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This paper relates the collaboration between industrial and academic teams for 

the design and the verification of a security protocol. The protocol is about trust 

establishment in large communities of devices where infrastructure components 

are not always reachable. The collaboration covers the writing of formal 

specifications up to their verification, using both manual and automated 

verification methods embedded in the AVISPA [1] and SPAN [7] tools. At each 

stage, the use of the visualization and protocol animation facilities of SPAN is 

key to the mutual understanding of working teams. As a result, we obtain much 

more confidence in the security of the final protocol. We also demonstrate the 

usefulness of some embedded countermeasures. 

1.   Introduction 

As they expand, digital transmissions require increased security. Sometimes a 

straightforward adaptation of widely known solutions (SSL, IPSEC, PGP…) is 

adequate. Sometimes a new protocol must be specifically designed. In this case, 

many sources of error exist: 

• The protocol is an answer to a recent security problem: all the aspects of the 

problem may already not be known. 

• The protocol is an answer to a time critical situation: the design time may 

be very short. 
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• The protocol is designed for commercial use in a competitive domain: 

some details may not be published too early, and thus no external review  is 

possible. 

Because of such error factors there is an urge need for formal verification. 

Moreover, if the formal verification can be automated, this gives a chance to 

systematically verify the protocol after each update and to deal with the 

complexity of some protocols that cannot be managed by hand in practice. 

This paper relates the collaboration of industrial and academic teams about 

specifying and verifying one protocol. For convenience in the rest of the paper, 

we call our protocol LCDP for Large Community of Device Protocol. It is an 

adaptation of a symmetric key authentication scheme [4] to the case of large 

communities of devices. This collaboration illustrates the advantages of formal 

verification from a practical point of view: at first, it leads to a more precise 

specification of LCDP; then it gives more confidence on the final version, since 

no tools found attacks. This is especially true for the parts of the protocol that 

are completely new, and thus not heavily reviewed. At last, we check 

downgraded versions of LCDP where some countermeasures are disabled: this 

leads to the discovering of non-trivial attacks, and thus provides better 

justifications for the chosen countermeasures. 

At each stage (formal specification, modeling, verification), the 

visualization and the interactive use of execution diagrams is key for the mutual 

understanding of both teams: the industrial team developing the LCDP, and the 

academic team leading the formal specification and verification effort. 

Throughout the paper, we provide some of the message sequence charts 

obtained with SPAN. 

The section 2 gives the basics of automated protocol verification in the 

Dolev-Yao model. The tools that we use are also described. The section 3 gives 

motivations for LCDP and its description. The section 4 relates the whole 

verification process. 

2.   About automated protocol verification 

This section is a short introduction to the automated verification of protocols in 

the Dolev-Yao model (that was introduced in [5]). The reader familiar with 

automated protocol verification can skip this section. 

2.1.   Verification of Diffie-Hellman 

We briefly introduce the verification on a well-known example: the Diffie-

Hellman key agreement protocol [6]. It is presented below, using the so-called 



 3 

``Alice & Bob'' notation. The agents are denoted by A and B and the 

established key is denoted by K. This key is used in the final step to encrypt a 

secret message msg sent by A to B. 

1. A  B: g
Na

 

2. B  A: g
Nb

, A and B compute key K=(g
Na

)
Nb

=(g
Nb

)
Na

 

3. A  B: {msg}K  

At step 1, A generates the nonce (a random number) Na and computes g
Na

 

where g is a public number. Then A sends g
Na

 to the agent B. At step 2, the 

agent B also generates a number Nb and computes g
Nb

 and K=(g
Na

)
Nb

. The 

former is sent to A and the latter stands for the symmetric key shared between A 

and B. 

As soon as A receives g
Nb

 from B, it computes (g
Nb

)
Na

 and considers it as 

the symmetric key shared with B. Indeed, according to the algebraic properties 

of the exponentiation, K=(g
Na

)
Nb

=(g
Nb

)
Na

. Finally, the message {Msg}K is sent 

by A to B in which Msg is a datum standing to be secret between A and B, and { 

}K denotes the use of a symmetric encryption algorithm using the key K. 

Security protocols can be attacked in several ways. If the keys or the 

algorithms used for ciphering messages are not robust enough, the content of the 

messages can be obtained or modified by an attacker. Such attacks are more 

related to cryptanalysis and can generally be avoided with a careful choice of 

keys and algorithms when implementing the protocol. The attacks we are 

interested in are based on a malicious use of the protocol itself. The Dolev-Yao 

model is particularly well suited for this kind of attacks. The intruder can read, 

block, store, modify and send messages over the network. It is said that the 

intruder is the network. 

Hereafter, we show the well known man-in-the-middle attack against the 

Diffie-Hellman protocol. The notation I(A) means that the intruder pretends to 

be A. 

1. A  I: g
Na

 

2. I(A)  B: g
Ni

 

3. B  I: g
Nb

, B and I compute the key KIB=(g
Ni

)
Nb

=(g
Nb

)
Ni

 

4. I(B)  A: g
Ni

, A and I compute the key KIA=(g
Ni

)
Na

=(g
Na

)
Ni

 

5. A  I: {Msg}KIA
 

Roughly, the intruder establishes two keys: KIA=(g
Na

)
Ni

 with A at Steps 1 and 4, 

and K
IB

=(g
Nb

)
Ni

 with B at Steps 2 and 3. He then acts as a proxy between A and 

B. At Step 5, the agent A sends the secret data to B using the key KIA shared 

with the intruder. The intruder then extracts the secret data. 
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2.2.   Verification tools 

Due to the intrinsic complexity of real-life protocols, their formal verification is 

unlikely to be performed by hand. For instance, the Needham-Schroeder Public 

Key protocol [10] was proved correct by hand [3] though it revealed to be 

flawed [9] when carefully analyzed using formal methods. 

The verification in the Dolev-Yao model has been implemented in several 

tools. The AVISPA framework [1] is one such tool. It is very convenient, 

especially when completed with SPAN [7] for the visualization and animation 

parts. AVISPA and SPAN both use formal specifications of the protocols, 

written in the language of AVISPA called HLPSL (High Level Protocol 

Specification Language). Hereafter is a specification of the Diffie-Hellman 

protocol using HLPSL. 

 
role alice(A,B:agent, G:text, Snd,Rcv:channel(dy)) played_by A def= 

    local State:nat, Na,Msg:text, X,K:message init State:=1 

transition  

1.  State=1 /\ Rcv(start) =|> State':=2 /\ Na':=new() /\ Snd(exp(G,Na')) 

2.  State=2 /\ Rcv(X') =|> State':=3 /\ K':=exp(X',Na) /\ Msg':= new() /\ 

    Snd({Msg'}_K')  

end role 

 

role bob(B,A:agent, G:text, Snd,Rcv:channel(dy)) played_by B def= 

    local State:nat, Y,K:message, Nb,Msg:text init State:=1 

transition  

1.  State=1 /\ Rcv(Y') =|> State':=2 /\ Nb':=new() /\ K':=exp(Y',Nb') /\ 

    Snd(exp(G,Nb')) 

2.  State=2 /\ Rcv({Msg'}_K) =|> State':=3 

end role 

 

The specification is based on role descriptions, i.e. finite state automata, where 

transitions are fired when a message is sent or received. Contrary to ``Alice & 

Bob'' notation, HLPSL imposes explicit definition of roles, nonce generation, 

message emission and reception, etc. In HLPSL, =|> stands for the transition 

relation and /\ stands for the usual conjunction symbol. The HLPSL is based 

on a notation à la TLA where the meaning of a primed variable X' depends on 

the location of this variable. Indeed, if X' occurs in a message pattern of the 

left-hand side of a transition then a new value is obtained for X by matching the 

message pattern on received messages. Then this value is accessible by X' in 

the same transition.  

Hereafter is an attack automatically found by one AVISPA tool called 

ATSE. Note that this attack is not the usual man-in-the-middle attack. We 

believe that this is due to ATSE providing the shortest attack first.  
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SUMMARY       UNSAFE 

DETAILS       ATTACK_FOUND TYPED_MODEL 

PROTOCOL      Diffie-Hellman.if 

GOAL          Secrecy attack on (n2(Msg)) 

BACKEND       CL-AtSe 

STATISTICS    [...] 

ATTACK TRACE 

  i -> (a,3): start 

  (a,3) -> i: exp(g,n1(Na)) 

  i -> (a,3): g 

  (a,3) -> i: {n2(Msg)}_(exp(g,n1(Na))) & Secret(n2(Msg),set_53);   

              Add a to set_53; Add b to set_53; 

 

Figure 1 is a visualization of the man-in-the-middle attack built using 

SPAN. Starting for the HLPSL specification, SPAN lets the operator choose any 

possible transition, until there is no more possible transition. 

In figure 1, the operator has chosen a transition sequence that leads to the 

attack. See [2] for more details about the formal specification of the Diffie-

Hellman protocol and its verification using AVISPA and SPAN. 

 

 
 

Figure 1: Visualization of the man in the middle attack with SPAN 

3.   Brief description of LCDP 

This section describes LCDP and gives indication on how it was specified. The 

focus of the paper is the verification in section 4, but we first provide some 

rational for understanding LDCP. LCDP is meant to establish trust within large 

communities of devices. Here, the trust is the mutual authentication between 

community devices and, ultimately, the sharing of a secret key (as in [8] for 

instance). We believe that such communities will increasingly exist because of 

the generalization of cheap devices with network connectivity and the move 

towards ubiquitous computing [13]. In these communities the infrastructure 
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components (internet server, home center, WiFi base…) are not always 

reachable, and thus should not be used often, in an opportunistic manner. One 

typical example is a cloud of home devices and personal devices willing to 

collaborate, but not always connected to a central home server. Moreover, the 

use of asymmetric cryptography on devices must be sparse because of their low 

computation capabilities. Refer to [8,11] for previous work by two authors on 

secure communities of devices. 

3.1.   Symmetric key authentication 

LCDP is an adaptation of an existing symmetric key authentication scheme [4] 

in the case of large communities of devices. The principle is to allow devices to 

progressively acquire a set of trusted other devices. Once trust is established, 

devices can securely communicate on a one-to-one basis. To achieve this, LCDP 

uses a mix of several techniques and components. The components are: one 

authentication server, at least one directory server and the devices. The 

techniques are: Public Key Infrastructure (PKI) between devices and 

authentication server, symmetric cryptography between devices and directory 

servers, symmetric cryptography again between devices. 

The notations used to describe LCDP are: AS for the authentication server, DS 

for the directory server, D1…Di for devices having identities Id1…Idi 

respectively. 

In a typical session, a device D1 first connects to AS, using its PKI credentials. If 

D1 is authorized, then AS sends it a cryptographic ticket t1. D1 presents t1 to DS 

in order to register. DS informs D1 about other devices {Di,…} willing to 

communicate. For each Di, DS also provides a specific ticket t1,i. Only then may 

D1 securely communicate with Di by first presenting t1,i. 

3.2.   LCDP details 

The PKI part of LCDP can be a very common X509 architecture. The 

authentication server is typically a SSL server. It acts as a guard against non-

authenticated devices. It also enforces the revocation of devices. The devices 

connect the authentication server only when they want to enter into a LCDP 

session. This happens typically once every day. Since we are in ad hoc context, 

we do not assume that the authentication server is always reachable. Moreover, 

the use of a PKI can be no more that opportunistic. For instance, the revocation 

information will be received by device only on a best effort basis. 

The directory server is contacted by devices whenever they need references 

for other devices. This can happen often (e.g. every minute for every device) 
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especially if there are many devices, hence the use of symmetric cryptography 

for this part. As discussed in [4], this is also a way to mitigate the relative 

weakness of the directory server being a single point of failure. 

Because it is difficult to keep control over large communities of devices and 

because LCDP uses some long terms tickets (see 3.3), one global control 

mechanism is also added. This is one global symmetric key, chosen by the 

authentication server and shared with the directory server. It is denoted KoD for 

"Key of the Day", stressing the fact that the authentication server regularly 

changes it, typically on a daily basis. It is used as a mandatory component in the 

calculation of tickets. Changing KoD invalidates all the previously calculated 

tickets. This mechanism provides an authoritative way to globally discard all 

previous trust relations and to force devices acquiring fresh tickets everyday. 

Also, it can be useful in case of a mass revocation of devices that should quickly 

become effective. There is one last advantage of using KoD: we do not want to 

use the time in LCDP, mainly because some other devices do not have reliable 

time mechanism. In particular it could be difficult to set up tickets with specific 

time duration. Instead, KoD provides a way to obsolete all tickets in a single 

operation. 

Because “devil lies in the details” we are very suspicious about the security 

of the KoD part of the protocol. The verification of it is one important 

motivation for the collaboration with academic team and for the intensive use of 

formal tools. 

3.3.   Putting it altogether 

The specification of LCDP is provided here in the following formats: one 

generic execution diagram in figure 2 and one ``Alice & Bob'' trace including 

the formulas for the computation of tickets. In the trace, we assume that a device 

Di already is in a LCDP session. Also, we assume an existing secure channel 

between AS and DS. 

 

1. AS  DS: KoD. This happens regularly, for instance once a day, trough a 

secure channel. 

2. D1  AS: Id1. D1 attempts a SSL connection to AS. 

3. AS  D1: K1,Id1,t1={K1,Id1,n1}KoD. If AS authenticates D1, it gives it ticket 

t1 for communicating with DS. n1 is a nonce used for anti-replay. KoD is 

used to prevent generation of false tickets or the replay of old tickets. 

4. D1  DS: Id1,t1. D1 authenticates to DS with its ticket. Decrypting the 

ticket, DS learns the key K1. 
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5. DS  D1: {Idi,K1,i,t1,i}={Id1,Idi,K1,i,n1,i}Ki}K1. For each Di willing to 

communicate, DS gives D1 a specific ticket. 

6. D1  Di: Id1,t1,i. D1 presents its ticket to Di. 

7. Di  D1: {message}K1,i. Di can now securely send a secret message to D1. 

 

 
 

Figure 2: Generic execution diagram of LCDP. 

4.   Verification of LCDP 

4.1.   Formal specification of LCDP 

Before we run manual and automated verifications from AVISPA and SPAN we 

first need a sufficient specification of LCDP: most of the complexity must be 

embedded within the specification, otherwise we will miss attacks. On the other 

hand it shall not become too complex so that tools can handle it correctly and in 

a reasonable time. As a compromise, we make the following assumptions: 

SSL is reliable at least in our context. Thus, at the end of the SSL session 

between Di and AS, we can suppose that both parties share one secret key KSSLi. 

Low number of devices we set-up LCDP sessions with only a few devices at 

the same time. Moreover, we restrict the set of devices that will communicate 

with another to one device at most. This case corresponds to devices that want to 

communicate by pairs rather than by groups. 
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One directory server this is an important simplification at the cost of missing 

attacks that specifically happen with many directory servers. 

Eluded details some parts are not formally specified, like the details of the 

communication between AS and DS, some mechanisms to mitigate 

consequences of changing KoD, the way devices publish there willingness to 

communicate with some other. 

Remark that these assumptions altogether represent a rather restrictive 

compromise. Thus it is unlikely that we find an attack, or it will be a very 

serious one. Our intention is to start with these restrictive assumptions, and then 

possibly relax some of them, until attacks are eventually found. Doing so, we 

seek more formal justifications for some protocol features (see end of 4.2).  

Taking all above assumptions, we get the HLPSL specification hereafter: 
 
Role device1(D1,Di,A,M:agent,Kssl1:symmetric_key,Id1:message, 
SND,RCV:channel(dy)) played_by D1 def= 
    local State:nat,N1,N2,N:text,Idi,Cred,Ticket:message,K1,K1i:symmetric_key 
    init State:=0 
transition 
1.  State=0 /\ RCV(start) =|> State':=1 /\ N':= new() /\SND({Id1.N'}_Kssl1) 
2.  State=1 /\ RCV({K1'.Id1.N.Cred'}_Kssl1) =|> State':=2 /\ SND(Id1.Cred') 
3.  State=2 /\ RCV({Idi'.K1i'.Ticket'}_K1) =|> State':= 3 /\ SND(Id1.Ticket') 
4.  State=3 /\ RCV({N2'}_K1i) =|> State':= 4 
end role 
 
role devicei(Di,D1:agent,Kssli:symmetric_key,Idi:message,SND,RCV:channel(dy)) 
played_by Di def= 
    local State:nat,Msg,N2,N:text,Id1,Cred,Tcred:message,Ki,K1i:symmetric_key 
    init State:=0 
transition 
1.  State=0 /\ RCV(start) =|> State':=1 /\ N':= new() /\SND({Idi.N'}_Kssli)  
2.  State=1 /\ RCV({Ki'.Idi.N.Cred'}_Kssli) =|> State':=2 /\ SND(Idi.Cred') 
3.  State=2 /\ RCV(Id1'.{Id1'.Idi.K1i'}_Ki) =|> State':=3 /\ Msg':= new() /\ 
    SND({Msg'}_K1i') /\ secret(Msg',secret_msg,{D1,Di}) 
end role 
 
role as( A:agent,Kssl1,Kssli,KoD:symmetric_key,SND,RCV:channel(dy)) 
played_by A def= 
    local State:nat,N:text,K:symmetric_key,Adr:message 
    init State:=0 
transition 
1.  State=0 /\ RCV({Adr'.N'}_Kssli) =|> 
    State':=1 /\ K':= new() /\ SND({K'.Adr'.N'.{K'.Adr'}_KoD}_Kssli) 
2.  State=1 /\ RCV({Adr'.N'}_Kssl1) =|> 
    State':=2 /\ K':= new() /\ SND({K'.Adr'.N'.{K'.Adr'}_KoD}_Kssl1) 
end role 
 
role ds( M:agent,KoD:symmetric_key,SND,RCV:channel(dy)) 
played_by M def= 
    local State:nat,Idi,Id:message,K,Ki,K1i:symmetric_key 
    init State:=0 
transition 
1.  State=0 /\ RCV(Idi'.{K'.Idi'}_KoD) =|> State':=1 
2.  State=1 /\ RCV(Id'.{Ki'.Id'}_KoD) =|> State':=2 /\ K1i':= new() /\ 
    SND({Id'.K1i'.{Id'.Idi.K1i'}_K}_Ki')  
end role              
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role session(D1,Di,A,M:agent,Kssl1,Kssli,KoD:symmetric_key,Id1, 
Idi:message) def= 
    local SD1,SDi,SA,SM,RD1,RDi,RC3,RC4,RA,RM:channel(dy) 
composition 
    device1(D1,Di,A,M,Kssl1,Id1,SD1,RD1) /\ devicei(Di,D1,Kssli,Idi,SDi,RDi)  
/\  as(A,Kssl1,Kssli,KoD,SA,RA) /\ ds(M,KoD,SM,RM) 
end role 
 
role environment() def= 
    const d1,di,i,as,ds:agent, 
    oldKssli,newKssl1,newKssli,oldKsslintruder,oldKoD,newKoD:symmetric_key, 
    id1,idi,idintruder:message, secret_msg:protocol_id 
    intruder_knowledge={i,d1,di,as,ds,id1,idi,idintruder,oldKsslintruder} 
composition 
    session(i,di,as,ds,oldKsslintruder,oldKssli,oldKoD,idintruder,idi) /\ 
    session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi) 
end role  
goal secrecy_of secret_msg end goal 

4.2.   Verifications using AVISPA and SPAN 

We start the verification of LCDP with a single KoD, hence modeling a "one 

day" usage. This corresponds to a normal use of LCDP when devices first 

authenticate, then build trust, and then communicate together. For simulating 

SSL we first preset symmetric keys between the participating devices and the 

authentication server. Then, devices systematically use theses keys and a nonce 

for communicating with AS. The nonce expresses the anti-replay feature of SSL. 

Hence steps 2 and 3 of LCDP specifications are replaced by: 

2. D1  AS: {Id1,n1}KSSL1. 

3. AS  D1: {K1,n1}KSSL1,Id1,t1={K1,Id1,n1}KoD. 

 

 
Figure 3: Simple session of LCDP. 
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The figure 3 shows the corresponding execution with SPAN. We use two of the 

verification tools from the AVISPA framework: OFMC and ATSE. Note that 

other tools like SATMC and TA4SP also exist but do not lead to additional 

result in the context of the present experiment. The verification goal is the 

secrecy of the messages that are sent between devices. No tool reveals attacks, 

with respect to the assumptions of 4.1. 

We now verify LCDP when a KoD change happens. As indicated in 3.2 we 

particularly care about potential vulnerabilities in this case. We still use the 

same method to simulate SSL and we set-up a multiple session using the HLPSL 

declaration below. 
 

session(d1,di,as,ds,oldKssl1,oldKssli,oldKoD,idintruder,idi) /\ 

session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi) 

 

Note that the same devices d1 and di appear in both sessions. The KoD 

changes from oldKoD in the first session to newKoD in the second session. 

Neither OFMC nor ATSE found attacks in this case. 

We also verify the case where one device is valid in the first session, but 

revoked in the second session. In this case, a device could try to keep its 

privileges even after revocation and KoD change. We code it by making the 

intruder i explicitly playing the role of a valid device in the first session. In the 

second session, the intruder is not considered anymore as a valid participant. 

 However, he is still able to manipulate the network and take advantage of the 

information gathered during the first session. Here again, no attacks are found. 

This reads: 
 

session(i,di,as,ds,oldKsslintruder,oldKssli,oldKoD,idintruder,idi) /\ 

session(d1,di,as,ds,newKssl1,newKssli,newKoD,id1,idi) 

 

At last, one can argue about the real need of SSL at the beginning of LCDP 

sessions. Maybe this can be replaced by a lighter mechanism and permanent 

secret keys. We have tried several ways to downgrade this part. This generally 

leads to attacks, some of them non trivial. Figure 4 shows such a possible attack, 

when the anti-replay mechanism at the beginning of LCDP is discarded. We do 

not give the rational of the attack here, the important fact being the existence of 

at least one attack when the countermeasure is weakened. 



 12 

 
 

Figure 4: Attack against a slightly downgraded version of LCDP. 
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Conclusion 

Both the academic team and the industrial team observe that this experiment has 

positive results: 

• It brings better confidence in the security of LCDP in the simple cases. 

Neither OFMC nor ATSE found attacks in the test cases. Because ATSE is 

proven complete [12] this means that, under the simplifying assumptions of 

section 4.1, there is no attack on a finite number of sessions in the Dolev-

Yao model. 

• It provides precise justifications for countermeasures that may otherwise be 

embedded on a rather prophylactic basis. By just removing some 

countermeasures, we easily get corresponding attacks. 

• It produces precise specification and execution diagrams. Both are useful 

for the understanding and further implementation of LCDP. 

Of course, because of many simplifying assumptions, we are still far away from 

a complete proof of the protocol. The next step is to progressively relax some of 

the assumptions, especially the one about the number of directory servers. We 

are also in the course of simulating more devices and larger sets of trusted 

devices, at the cost of more intensive computation. 
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