. The intruder can read,

block, store, modify and send messages over the network. It is said that the

intruder is the network.

Hereafter, we show the well known man-in-the-middle attack against the

Diffie-Hellman protocol. The notation I(A) means that the intruder pretends to

be A.

1. A I: g
Na

2. I(A) B: g
Ni

3. B I: g
Nb

, B and I compute the key KIB=(g
Ni

)
Nb

=(g
Nb

)
Ni

4. I(B) A: g
Ni

, A and I compute the key KIA=(g
Ni

)
Na

=(g
Na

)
Ni

5. A I: {Msg}KIA

Roughly, the intruder establishes two keys: KIA=(g
Na

)
Ni

 with A at Steps 1 and 4,

and K
IB

=(g
Nb

)
Ni

 with B at Steps 2 and 3. He then acts as a proxy between A and

B. At Step 5, the agent A sends the secret data to B using the key KIA shared

with the intruder. The intruder then extracts the secret data.

 4

2.2. Verification tools

Due to the intrinsic complexity of real-life protocols, their formal verification is

unlikely to be performed by hand. For instance, the Needham-Schroeder Public

Key protocol [10] was proved correct by hand [3] though it revealed to be

flawed [9] when carefully analyzed using formal methods.

The verification in the Dolev-Yao model has been implemented in several

tools. The AVISPA framework [1] is one such tool. It is very convenient,

especially when completed with SPAN [7] for the visualization and animation

parts. AVISPA and SPAN both use formal specifications of the protocols,

written in the language of AVISPA called HLPSL (High Level Protocol

Specification Language). Hereafter is a specification of the Diffie-Hellman

protocol using HLPSL.

role alice(A,B:agent, G:text, Snd,Rcv:channel(dy)) played_by A def=

 local State:nat, Na,Msg:text, X,K:message init State:=1

transition

1. State=1 /\ Rcv(start) =|> State':=2 /\ Na':=new() /\ Snd(exp(G,Na'))

2. State=2 /\ Rcv(X') =|> State':=3 /\ K':=exp(X',Na) /\ Msg':= new() /\

 Snd({Msg'}_K')

end role

role bob(B,A:agent, G:text, Snd,Rcv:channel(dy)) played_by B def=

 local State:nat, Y,K:message, Nb,Msg:text init State:=1

transition

1. State=1 /\ Rcv(Y') =|> State':=2 /\ Nb':=new() /\ K':=exp(Y',Nb') /\

 Snd(exp(G,Nb'))

2. State=2 /\ Rcv({Msg'}_K) =|> State':=3

end role

The specification is based on role descriptions, i.e. finite state automata, where

transitions are fired when a message is sent or received. Contrary to ``Alice &

Bob'' notation, HLPSL imposes explicit definition of roles, nonce generation,

message emission and reception, etc. In HLPSL, =|> stands for the transition

relation and /\ stands for the usual conjunction symbol. The HLPSL is based

on a notation à la TLA where the meaning of a primed variable X' depends on

the location of this variable. Indeed, if X' occurs in a message pattern of the

left-hand side of a transition then a new value is obtained for X by matching the

message pattern on received messages. Then this value is accessible by X' in

the same transition.

Hereafter is an attack automatically found by one AVISPA tool called

ATSE. Note that this attack is not the usual man-in-the-middle attack. We

believe that this is due to ATSE providing the shortest attack first.

 5

SUMMARY UNSAFE

DETAILS ATTACK_FOUND TYPED_MODEL

PROTOCOL Diffie-Hellman.if

GOAL Secrecy attack on (n2(Msg))

BACKEND CL-AtSe

STATISTICS [...]

ATTACK TRACE

 i -> (a,3): start

 (a,3) -> i: exp(g,n1(Na))

 i -> (a,3): g

 (a,3) -> i: {n2(Msg)}_(exp(g,n1(Na))) & Secret(n2(Msg),set_53);

 Add a to set_53; Add b to set_53;

Figure 1 is a visualization of the man-in-the-middle attack built using

SPAN. Starting for the HLPSL specification, SPAN lets the operator choose any

possible transition, until there is no more possible transition.

In figure 1, the operator has chosen a transition sequence that leads to the

attack. See [2] for more details about the formal specification of the Diffie-

Hellman protocol and its verification using AVISPA and SPAN.

Figure 1: Visualization of the man in the middle attack with SPAN

3. Brief description of LCDP

This section describes LCDP and gives indication on how it was specified. The

focus of the paper is the verification in section 4, but we first provide some

rational for understanding LDCP. LCDP is meant to establish trust within large

communities of devices. Here, the trust is the mutual authentication between

community devices and, ultimately, the sharing of a secret key (as in [8] for

instance). We believe that such communities will increasingly exist because of

the generalization of cheap devices with network connectivity and the move

towards ubiquitous computing [13]. In these communities the infrastructure

 6

components (internet server, home center, WiFi base…) are not always

reachable, and thus should not be used often, in an opportunistic manner. One

typical example is a cloud of home devices and personal devices willing to

collaborate, but not always connected to a central home server. Moreover, the

use of asymmetric cryptography on devices must be sparse because of their low

computation capabilities. Refer to [8,11] for previous work by two authors on

secure communities of devices.

3.1. Symmetric key authentication

LCDP is an adaptation of an existing symmetric key authentication scheme [4]

in the case of large communities of devices. The principle is to allow devices to

progressively acquire a set of trusted other devices. Once trust is established,

devices can securely communicate on a one-to-one basis. To achieve this, LCDP

uses a mix of several techniques and components. The components are: one

authentication server, at least one directory server and the devices. The

techniques are: Public Key Infrastructure (PKI) between devices and

authentication server, symmetric cryptography between devices and directory

servers, symmetric cryptography again between devices.

The notations used to describe LCDP are: AS for the authentication server, DS

for the directory server, D1…Di for devices having identities Id1…Idi

respectively.

In a typical session, a device D1 first connects to AS, using its PKI credentials. If

D1 is authorized, then AS sends it a cryptographic ticket t1. D1 presents t1 to DS

in order to register. DS informs D1 about other devices {Di,…} willing to

communicate. For each Di, DS also provides a specific ticket t1,i. Only then may

D1 securely communicate with Di by first presenting t1,i.

3.2. LCDP details

The PKI part of LCDP can be a very common X509 architecture. The

authentication server is typically a SSL server. It acts as a guard against non-

authenticated devices. It also enforces the revocation of devices. The devices

connect the authentication server only when they want to enter into a LCDP

session. This happens typically once every day. Since we are in ad hoc context,

we do not assume that the authentication server is always reachable. Moreover,

the use of a PKI can be no more that opportunistic. For instance, the revocation

information will be received by device only on a best effort basis.

The directory server is contacted by devices whenever they need references

for other devices. This can happen often (e.g. every minute for every device)

 7

especially if there are many devices, hence the use of symmetric cryptography

for this part. As discussed in [4], this is also a way to mitigate the relative

weakness of the directory server being a single point of failure.

Because it is difficult to keep control over large communities of devices and

because LCDP uses some long terms tickets (see 3.3), one global control

mechanism is also added. This is one global symmetric key, chosen by the

authentication server and shared with the directory server. It is denoted KoD for

"Key of the Day", stressing the fact that the authentication server regularly

changes it, typically on a daily basis. It is used as a mandatory component in the

calculation of tickets. Changing KoD invalidates all the previously calculated

tickets. This mechanism provides an authoritative way to globally discard all

previous trust relations and to force devices acquiring fresh tickets everyday.

Also, it can be useful in case of a mass revocation of devices that should quickly

become effective. There is one last advantage of using KoD: we do not want to

use the time in LCDP, mainly because some other devices do not have reliable

time mechanism. In particular it could be difficult to set up tickets with specific

time duration. Instead, KoD provides a way to obsolete all tickets in a single

operation.

Because “devil lies in the details” we are very suspicious about the security

of the KoD part of the protocol. The verification of it is one important

motivation for the collaboration with academic team and for the intensive use of

formal tools.

3.3. Putting it altogether

The specification of LCDP is provided here in the following formats: one

generic execution diagram in figure 2 and one ``Alice & Bob'' trace including

the formulas for the computation of tickets. In the trace, we assume that a device

Di already is in a LCDP session. Also, we assume an existing secure channel

between AS and DS.

1. AS DS: KoD. This happens regularly, for instance once a day, trough a

secure channel.

2. D1 AS: Id1. D1 attempts a SSL connection to AS.

3. AS D1: K1,Id1,t1={K1,Id1,n1}KoD. If AS authenticates D1, it gives it ticket

t1 for communicating with DS. n1 is a nonce used for anti-replay. KoD is

used to prevent generation of false tickets or the replay of old tickets.

4. D1 DS: Id1,t1. D1 authenticates to DS with its ticket. Decrypting the

ticket, DS learns the key K1.

 8

5. DS D1: {Idi,K1,i,t1,i}={Id1,Idi,K1,i,n1,i}Ki}K1. For each Di willing to

communicate, DS gives D1 a specific ticket.

6. D1 Di: Id1,t1,i. D1 presents its ticket to Di.

7. Di D1: {message}K1,i. Di can now securely send a secret message to D1.

Figure 2: Generic execution diagram of LCDP.

4. Verification of LCDP

4.1. Formal specification of LCDP

Before we run manual and automated verifications from AVISPA and SPAN we

first need a sufficient specification of LCDP: most of the complexity must be

embedded within the specification, otherwise we will miss attacks. On the other

hand it shall not become too complex so that tools can handle it correctly and in

a reasonable time. As a compromise, we make the following assumptions:

SSL is reliable at least in our context. Thus, at the end of the SSL session

between Di and AS, we can suppose that both parties share one secret key KSSLi.

Low number of devices we set-up LCDP sessions with only a few devices at

the same time. Moreover, we restrict the set of devices that will communicate

with another to one device at most. This case corresponds to devices that want to

communicate by pairs rather than by groups.

 9

One directory server this is an important simplification at the cost of missing

attacks that specifically happen with many directory servers.

Eluded details some parts are not formally specified, like the details of the

communication between AS and DS, some mechanisms to mitigate

consequences of changing KoD, the way devices publish there willingness to

communicate with some other.

Remark that these assumptions altogether represent a rather restrictive

compromise. Thus it is unlikely that we find an attack, or it will be a very

serious one. Our intention is to start with these restrictive assumptions, and then

possibly relax some of them, until attacks are eventually found. Doing so, we

seek more formal justifications for some protocol features (see end of 4.2).

Taking all above assumptions, we get the HLPSL specification hereafter:

Role device1(D1,Di,A,M:agent,Kssl1:symmetric_key,Id1:message,
SND,RCV:channel(dy)) played_by D1 def=
 local State:nat,N1,N2,N:text,Idi,Cred,Ticket:message,K1,K1i:symmetric_key
 init State:=0
transition
1. State=0 /\ RCV(start) =|> State':=1 /\ N':= new() /\SND({Id1.N'}_Kssl1)
2. State=1 /\ RCV({K1'.Id1.N.Cred'}_Kssl1) =|> State':=2 /\ SND(Id1.Cred')
3. State=2 /\ RCV({Idi'.K1i'.Ticket'}_K1) =|> State':= 3 /\ SND(Id1.Ticket')
4. State=3 /\ RCV({N2'}_K1i) =|> State':= 4
end role

role devicei(Di,D1:agent,Kssli:symmetric_key,Idi:message,SND,RCV:channel(dy))
played_by Di def=
 local State:nat,Msg,N2,N:text,Id1,Cred,Tcred:message,Ki,K1i:symmetric_key
 init State:=0
transition
1. State=0 /\ RCV(start) =|> State':=1 /\ N':= new() /\SND({Idi.N'}_Kssli)
2. State=1 /\ RCV({Ki'.Idi.N.Cred'}_Kssli) =|> State':=2 /\ SND(Idi.Cred')
3. State=2 /\ RCV(Id1'.{Id1'.Idi.K1i'}_Ki) =|> State':=3 /\ Msg':= new() /\
 SND({Msg'}_K1i') /\ secret(Msg',secret_msg,{D1,Di})
end role

role as(A:agent,Kssl1,Kssli,KoD:symmetric_key,SND,RCV:channel(dy))
played_by A def=
 local State:nat,N:text,K:symmetric_key,Adr:message
 init State:=0
transition
1. State=0 /\ RCV({Adr'.N'}_Kssli) =|>
 State':=1 /\ K':= new() /\ SND({K'.Adr'.N'.{K'.Adr'}_KoD}_Kssli)
2. State=1 /\ RCV({Adr'.N'}_Kssl1) =|>
 State':=2 /\ K':= new() /\ SND({K'.Adr'.N'.{K'.Adr'}_KoD}_Kssl1)
end role

role ds(M:agent,KoD:symmetric_key,SND,RCV:channel(dy))
played_by M def=
 local State:nat,Idi,Id:message,K,Ki,K1i:symmetric_key
 init State:=0
transition
1. State=0 /\ RCV(Idi'.{K'.Idi'}_KoD) =|> State':=1
2. State=1 /\ RCV(Id'.{Ki'.Id'}_KoD) =|> State':=2 /\ K1i':= new() /\
 SND({Id'.K1i'.{Id'.Idi.K1i'}_K}_Ki')
end role

 10

role session(D1,Di,A,M:agent,Kssl1,Kssli,KoD:symmetric_key,Id1,
Idi:message) def=
 local SD1,SDi,SA,SM,RD1,RDi,RC3,RC4,RA,RM:channel(dy)
composition
 device1(D1,Di,A,M,Kssl1,Id1,SD1,RD1) /\ devicei(Di,D1,Kssli,Idi,SDi,RDi)
/\ as(A,Kssl1,Kssli,KoD,SA,RA) /\ ds(M,KoD,SM,RM)
end role

role environment() def=
 const d1,di,i,as,ds:agent,
 oldKssli,newKssl1,newKssli,oldKsslintruder,oldKoD,newKoD:symmetric_key,
 id1,idi,idintruder:message, secret_msg:protocol_id
 intruder_knowledge={i,d1,di,as,ds,id1,idi,idintruder,oldKsslintruder}
composition
 session(i,di,as,ds,oldKsslintruder,oldKssli,oldKoD,idintruder,idi) /\
 session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi)
end role
goal secrecy_of secret_msg end goal

4.2. Verifications using AVISPA and SPAN

We start the verification of LCDP with a single KoD, hence modeling a "one

day" usage. This corresponds to a normal use of LCDP when devices first

authenticate, then build trust, and then communicate together. For simulating

SSL we first preset symmetric keys between the participating devices and the

authentication server. Then, devices systematically use theses keys and a nonce

for communicating with AS. The nonce expresses the anti-replay feature of SSL.

Hence steps 2 and 3 of LCDP specifications are replaced by:

2. D1 AS: {Id1,n1}KSSL1.

3. AS D1: {K1,n1}KSSL1,Id1,t1={K1,Id1,n1}KoD.

Figure 3: Simple session of LCDP.

 11

The figure 3 shows the corresponding execution with SPAN. We use two of the

verification tools from the AVISPA framework: OFMC and ATSE. Note that

other tools like SATMC and TA4SP also exist but do not lead to additional

result in the context of the present experiment. The verification goal is the

secrecy of the messages that are sent between devices. No tool reveals attacks,

with respect to the assumptions of 4.1.

We now verify LCDP when a KoD change happens. As indicated in 3.2 we

particularly care about potential vulnerabilities in this case. We still use the

same method to simulate SSL and we set-up a multiple session using the HLPSL

declaration below.

session(d1,di,as,ds,oldKssl1,oldKssli,oldKoD,idintruder,idi) /\

session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi)

Note that the same devices d1 and di appear in both sessions. The KoD

changes from oldKoD in the first session to newKoD in the second session.

Neither OFMC nor ATSE found attacks in this case.

We also verify the case where one device is valid in the first session, but

revoked in the second session. In this case, a device could try to keep its

privileges even after revocation and KoD change. We code it by making the

intruder i explicitly playing the role of a valid device in the first session. In the

second session, the intruder is not considered anymore as a valid participant.

 However, he is still able to manipulate the network and take advantage of the

information gathered during the first session. Here again, no attacks are found.

This reads:

session(i,di,as,ds,oldKsslintruder,oldKssli,oldKoD,idintruder,idi) /\

session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi)

At last, one can argue about the real need of SSL at the beginning of LCDP

sessions. Maybe this can be replaced by a lighter mechanism and permanent

secret keys. We have tried several ways to downgrade this part. This generally

leads to attacks, some of them non trivial. Figure 4 shows such a possible attack,

when the anti-replay mechanism at the beginning of LCDP is discarded. We do

not give the rational of the attack here, the important fact being the existence of

at least one attack when the countermeasure is weakened.

 12

Figure 4: Attack against a slightly downgraded version of LCDP.

 13

Conclusion

Both the academic team and the industrial team observe that this experiment has

positive results:

• It brings better confidence in the security of LCDP in the simple cases.

Neither OFMC nor ATSE found attacks in the test cases. Because ATSE is

proven complete [12] this means that, under the simplifying assumptions of

section 4.1, there is no attack on a finite number of sessions in the Dolev-

Yao model.

• It provides precise justifications for countermeasures that may otherwise be

embedded on a rather prophylactic basis. By just removing some

countermeasures, we easily get corresponding attacks.

• It produces precise specification and execution diagrams. Both are useful

for the understanding and further implementation of LCDP.

Of course, because of many simplifying assumptions, we are still far away from

a complete proof of the protocol. The next step is to progressively relax some of

the assumptions, especially the one about the number of directory servers. We

are also in the course of simulating more devices and larger sets of trusted

devices, at the cost of more intensive computation.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,

P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S.

Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santos Santiago, M.

Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the automated

validation of internet security protocols and applications, In K. Etessami

and S. Rajamani, editors, 17th International Conference on Computer Aided

Verification, CAV'2005, volume 3576 of Lecture Notes in Computer

Science, pages 281-285, Edinburgh, Scotland, 2005. Springer.

2. Y. Boichut, T. Genet, Y. Glouche, and O. Heen. Using Animation to

Improve Formal Specifications of Security Protocols. In Joint conference

SAR-SSI, 2007.

3. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM

Trans. Comput. Syst., 8(1):18-36, 1990.

4. B. Crispo, B. Popescu, and A. Tanenbaum. Symmetric key authentication

services revisited, 2004.

5. D. Dolev and A. Yao. On the security of public key protocols. In Proc.

IEEE Transactions on Information Theory, pages 198-208, 1983.

6. W. Diffie and M. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644-654, 1976.

 14

7. Y. Glouche and T. Genet. SPAN - a Security Protocol ANimator for

AVISPA - User Manual. IRISA / Université de Rennes 1, 2006. 20 pages.

http://www.irisa.fr/lande/genet/span/.

8. O. Heen, J.P. Andreaux, and N. Prigent. Improving secure device insertion

in home ad-hoc networks. In IFIP SEC, pages 381-394, 2004.

9. G. Lowe. Breaking and Fixing the Needham-Schroeder public-key protocol

using FDR. In Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 1055, pages 147-166. Springer-Verlag, Berlin

Germany, 1996.

10. R. M. Needham and M. D. Schroeder. Using Encryption for Authentication

in Large Networks of Computers. Communications of the ACM,

21(12):993-999, 1978.

11. N. Prigent, C. Bidan, J.P. Andreaux, and O. Heen. Secure long term

communities in ad hoc networks. In SASN '03: Proceedings of the 1st ACM

workshop on Security of ad hoc and sensor networks, pages 115-124, New

York, NY, USA, 2003. ACM.

12. M. Turuani. Security of Cryptographic Protocols: Decidability and

Complexity. PhD thesis, Université of Nancy 1, 2003.

13. M. Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.

Commun. Rev., 3(3):3-11, 199

