
INRIA/IRISA
LANDE Project

a Security Protocol ANimator for AVISPA

Version 1.5

User Manual

September 2008

Yann GLOUCHE, Thomas GENET and Erwan HOUSSAY, IRISA/Université de Rennes 1

SPAN: a Security Protocol ANimator for AVISPA

Copyright c© Yann GLOUCHE, Thomas GENET and Erwan HOUSSAY, 2006-2008

SPAN uses the following libraries:

• HLPSL2IF c© Laurent Vigneron, 2005

• Matching modulo exp and xor, part of CL-ATSE c© Mathieu Turuani, 2005

Contents

1 SPAN overview 1
1.1 What is AVISPA ? . 1
1.2 Availability, License and Installation . 2
1.3 Bug report and information . 3

2 Installation 3

3 Specification Language 3

4 SPAN reference manual 4
4.1 Local Graphical User Interface for AVISPA . 4
4.2 Basic Protocol Animation . 4
4.3 Variables Monitoring . 5
4.4 The intruder simulation . 6

4.4.1 Description . 7
4.4.2 How to use it? . 8

4.5 The attack simulation . 10
4.5.1 Description . 10
4.5.2 Example of use . 11

4.6 Load/Save, Print/Export and Specific display modes 11

Figure list 11

SPAN: a Protocol Animator for AVISPA Page 1

1 SPAN overview

1.1 What is AVISPA ?

Avispa [ABB+05, avi] is now a commonly used verification tool for cryptographic protocols. The
main advantage of this tool is the ability to use different verification techniques on the same protocol
specification.

The protocol designer interacts with the tool by specifying a security problem (ie a protocol paired
with a security property that the protocol is expected to achieve) in the High-Level Protocol Specifica-
tion Language (HLPSL for short [Ohe05]). The HLPSL is an expressive, modular, role-based, formal
language that is used to specify control-flow patterns, data-structures, alternative intruder models and
complex security properties, as well as different cryptographic primitives and their algebraic properties.
These features make HLPSL well suited for specifying modern, industrial-scale protocols.

HLPSL +3

��

SPAN

IF

px iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii

u} ttttttttt

ttttttttt

#+NNNNNNNNNNN

NNNNNNNNNNN

'/WWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWW

OFMC CL SATMC TA4SP

Figure 1: AVISPA system architecture and SPAN

Then, the HLPSL specification is translated into an Intermediate Format (IF) which is used by
the various verification tools embedded in AVISPA: OFMC the On-the-Fly Model-Checker [BMV05],
CL Constraint-Logic-based model-checker [Tur06], SATMC SAT-based Model-Checker [AC05], and
TA4SP Tree Automata based Automatic Approximations for the Analysis of Security Protocols [BHK04].
The role of SPAN is to symbolically execute a HLPSL protocol specification. This turns out to be
useful, when writing HLPSL, so as to have a better understanding of the specification, check that it
is executable and that it corresponds to what is expected. Figure 1 depicts the overall architecture of
the system including SPAN. The initial development of the SPAN tool was done in collaboration with
Olivier Heen and Olivier Courtay of Thomson R&D France [GGHC06].

Since HLPSL is a far more expressive language than basic ”Alice & Bob” notation, writing an
HLPSL specification is still not an easy task. In HLPSL, protocols are defined role by role rather than
message by message like it is done using ”Alice & Bob” notation. As a result, HLPSL specifications are
far less ambiguous but more difficult to read. Thus, it is sometimes difficult for the protocol designers
to figure out if the HLPSL specification they wrote corresponds to the ”Alice & Bob” protocol they
had in mind.

SPAN helps in interactively producing Message Sequence Charts [HT03] (MSC for short) which
can be seen as an ”Alice & Bob” trace from an HLPSL specification. SPAN can represent one or
more sessions of the protocol in parallel according to the informations given in the role environment.
Then, MSCs are produced interactively with the user. SPAN also includes the possibility to check the
values, at every moment, of the variables of each principals: the user chooses the variables of each
roles he wants to monitor.

The three modes of SPAN are

• Protocol Simulation for simulating the protocol and build a particular MSC corresponding
to the HLPSL specification;

SPAN: a Protocol Animator for AVISPA Page 2

Figure 2: Local version of the AVISPA web interface

• Intruder Simulation for simulating the protocol with an active/passive intruder;

• Attack Simulation for automatic building of MSC attacks from the output of either OFMC
or CL-ATSE tools.

When an intruder is under concern, after each step of protocol execution, SPAN shows the current
intruder knowledge and proposes to construct and send malicious messages from this knowledge.
Message patterns are proposed to the user conjointly with intruder data, relevant w.r.t. pattern
structure and type.

The tool can save and load execution traces corresponding to the execution of the protocol super-
vised by the user. The MSC can be exported in postscript format or PDF format.

Finally, as shown in Figure 2, SPAN comes with a local version of the web interface of AVISPA that
supports the editing of protocol specifications, allows the user to select and configure the back-ends
integrated into the tool and launch the three different kind of animations: protocol simulation (with
no intruder), intruder simulation (build your own attacks by hand), attack simulation (load attacks
found by OFMC/CL-ATSE in the simulation).

1.2 Availability, License and Installation

SPAN is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC LICENSE.

SPAN: a Protocol Animator for AVISPA Page 3

1.3 Bug report and information

Please report comments and bugs to Thomas.Genet@irisa.fr.

2 Installation

SPAN is developped in OCaml. The Tcl/Tk library version 8.4 (for Linux and MacOS) and version
8.3 (Windows) is necessary to use this application. See README.txt file of the distribution for details
about installation of binary versions and for compilation of source versions.

3 Specification Language

The HLPSL is an expressive, modular, role-based, formal language that is used to specify control-
flow patterns, data-structures, alternative intruder models and complex security properties, as well as
different cryptographic primitives and their algebraic properties.

We give a flavour of HLPSL using the specification of the Needham-Schroeder Public Key proto-
col [NS78]:

1. A ↪→ B : {NA, A}KB

2. B ↪→ A : {NA, NB}KA

3. A ↪→ B : {NB}KB

HLPSL specifications are based on role descriptions, i.e. finite state automata, where transitions
are fired when a message is sent or received. With regards to ”Alice & Bob” notation, HLPSL makes
internal state of roles, nounce generation, message sending and reception explicit. Here is an example
of a basic role decalaration extracted from the HLPSL specification of this protocol.

role alice (A, B: agent, Ka, Kb: public_key, SND, RCV: channel (dy))
played_by A def=
local State : nat, Na, Nb: text
init State := 0
transition

0. State = 0 /\ RCV(start) =|>
State’:= 2 /\ Na’ := new() /\ SND({Na’.A}_Kb)

2. State = 2 /\ RCV({Na.Nb’}_Ka) =|>
State’:= 4 /\ SND({Nb’}_Kb)

end role

role bob(A, B: agent, Ka, Kb: public_key, SND, RCV: channel (dy))
played_by B def=
local State : nat, Na, Nb: text
init State := 1
transition

1. State = 1 /\ RCV({Na’.A}_Kb) =|>
State’:= 3 /\ Nb’ := new() /\ SND({Na’.Nb’}_Ka)

3. State = 3 /\ RCV({Nb}_Kb) =|> State’:= 5
end role

Then, roles are composed together in sessions where the knowledge shared between the roles (public
keys for instance) are made explicit.

SPAN: a Protocol Animator for AVISPA Page 4

role session(A, B: agent, Ka, Kb: public_key) def=
local SA, RA, SB, RB: channel (dy)
composition

alice(A,B,Ka,Kb,SA,RA) /\ bob(A,B,Ka,Kb,SB,RB)
end role

Finally, the environment used for protocol execution is defined, where ’i’ denotes the intruder. The
environment also defines the initial knowledge of the intruder and the initial setting for the sessions,
i.e. how many sessions are runned and who run them.

role environment() def=
const a, b, c, d : agent,
ka, kb, ki, kc, kd : public_key,

intruder_knowledge = {a, b, ka, kb, kc, kd, ki, inv(ki)}
composition

session(a,b,ka,kb) /\ session(c,d,kc,kd) /\ session(a,i,ka,ki)
end role

In the example above, four honnest agents are defined, namely a,b,c, and d, and the intruder
knows all the public keys as well as its own private key inv(ki). For more details about HLPSL refer
to [avi, Ohe05].

4 SPAN reference manual

4.1 Local Graphical User Interface for AVISPA

As shown in figure 3, SPAN comes with a local version of the web graphical interface of AVISPA. It
looks the same and provides the same features: simple editing of protocol specifications, selection and
configuration of the AVISPA verification back-ends and two buttons (those ones are new): Protocol
simulation (honnest agents alone), Intruder simulation (honnest agents and an intruder) and Attack
simulation (same layout as Intruder simulation but attacks are automatically built using OFMC/CL-
ATSE).

4.2 Basic Protocol Animation

Starting from such an HLPSL specification, such as the one given in Section 3, SPAN helps to build
one possible MSC corresponding to that specification. SPAN can represent one or more sessions of
the protocol in parallel according to the informations given in the role environment. Then, MSCs
are produced interactively with the user. At every moment, SPAN proposes to the user to choose
between all the transitions for which a message can be sent by a principal and received by another.
This approach makes it possible to resolve interactively all the choices that may arise during the
construction of MSC (Non-deterministic protocols, choices between two transitions to trigger in two
different sessions etc...). The execution of a protocol’s transition generally adds a transition on the
MSC.

Figure 4 shows a partial execution of a protocol where the frame Incoming events contains all the
transitions that can be currently fired (by double click), and the frame Past events contains the list
of all transitions already fired.

SPAN: a Protocol Animator for AVISPA Page 5

Figure 3: Details of the general verification graphical interface

4.3 Variables Monitoring

SPAN also includes the possibility to check the values, at every moment, of the variables of each
principals: the user chooses the variables of each roles he wants to monitor.

It is possible to control the values of variables. In the item menu ”Variables Monitoring”, the user
chooses the role for which he wants to control the variables. Then, among all the variables of a given
role, he can choose the variables to monitor (See Figure 5(a)). Finally, the user can double click on
the rectangular click zones displayed in the MSC in order to display the values at a given step.

SPAN: a Protocol Animator for AVISPA Page 6

Figure 4: The SPAN animator interface during an interactive execution

(a) Variables selection (b) Content of variables displayed in the MSC

Figure 5: Variables monitoring

4.4 The intruder simulation

In this section we describe the intruder simulation interface. The purpose of this interface is to provide
a way to build by hand attacks over protocols. Indeed, the automatic verification tools always end up
with the smallest attack that can be found on a protocol. Note that the attacks found by OFMC/CL-
ATSE can be automatically loaded as MSC in the intruder simulation interface, see section 4.5.
However, it is sometimes useful to represent or to try other attacks. This is the purpose of the manual

SPAN: a Protocol Animator for AVISPA Page 7

intruder simulation interface we know present.

4.4.1 Description

It is possible to simulate an intruder who can receive all messages, store them in its knowledge,
decrypt information if he has the key, build new messages and send them to any other agent. In
HLPSL, the intruder is named i, and his initial knowledge is explicitely defined in the specification
(intruder knowledge = {...}). After each step of the protocol execution, when the intruder receives
a message, he can automatically deduce a new knowledge from its current knowledge and this new
message (see Figure 6). For example, if intruder knowledge = {{m} k} where m is a message and k
is a symmetric-key (resp. a public key) then, if the intruder receives k (resp. inv(k)) then he is abble
to deduce and store m. In that case, his knowledge becomes intruder knowledge = {{m} k, k,m}.
In the same way, when the intruder receives a tuple a.b.c, then he automatically deduces a, b, and c.

Figure 6: Simulation with the intruder

Using a specific interface (see Figure 7), SPAN can also compose terms of the intruder’s knowledge
to generate a new message. In this interface, message patterns and potential receivers are proposed to
the user conjointly with intruder data that fit in the pattern holes. In Figure 7, we can see that the
upper part of the interface proposes relevant message patterns (messages that are likely to be received
by the other principals in the current protocol step). Once a pattern is selected, in the lower part of
the interface, the user can select relevant informations to fill the gaps (relevant w.r.t. type, message
structure and intruder knowledge). This permits to quickly reconstruct the MSC of a known attack

SPAN: a Protocol Animator for AVISPA Page 8

on a protocol or, with a little expertise, to find new ones.

Figure 7: Intruder message construction interface

4.4.2 How to use it?

Recall the protocol given in Section 3. Here are the basic data of the protocol:

• KA and KB are two publics keys

• inv(KA) and inv(KB) are two privates keys

• NA and NB are nonces

The initial knowledge of the intruder contains all the public keys as well as its own public and
private key (see Figure 8). The protocol can be attacked if Alice wants to start a protocol session with
the intruder. Alice starts the protocol with the Intruder and thus use its public key, KI , to cipher the
message:

A ↪→ I : {NA, A}KI

This first step can be simulated in SPAN (see Figure 9).

SPAN: a Protocol Animator for AVISPA Page 9

Figure 8: The initial intruder’s knowledge

Figure 9: Alice starts the protocol with the intruder instead of Bob

Then the intruder I can decrypt {NA, A}KI
with inv(KI), thus he automatically deduces NA and

A (see Figure 10, where in the current session the value of the nonce NA is nonce-1). Since KB is
also known by the intruder, using the message construction interface, the user can build the message
{NA, A}KB

whose value in the current session is {nonce-1.a} {kb} (see Figure 10).

I(A) ↪→ B : {NA, A}KB

The intruder I sends {NA, A}KB
to Bob (B). Thus, Bob thinks that the message comes from

Alice though it comes from the intruder. Then, Bob continues to execute the protocol with A using
the nonce NA that A has created for initiating a communication with the intruder. Alices continues
to execute the protocol with the intruder (see Figure 12).

SPAN: a Protocol Animator for AVISPA Page 10

Figure 10: The intruder compose a message for Bob

Thus, we can build the original attack found by G.Lowe [Low96]:

A ↪→ I : {NA, A}KI

I(A) ↪→ B : {NA, A}KB

B ↪→ A : {NA, NB}KA

A ↪→ I : {NB}KI

I(A) ↪→ B : {NB}KB

4.5 The attack simulation

In the previous section we show how to build by hand an attack over a protocol using the intruder
simulation interface. However, when the automatic verification tools OFMC/CL-ATSE find the attack
of interest this one can be automatically loaded in the intruder simulation interface using the attack
simulation button.

4.5.1 Description

From version 1.5, SPAN proposes a new button for automatically building MSC from the output of
OFMC and CL-ATSE verification tools. Once an HLPSL specification is loaded in the interface, select
either OFMC or ATSE verification tools then click on the attack simulation button. SPAN is then
running the selected verification tool, get its output and if an attack is found then it is loaded in the
intruder simulation interface. Note that both verification with OFMC/CL-ATSE and loading in the
intruder simulation interface may take some time.

SPAN: a Protocol Animator for AVISPA Page 11

Figure 11: Bob receives a message from the intruder instead of Alice

Once the MSC of the attack has been built in the intruder simulation interface you can play with
it, go backward/forward, see intruder’s knowledge, monitor variables and also save it like any other
MSC protocol simulation.

4.5.2 Example of use

On the protocol given in Section 3, the automatic tools OFMC/CL-ATSE find the same man in the
middle attack. It can be automatically built as a MSC by clicking on the attack simulation button,
see Figure 13.

4.6 Load/Save, Print/Export and Specific display modes

Save/Load For a given protocol, a constructed MSC can be saved, reloaded and replayed in SPAN
(See Figure 14).

Print/Export The MSCs can be exported in postscript format or PDF format to be printed or
integrated in other documents. (See Figure 15)

Display mode Using the options of the Modes menu it is possible to display additionnal informations
on the MSC: the message pattern of the sender, the message pattern of the receiver, all the
message sendings on the network (useful when several messages are sent at once). Each of these
elements can be drawn (or not) on the MSC. (See Figure 16)

SPAN: a Protocol Animator for AVISPA Page 12

Figure 12: The man in the middle attack continued: the intruder is between Alice and Bob

List of Figures

1 AVISPA system architecture and SPAN . 1
2 Local version of the AVISPA web interface . 2
3 Details of the general verification graphical interface 5
4 The SPAN animator interface during an interactive execution 6
5 Variables monitoring . 6
6 Simulation with the intruder . 7
7 Intruder message construction interface . 8
8 The initial intruder’s knowledge . 9
9 Alice starts the protocol with the intruder instead of Bob 9
10 The intruder compose a message for Bob . 10
11 Bob receives a message from the intruder instead of Alice 11
12 The man in the middle attack continued: the intruder is between Alice and Bob . . . 12
13 Automatic construction of the MSC for attack over Needham-Shroeder public key protocol 13
14 Load and save an execution trace of a protocol . 14

SPAN: a Protocol Animator for AVISPA Page 13

Figure 13: Automatic construction of the MSC for attack over Needham-Shroeder public key protocol

15 Export a MSC . 14
16 Display modes for messages . 15

SPAN: a Protocol Animator for AVISPA Page 14

Figure 14: Load and save an execution trace of a protocol

Figure 15: Export a MSC

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
AVISPA Tool for the automated validation of internet security protocols and applications.

SPAN: a Protocol Animator for AVISPA Page 15

Figure 16: Display modes for messages

In K. Etessami and S. Rajamani, editors, 17th International Conference on Computer
Aided Verification, CAV’2005, volume 3576 of Lecture Notes in Computer Science, pages
281–285, Edinburgh, Scotland, 2005. Springer.

[AC05] Alessandro Armando and Luca Compagna. An optimized intruder model for sat-based
model-checking of security protocols. Electr. Notes Theor. Comput. Sci., 125(1):91–108,
2005.

[avi] Avispa – a tool for Automated Validation of Internet Security Protocols.
http://www.avispa-project.org.

[BHK04] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Approximation for the Veri-
fication of Cryptographic Protocols. In Proc. AVIS’2004, joint to ETAPS’04, Barcelona
(Spain), 2004.

[BMV05] David A. Basin, Sebastian Mödersheim, and Luca Viganò. Ofmc: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[GGHC06] Y. Glouche, T. Genet, O. Heen, and O. Courtay. A Security Protocol Animator Tool for
AVISPA. In ARTIST-2 workshop on security of embedded systems, Pisa (Italy), 2006.

SPAN: a Protocol Animator for AVISPA Page 16

[HT03] D. Harel and P. S. Thiagarajan. Message sequence charts. UML for Real: Design of
Embedded Real-time Systems, 2003.

[Low96] G. Lowe. Some New Attacks upon Security Protocols. In 9th Computer Security Founda-
tions Workshop. IEEE Computer Society Press, 1996.

[NS78] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. CACM, 21(12):993–999, 1978.

[Ohe05] D.von Oheimb. Specification language hlpsl developed in the eu project avispa. In
APPSEM, 2005.

[Tur06] Mathieu Turuani. The cl-atse protocol analyser. In Frank Pfenning, editor, RTA, volume
4098 of Lecture Notes in Computer Science, pages 277–286. Springer, 2006.

